JPH08153899A - Thermomodule for thermoelectric conversion and production thereof - Google Patents

Thermomodule for thermoelectric conversion and production thereof

Info

Publication number
JPH08153899A
JPH08153899A JP6295447A JP29544794A JPH08153899A JP H08153899 A JPH08153899 A JP H08153899A JP 6295447 A JP6295447 A JP 6295447A JP 29544794 A JP29544794 A JP 29544794A JP H08153899 A JPH08153899 A JP H08153899A
Authority
JP
Japan
Prior art keywords
semiconductor compound
type semiconductor
type
mold
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6295447A
Other languages
Japanese (ja)
Inventor
Yusuke Watarai
祐介 渡會
Masashi Komabayashi
正士 駒林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP6295447A priority Critical patent/JPH08153899A/en
Publication of JPH08153899A publication Critical patent/JPH08153899A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To facilitate the arrangement of N-type and P-type semiconductor compound elements and the connection of electrode thereof by bonding an insulating frame, the N-type and P-type semiconductor compound elements, and a plurality of electrodes integrally. CONSTITUTION: A plurality of through holes 11 are made through an insulating frame 12 while spaced apart from each other and then the through holes 11 are filled, alternately, with N-type and P-type semiconductor compound elements 13, 14. On the upper and lower surfaces of the insulating frame 12, a plurality of electrodes 16, 17 of the N-type and P-type semiconductor compound elements 13, 14 are connected electrically in series in the order of N, P, N, P. The insulating frame 12, the N-type and P-type semiconductor compound elements 13, 14 and the electrodes 16, 17 are bonded integrally. This method facilitates the arrangement of the N-type and P-type semiconductor compound elements 13, 14 and the connection with the electrodes 16, 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はペルチェ効果を有する複
数対の熱電半導体化合物素子を用いた熱電変換用サーモ
モジュール及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion thermomodule using a plurality of pairs of thermoelectric semiconductor compound elements having a Peltier effect and a method for manufacturing the thermomodule.

【0002】[0002]

【従来の技術】図5に示すように、熱電変換用サーモモ
ジュール1は複数のN型半導体化合物素子2とP型半導
体化合物素子3とをN,P,N,Pの順に電気的に直列
に接続するように複数の金属電極4a,4bにはんだ付
けし、端部のN型半導体化合物素子2a及び図示しない
P型半導体化合物素子にそれぞれリード線5及び6を接
続して構成される。このN側端子であるN型半導体化合
物素子2aに直流電源のプラス、P側端子である図示し
ないP型半導体化合物素子にマイナスの電圧VMを印加
すると、電流Iが各素子のN型からP型に流れ、上部各
接合電極4aで吸収された熱量は各素子を通って下方に
並列に輸送される。その結果、モジュール1の上面で総
熱量Qcが吸収され、この熱が下部の電極面で総供給電
力PMに相当する熱量と合算され、総発熱量Qhとなって
モジュール1の下面で放出される。
2. Description of the Related Art As shown in FIG. 5, a thermoelectric conversion thermomodule 1 has a plurality of N-type semiconductor compound elements 2 and P-type semiconductor compound elements 3 electrically connected in series in the order of N, P, N, P. A plurality of metal electrodes 4a and 4b are soldered so as to be connected, and lead wires 5 and 6 are respectively connected to the N-type semiconductor compound element 2a at the end and a P-type semiconductor compound element (not shown). When a positive voltage V M is applied to the N-type semiconductor compound element 2a which is the N-side terminal and a negative voltage VM is applied to the P-type semiconductor compound element (not shown) which is the P-side terminal, a current I changes from the N-type of each element to P The amount of heat that flows into the mold and is absorbed by each upper bonding electrode 4a is transported downward in parallel through each element. As a result, the total heat quantity Q c is absorbed on the upper surface of the module 1, and this heat is added to the heat quantity corresponding to the total supplied power P M on the lower electrode surface to become the total heat generation quantity Q h on the lower surface of the module 1. Is released.

【0003】従来、熱電変換用サーモモジュールは例え
ば次の方法により製造される。先ずN型半導体化合物素
子用のインゴット(結晶棒)及びP型半導体化合物素子
用のインゴットを用意する。N型半導体化合物素子用の
インゴットをスライスした後、粉砕し約50μm以下の
微粉末にする。この微粉末をチップ状に圧縮成形し、焼
結させた後、Niめっきを施してN型半導体化合物素子
を得る。P型半導体化合物素子も同様に作製した後、複
数のN型及びP型半導体化合物素子は図5に示すように
N,P,N,Pの順に配置され、所定の電気的接続とな
るように金属電極にはんだ付けされる。
Conventionally, a thermoelectric conversion thermomodule is manufactured by the following method, for example. First, an ingot (crystal rod) for an N-type semiconductor compound element and an ingot for a P-type semiconductor compound element are prepared. After slicing the ingot for the N-type semiconductor compound device, it is pulverized into a fine powder of about 50 μm or less. This fine powder is compression-molded into a chip shape, sintered, and then Ni-plated to obtain an N-type semiconductor compound element. After the P-type semiconductor compound device is also manufactured in the same manner, a plurality of N-type and P-type semiconductor compound devices are arranged in the order of N, P, N, P as shown in FIG. Soldered to metal electrode.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述の従来の
製造方法は、工程数が多くて複雑であり、またペルチェ
効果を有するようにN型半導体化合物素子とP型半導体
化合物素子を配置しかつ電極に接続する作業には細心の
注意を必要とし、熱電変換用サーモモジュールを効率良
く量産することが困難であった。また、上記方法で作ら
れた熱電変換用サーモモジュールはスケルトンタイプで
あるため、機械的強度が十分でなく、素子間に塵埃など
が入り易い不具合があった。
However, the above-mentioned conventional manufacturing method has many steps and is complicated, and the N-type semiconductor compound element and the P-type semiconductor compound element are arranged so as to have the Peltier effect. The work of connecting to the electrodes requires careful attention, and it was difficult to efficiently mass-produce the thermoelectric conversion thermomodule. Further, since the thermoelectric conversion thermomodule manufactured by the above method is a skeleton type, it has a problem that mechanical strength is not sufficient and dust and the like easily enter between the elements.

【0005】本発明の目的は、工程数が比較的少なく単
純で、ペルチェ効果を有するためのN型半導体化合物素
子とP型半導体化合物素子の配置及び電極との接続が容
易であって、熱電変換用サーモモジュールを効率良く量
産し得る製造方法を提供することにある。本発明の別の
目的は、機械的強度が高く、素子間に塵埃などが入らず
信頼性が高い熱電変換用サーモモジュールを提供するこ
とにある。
An object of the present invention is that the number of steps is relatively small and simple, the arrangement of the N-type semiconductor compound element and the P-type semiconductor compound element to have the Peltier effect and the connection with the electrodes are easy, and the thermoelectric conversion is performed. It is to provide a manufacturing method capable of efficiently mass-producing thermoelectric modules for use. Another object of the present invention is to provide a thermoelectric conversion thermomodule that has high mechanical strength and is free from dust and the like between elements.

【0006】[0006]

【課題を解決するための手段】図1(a)及び図1
(b)に示すように、本発明の熱電変換用サーモモジュ
ール10は、間隔をあけて複数の透孔11が設けられた
絶縁性型枠12と、これらの透孔11に交互に充填され
たN型半導体化合物素子13とP型半導体化合物素子1
4と、型枠12の上面及び下面で一対のN型半導体化合
物素子13とP型半導体化合物素子14とをN,P,
N,Pの順に電気的に直列に接続する複数の電極16,
17と備える。その特徴ある構成は、型枠12とN型及
びP型半導体化合物素子13,14と電極16,17と
が一体的に固着されたことにある。
Means for Solving the Problems FIG. 1A and FIG.
As shown in (b), in the thermoelectric conversion thermomodule 10 of the present invention, an insulating form 12 having a plurality of through holes 11 provided at intervals, and these through holes 11 are alternately filled. N-type semiconductor compound device 13 and P-type semiconductor compound device 1
4, a pair of N-type semiconductor compound element 13 and P-type semiconductor compound element 14 on the upper surface and the lower surface of the mold 12,
A plurality of electrodes 16 electrically connected in series in the order of N and P,
Prepare with 17. The characteristic structure is that the mold 12 and the N-type and P-type semiconductor compound elements 13 and 14 and the electrodes 16 and 17 are integrally fixed.

【0007】また図1及び図2に示すように、本発明の
熱電変換用サーモモジュールの第1の製造方法は、間隔
をあけて複数の透孔11を有するように絶縁性型枠12
を形成する工程と(図2(a))、これらの透孔11を
1つおきに覆う第1マスク21を型枠12に被せる工程
と(図2(b))、第1マスク21の上からこのマスク
21で覆っていない複数の透孔11にN型半導体化合物
素子材料13aを充填する工程と(図2(c))、N型
半導体化合物素子材料13aを充填していない複数の透
孔11を覆う第2マスク22を型枠12に被せる工程と
(図2(d))、第2マスク22の上からこのマスク2
2で覆っていない複数の透孔11にP型半導体化合物素
子材料14aを充填する工程と(図2(e))、一対の
N型半導体化合物素子材料13aとP型半導体化合物素
子材料14aとを規則的にN,P,N,Pの順に電気的
に直列に接続するように型枠12の上面及び下面並びに
充填したN型及びP型半導体化合物素子材料13a,1
4aの各表面に導電性ペーストを塗布する工程と、導電
性ペーストを塗布した型枠12を熱処理して導電性ペー
ストを焼付け電極16,17に変えN型及びP型半導体
化合物素子材料13a,14aを焼結体のN型及びP型
半導体化合物素子13,14にそれぞれ変えかつ型枠1
2とN型及びP型半導体化合物素子13,14と電極1
6,17とを一体的に固着する工程と(図1(a)及び
図1(b))を含む方法である。
As shown in FIGS. 1 and 2, the first method for manufacturing a thermoelectric conversion thermomodule according to the present invention has an insulating form 12 so that a plurality of through holes 11 are formed at intervals.
On the first mask 21 (FIG. 2 (a)), a step of covering the mold 12 with a first mask 21 that covers every other of these through holes 11 (FIG. 2 (b)). And the step of filling the plurality of through holes 11 not covered with the mask 21 with the N-type semiconductor compound element material 13a (FIG. 2C), the plurality of through holes not filled with the N-type semiconductor compound element material 13a. A step of covering the mold 12 with the second mask 22 that covers the mask 11 (FIG. 2D).
A step of filling a plurality of through holes 11 not covered with 2 with a P-type semiconductor compound element material 14a (FIG. 2 (e)), and a pair of N-type semiconductor compound element material 13a and P-type semiconductor compound element material 14a. The N-type and P-type semiconductor compound element materials 13a, 1 filled in the upper and lower surfaces of the mold 12 so as to be electrically connected in series in the order of N, P, N, P regularly
4a, a step of applying a conductive paste on each surface, and heat treatment of the mold 12 coated with the conductive paste to change the conductive paste into baking electrodes 16 and 17 and N-type and P-type semiconductor compound element materials 13a and 14a. To the sintered N-type and P-type semiconductor compound devices 13 and 14, respectively, and form 1
2 and N-type and P-type semiconductor compound devices 13 and 14 and electrode 1
6 and 17 are integrally fixed to each other (FIGS. 1A and 1B).

【0008】更に図3及び図4に示すように、本発明の
熱電変換用サーモモジュールの第2の製造方法は、電極
16及び17をN型及びP型半導体化合物素子材料を型
枠12の透孔11に充填する前に、隣り合う一対の透孔
11,11を接続するように型枠12の上面及び下面並
びにこの上面及び下面に隣接する透孔縁部に電極16及
び17を形成し、その後、図2(a)〜図2(e)に示
すように、N型及びP型半導体化合物素子材料13a,
14aを型枠12の透孔11に充填し、熱処理する方法
である。
Further, as shown in FIGS. 3 and 4, in the second method of manufacturing the thermoelectric conversion thermomodule of the present invention, the electrodes 16 and 17 are made of the N-type and P-type semiconductor compound element material, and the electrodes of the mold 12 are made transparent. Before filling the holes 11, electrodes 16 and 17 are formed on the upper surface and the lower surface of the form 12 so as to connect the pair of adjacent through holes 11 and 11, and the through hole edges adjacent to the upper surface and the lower surface, Then, as shown in FIGS. 2A to 2E, N-type and P-type semiconductor compound element materials 13a,
14a is filled in the through holes 11 of the mold 12 and heat-treated.

【0009】[0009]

【作用】第1及び第2マスク21,22により型枠12
の複数の透孔11にN型半導体化合物素子材料13a及
びP型半導体化合物素子材料14aをペルチェ効果を有
するように正確に1つおきに充填できる。電極16,1
7は導電性ペーストをスクリーン印刷などにより塗布す
れば、容易に形成できる。熱処理により型枠12とN型
及びP型半導体化合物素子13,14と電極16,17
が一体的に固着されるので、工程数が比較的少なく済
む。得られた熱電変換用サーモモジュール10は、型枠
12の存在で機械的強度が高く、素子間に塵埃などが入
らず信頼性が高いものとなる。
[Function] The mold 12 is formed by the first and second masks 21 and 22.
The N-type semiconductor compound element material 13a and the P-type semiconductor compound element material 14a can be filled into the plurality of through-holes 11 exactly one by one so as to have the Peltier effect. Electrodes 16,1
7 can be easily formed by applying a conductive paste by screen printing or the like. By heat treatment, the mold 12 and the N-type and P-type semiconductor compound elements 13 and 14 and the electrodes 16 and 17 are formed.
Since they are integrally fixed, the number of steps is relatively small. The thermoelectric conversion thermomodule 10 thus obtained has high mechanical strength due to the presence of the mold 12, and has high reliability because dust or the like does not enter between the elements.

【0010】[0010]

【実施例】次に、本発明の実施例を図面に基づいて詳し
く説明する。 <実施例1>第1の製造方法で得られる熱電変換用サー
モモジュールについて、図1及び図2に基づいて説明す
る。この例では、熱電半導体化合物として、Bi2Te3
系半導体化合物を用いた。先ず、B23−PbO系の低
融点ガラス粉末とアクリル樹脂と水を均一に混練し、こ
の混練物を押出し成形して図2(a)に示すような複数
の透孔11が等間隔にかつ碁盤の目のように有する絶縁
性型枠12を得た。これらの透孔11を1つおきに覆う
第1マスク21を型枠12に被せた(図2(b))。即
ちマスク21には透孔11と同形同大の正方形の窓孔2
1aが千鳥格子状に配列される。
Embodiments of the present invention will now be described in detail with reference to the drawings. <Example 1> A thermoelectric conversion thermomodule obtained by the first manufacturing method will be described with reference to Figs. In this example, the thermoelectric semiconductor compound is Bi 2 Te 3
A system semiconductor compound was used. First, a B 2 O 3 —PbO low-melting glass powder, an acrylic resin, and water are uniformly kneaded, and the kneaded product is extruded to form a plurality of through holes 11 at equal intervals as shown in FIG. 2 (a). An insulative mold 12 having a grid pattern like a square was obtained. The mold 12 was covered with the first mask 21 that covers every other of these through holes 11 (FIG. 2B). That is, the mask 21 has a square window hole 2 of the same shape and size as the through hole 11.
1a are arranged in a zigzag pattern.

【0011】マスク21を型枠12に密着し、型枠12
を図示しないベース板に載せた後、N型半導体化合物粉
末を溶剤に混合したスリップ13aを窓枠21aから注
入するスリップキャスティング法により透孔11全体に
充填した(図2(c))。このスリップ13aから溶剤
を揮散させた後、スリップ13aを充填していない複数
の透孔11を覆う第2マスク22を型枠12に被せた
(図2(d))。即ちマスク22にも透孔11と同形同
大の正方形の窓孔22aが千鳥格子状に配列される。マ
スク22を型枠12に密着した後、P型半導体化合物粉
末を溶剤に混合したスリップ14aを窓枠22aから注
入するスリップキャスティング法により透孔11全体に
充填し、このスリップ14aから溶剤を揮散させた(図
2(e))。
The mask 21 is brought into close contact with the mold 12 so that the mold 12
Was placed on a base plate (not shown), and then the entire through hole 11 was filled by the slip casting method in which the slip 13a in which the N-type semiconductor compound powder was mixed with the solvent was injected from the window frame 21a (FIG. 2C). After volatilizing the solvent from the slip 13a, the mold 12 was covered with the second mask 22 that covers the plurality of through holes 11 not filled with the slip 13a (FIG. 2D). That is, in the mask 22, square window holes 22a having the same shape and size as the through holes 11 are arranged in a zigzag pattern. After the mask 22 is brought into close contact with the mold 12, the slip casting method of injecting the slip 14a in which the P-type semiconductor compound powder is mixed with the solvent from the window frame 22a is filled into the entire through hole 11 to evaporate the solvent from the slip 14a. (Fig. 2 (e)).

【0012】この例では、N型半導体化合物素子粉末は
原子比でBi40%,Te57%,Se3%であり、P
型半導体化合物素子粉末は原子比でBi28%,Sb1
2%,Te60%であり、両粉末とも平均粒径は約50
μmであった。溶剤にはテレピネオールを用い、スリッ
プ13a及び14aはそれぞれ半導体化合物素子粉末5
0重量%と溶剤50重量%を混合して調製された。スリ
ップ13a及び14aを乾燥した後、一対のN型スリッ
プ13aとP型スリップ14aとを規則的にN,P,
N,Pの順に電気的に直列に接続するように型枠12の
上面及び下面並びに乾燥したスリップ13a及び14a
の各表面に導電性ペーストをスクリーン印刷法により塗
布した(図1(a)及び図1(b))。この例では導電
性ペーストはAl粉とガラスフリットとを含む。
In this example, the N-type semiconductor compound element powder has an atomic ratio of Bi40%, Te57%, Se3%, and P
Type semiconductor compound device powder has an atomic ratio of Bi 28%, Sb1
2% and Te 60%, both powders have an average particle size of about 50
μm. Terepineol was used as the solvent, and the slips 13a and 14a were each composed of the semiconductor compound element powder 5
It was prepared by mixing 0% by weight and 50% by weight of solvent. After the slips 13a and 14a are dried, the pair of N-type slips 13a and P-type slips 14a are regularly N, P,
The upper and lower surfaces of the mold 12 and the dried slips 13a and 14a so as to be electrically connected in series in the order of N and P.
A conductive paste was applied to each surface of the above by a screen printing method (FIGS. 1 (a) and 1 (b)). In this example, the conductive paste contains Al powder and glass frit.

【0013】導電性ペーストを塗布した後、型枠12を
Arガス雰囲気中、460℃で10時間熱処理した。図
1(a)及び図1(b)に示すように、熱処理により導
電性ペーストは焼付け電極16,17になり、N型スリ
ップ13a及びP型スリップ14aは焼結体のN型及び
P型半導体化合物素子13,14にそれぞれ変化した。
また同時に型枠12とN型及びP型半導体化合物素子1
3,14と電極16,17とが一体的に固着された。端
部のN型半導体化合物素子13b及びP型半導体化合物
素子14bにリード線18及び19をそれぞれはんだ付
けした。
After applying the conductive paste, the mold 12 was heat-treated at 460 ° C. for 10 hours in an Ar gas atmosphere. As shown in FIGS. 1 (a) and 1 (b), the conductive paste becomes the baking electrodes 16 and 17 by the heat treatment, and the N-type slip 13a and the P-type slip 14a are the N-type and P-type semiconductors of the sintered body. It was changed to compound devices 13 and 14, respectively.
At the same time, the mold 12 and the N-type and P-type semiconductor compound device 1
3, 14 and the electrodes 16, 17 were integrally fixed. Lead wires 18 and 19 were soldered to the N-type semiconductor compound element 13b and the P-type semiconductor compound element 14b at the ends, respectively.

【0014】リード線18及び19を介して、N側端子
であるN型半導体化合物素子13bに直流電源のプラ
ス、P側端子であるP型半導体化合物素子14bにマイ
ナスの電圧を印加すると、電流が各素子のN型からP型
に流れ、上部各接合電極16で吸収された熱量は各素子
を通って下方に並列に輸送される。その結果、モジュー
ル10の上面で総熱量Qcが吸収され、この熱が下部の
電極面で総供給電力に相当する熱量と合算され、総発熱
量Qhとなってモジュール10の下面で放出される。
When a positive voltage of the DC power source is applied to the N-type semiconductor compound element 13b which is the N-side terminal and a negative voltage is applied to the P-type semiconductor compound element 14b which is the P-side terminal via the leads 18 and 19, a current is generated. The amount of heat that flows from the N-type to the P-type of each element and is absorbed by each upper bonding electrode 16 is transported in parallel downward through each element. As a result, the total amount of heat Q c is absorbed by the upper surface of the module 10, and this heat is added to the amount of heat corresponding to the total supplied power on the lower electrode surface, and becomes the total amount of heat generation Q h , which is radiated on the lower surface of the module 10. It

【0015】<実施例2>第2の製造方法で得られる熱
電変換用サーモモジュールについて、図3及び図4に基
づいて説明する。実施例1で押出し成形により得られた
型枠12の複数の透孔11のうち隣り合う一対の透孔1
1,11を接続するように型枠12の上面及び下面並び
にこの上面及び下面に隣接する透孔縁部に電極16及び
17を形成した。即ち、一対の透孔11,11の境界部
となる型枠12の上面及び下面並びにこの上面及び下面
に隣接する透孔縁部にAlペーストを印刷法により塗布
した後、この型枠12をArガス雰囲気中、600℃で
1時間熱処理して焼結させ、同時にNiペーストを焼付
け電極16及び17にした。
<Embodiment 2> A thermoelectric conversion thermomodule obtained by the second manufacturing method will be described with reference to FIGS. 3 and 4. Among the plurality of through holes 11 of the mold 12 obtained by extrusion molding in Example 1, a pair of adjacent through holes 1
Electrodes 16 and 17 were formed on the upper and lower surfaces of the mold 12 and the through-hole edges adjacent to the upper and lower surfaces so as to connect 1 and 11. That is, after the Al paste is applied by a printing method to the upper and lower surfaces of the mold 12 that is the boundary between the pair of through holes 11 and 11 and the edge of the through holes adjacent to the upper and lower surfaces, the mold 12 is covered with Ar. In a gas atmosphere, it was heat-treated at 600 ° C. for 1 hour to be sintered, and at the same time, Ni paste was baked into electrodes 16 and 17.

【0016】次いで、実施例1と同様に第1マスク21
を型枠12に被せ、窓孔21aよりN型半導体化合物素
子粉末を注入した後、30kg/mm2の圧力でプレス
した。続いて実施例2と同様に第2マスク22を型枠1
2に被せ、窓孔22aよりP型半導体化合物素子粉末を
同様に注入した後、プレスした。これらのN型半導体化
合物素子粉末及びP型半導体化合物素子粉末は実施例1
のスリップ13a及び14aに含まれる粉末と同一のも
のを用いた。型枠12をArガス雰囲気中、460℃で
10時間熱処理した。図示しないが、熱処理によりN型
半導体化合物素子粉末及びP型半導体化合物素子粉末は
それぞれ焼結体のN型半導体化合物素子及びP型半導体
化合物素子に変化し、同時に型枠とN型及びP型半導体
化合物素子と電極とが一体的に固着された。端部のN型
及びP型半導体化合物素子に一対のリード線を接続する
ことにより、熱電変換用サーモモジュールが得られた。
Then, as in the first embodiment, the first mask 21 is used.
Was cast on the mold 12 and N-type semiconductor compound device powder was injected through the window 21a, and then pressed at a pressure of 30 kg / mm 2 . Subsequently, as in the second embodiment, the second mask 22 is attached to the mold 1
2 and the P-type semiconductor compound device powder was similarly injected through the window 22a and then pressed. These N-type semiconductor compound device powders and P-type semiconductor compound device powders are used in Example 1.
The same powder as that contained in the slips 13a and 14a of Example 1 was used. The mold 12 was heat-treated at 460 ° C. for 10 hours in an Ar gas atmosphere. Although not shown, the heat treatment converts the N-type semiconductor compound element powder and the P-type semiconductor compound element powder into a sintered N-type semiconductor compound element and a P-type semiconductor compound element, respectively, and simultaneously forms the mold and the N-type and P-type semiconductors. The compound element and the electrode were integrally fixed. A thermoelectric conversion thermomodule was obtained by connecting a pair of lead wires to the N-type and P-type semiconductor compound elements at the ends.

【0017】なお、実施例1ではスリップ13a及び1
4aを未焼結の型枠に注入したが、実施例2のような焼
結体の型枠に注入してもよい。また、型枠の材料とし
て、B23−PbO系の低融点ガラスを用いたが、N型
及びP型半導体化合物素子と焼結時の収縮量が同等であ
れば、他のセラミック材料でもよい。更に、第2マスク
22は第1マスク21で代用してもよい。この場合、型
枠12よりマスクを大きく形成しかつ窓孔の数を増やし
た後、窓孔の位置を1列分だけずらして使用すればよ
い。
In the first embodiment, the slips 13a and 13a
Although 4a was injected into the unsintered mold, it may be injected into the sintered mold as in Example 2. Although B 2 O 3 —PbO-based low-melting glass was used as the material for the mold, other ceramic materials may be used as long as they have the same shrinkage amount during sintering as the N-type and P-type semiconductor compound elements. Good. Further, the second mask 22 may be replaced by the first mask 21. In this case, after forming the mask larger than the mold 12 and increasing the number of window holes, the positions of the window holes may be shifted by one row before use.

【0018】[0018]

【発明の効果】以上述べたように、本発明の製造方法に
よれば、所定のマスクにより型枠の複数の透孔にN型半
導体化合物素子材料及びP型半導体化合物素子材料を1
つおきに充填でき、かつ熱処理により型枠とN型及びP
型半導体化合物素子と電極が一体的に固着されるので、
工程数が比較的少なく済む上、ペルチェ効果を有するた
めのN型半導体化合物素子とP型半導体化合物素子の配
置及び電極との接続を容易に行うことができる。この結
果、熱電変換用サーモモジュールを効率良く量産できる
とともに、素子同士の接続ミスをなくすことができる。
得られた熱電変換用サーモモジュールは、型枠の存在で
機械的強度が高く、素子間に塵埃などが入らず信頼性が
高いものとなる。
As described above, according to the manufacturing method of the present invention, the N-type semiconductor compound element material and the P-type semiconductor compound element material are formed in a plurality of through holes of the mold by a predetermined mask.
Can be filled every other time, and can be heat treated to form and N type and P
Type semiconductor compound element and electrode are integrally fixed,
In addition to the relatively small number of steps, the arrangement of the N-type semiconductor compound element and the P-type semiconductor compound element and the connection with the electrodes for having the Peltier effect can be easily performed. As a result, thermoelectric conversion thermomodules can be mass-produced efficiently and connection errors between elements can be eliminated.
The thermoelectric conversion thermomodule thus obtained has high mechanical strength due to the presence of the mold, and has high reliability because dust or the like does not enter between the elements.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)本発明の熱電変換用サーモモジュールの
上方斜視図。 (b)本発明の熱電変換用サーモモジュールの下方斜視
図。
FIG. 1A is an upper perspective view of a thermoelectric conversion thermomodule of the present invention. (B) The lower perspective view of the thermoelectric conversion thermomodule of the present invention.

【図2】本発明の第1の熱電変換用サーモモジュールの
製造方法を工程順に示す斜視図。
FIG. 2 is a perspective view showing the first method for manufacturing a thermoelectric conversion thermomodule of the present invention in the order of steps.

【図3】(a)本発明の第2の熱電変換用サーモモジュ
ールの製造するための型枠の上方斜視図。 (b)本発明の第2の熱電変換用サーモモジュールの製
造するための型枠の下方斜視図。
FIG. 3A is an upper perspective view of a mold for manufacturing the second thermoelectric conversion thermomodule of the present invention. (B) The lower perspective view of the form for manufacturing the 2nd thermoelectric conversion thermomodule of the present invention.

【図4】図3(a)及び図3(b)のA−A線断面図。FIG. 4 is a cross-sectional view taken along line AA of FIGS. 3 (a) and 3 (b).

【図5】従来の熱電変換用サーモモジュールの斜視図。FIG. 5 is a perspective view of a conventional thermoelectric conversion thermomodule.

【符号の説明】[Explanation of symbols]

10 熱電変換用サーモモジュール 11 透孔 12 絶縁性型枠 13a N型半導体化合物素子材料 13 N型半導体化合物素子 14a P型半導体化合物素子材料 14 P型半導体化合物素子 16,17 電極 21 第1マスク 22 第2マスク 10 Thermoelectric Conversion Thermo Module 11 Through Hole 12 Insulating Form 13a N-type Semiconductor Compound Device Material 13 N-type Semiconductor Compound Device 14a P-type Semiconductor Compound Device Material 14 P-type Semiconductor Compound Device 16, 17 Electrode 21 First Mask 22th 2 masks

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 間隔をあけて複数の透孔(11)が設けられ
た絶縁性型枠(12)と、 前記複数の透孔(11)に交互に充填されたN型半導体化合
物素子(13)とP型半導体化合物素子(14)と、 前記型枠(12)の上面及び下面で一対のN型半導体化合物
素子(13)とP型半導体化合物素子(14)とをN,P,N,
Pの順に電気的に直列に接続する複数の電極(16,17)と
を備えた熱電変換用サーモモジュール(10)であって、 前記型枠(12)と前記N型及びP型半導体化合物素子(13,
14)と前記電極(16,17)とが一体的に固着されたことを特
徴とする熱電変換用サーモモジュール。
1. An insulating mold (12) having a plurality of through holes (11) provided at intervals, and an N-type semiconductor compound element (13) alternately filled in the plurality of through holes (11). ) And a P-type semiconductor compound element (14), and a pair of N-type semiconductor compound element (13) and P-type semiconductor compound element (14) on the upper surface and the lower surface of the mold (12).
A thermoelectric conversion thermomodule (10) comprising a plurality of electrodes (16, 17) electrically connected in series in the order of P, comprising the mold (12) and the N-type and P-type semiconductor compound device. (13,
A thermomodule for thermoelectric conversion, characterized in that 14) and the electrodes (16, 17) are integrally fixed.
【請求項2】 絶縁性型枠(12)がB23−PbO系の低
融点ガラスである請求項1記載の熱電変換用サーモモジ
ュール。
2. The thermoelectric conversion thermomodule according to claim 1, wherein the insulating mold (12) is a low melting point glass of B 2 O 3 —PbO type.
【請求項3】 間隔をあけて複数の透孔(11)を有するよ
うに絶縁性型枠(12)を形成する工程と、 前記複数の透孔(11)を1つおきに覆う第1マスク(21)を
前記型枠(12)に被せる工程と、 前記第1マスク(21)の上からこのマスク(21)で覆ってい
ない複数の透孔(11)にN型半導体化合物素子材料(13a)
を充填する工程と、 前記N型半導体化合物素子材料(13a)を充填していない
複数の透孔(11)を覆う第2マスク(22)を前記型枠(12)に
被せる工程と、 前記第2マスク(22)の上からこのマスク(22)で覆ってい
ない複数の透孔(11)にP型半導体化合物素子材料(14a)
を充填する工程と、 前記一対のN型半導体化合物素子材料(13a)とP型半導
体化合物素子材料(14a)とを規則的にN,P,N,Pの
順に電気的に直列に接続するように前記型枠(12)の上面
及び下面並びに前記充填したN型及びP型半導体化合物
素子材料(13a,14a)の各表面に導電性ペーストを塗布す
る工程と、 前記導電性ペーストを塗布した型枠(12)を熱処理して前
記導電性ペーストを焼付け電極(16,17)に変え前記N型
及びP型半導体化合物素子材料(13a,14a)を焼結体のN
型及びP型半導体化合物素子(13,14)にそれぞれ変えか
つ前記型枠(12)と前記N型及びP型半導体化合物素子(1
3,14)と前記電極(16,17)とを一体的に固着する工程とを
含む熱電変換用サーモモジュールの製造方法。
3. A step of forming an insulative mold (12) so as to have a plurality of through holes (11) at intervals, and a first mask covering every other of the plurality of through holes (11). Covering the mold (12) with (21), and forming a plurality of through holes (11) not covered with the mask (21) from above the first mask (21) with the N-type semiconductor compound element material (13a). )
And a step of covering the mold (12) with a second mask (22) covering the plurality of through holes (11) not filled with the N-type semiconductor compound element material (13a), 2 P-type semiconductor compound device material (14a) from above the mask (22) to a plurality of through holes (11) not covered by this mask (22)
And a step of electrically connecting the pair of N-type semiconductor compound device material (13a) and P-type semiconductor compound device material (14a) in order of N, P, N, P electrically in series. A step of applying a conductive paste to the upper and lower surfaces of the mold (12) and the surfaces of the filled N-type and P-type semiconductor compound element materials (13a, 14a), and a mold to which the conductive paste is applied. The frame (12) is heat-treated to change the conductive paste into the baking electrodes (16, 17), and the N-type and P-type semiconductor compound element materials (13a, 14a) are sintered into N.
Type and P type semiconductor compound elements (13, 14) respectively, and the mold (12) and the N type and P type semiconductor compound elements (1
3, 14) and a step of integrally fixing the electrodes (16, 17) to each other, a method of manufacturing a thermoelectric conversion thermomodule.
【請求項4】 間隔をあけて複数の透孔(11)を有するよ
うに絶縁性型枠(12)を形成する工程と、 前記複数の透孔(11)のうち隣り合う一対の透孔を接続す
るように前記型枠(12)の上面及び下面並びにこの上面及
び下面に隣接する透孔縁部に電極(16,17)を形成する工
程と、 前記複数の透孔(11)を1つおきに覆う第1マスクを前記
型枠に被せる工程と、 前記第1マスクの上からこのマスクで覆っていない複数
の透孔にN型半導体化合物素子材料を充填する工程と、 前記N型半導体化合物素子材料を充填していない複数の
透孔を覆う第2マスクを前記型枠に被せる工程と、 前記第2マスクの上からこのマスクで覆っていない複数
の透孔にP型半導体化合物素子材料を充填する工程と、 前記N型及びP型半導体化合物素子材料を充填した型枠
を熱処理して前記N型及びP型半導体化合物素子材料を
焼結体のN型及びP型半導体化合物素子にそれぞれ変え
かつ前記型枠と前記N型及びP型半導体化合物素子と前
記電極とを一体的に固着する工程とを含み、 前記電極形成工程における電極(16,17)は前記一対のN
型半導体化合物素子材料とP型半導体化合物素子材料と
を規則的にN,P,N,Pの順に電気的に直列に接続す
るように前記型枠(12)の上面及び下面に形成されること
を特徴とする熱電変換用サーモモジュールの製造方法。
4. A step of forming an insulating form (12) so as to have a plurality of through holes (11) at intervals, and a pair of adjacent through holes among the plurality of through holes (11). A step of forming electrodes (16, 17) on the upper surface and the lower surface of the mold (12) and the edge portions of the through holes adjacent to the upper surface and the lower surface so as to connect, and the plurality of through holes (11) Covering the mold with a first mask covering every other step; filling a plurality of through holes not covered by the mask with N-type semiconductor compound element material from above the first mask; Covering the mold with a second mask that covers a plurality of through holes that are not filled with device material; and applying a P-type semiconductor compound device material to the plurality of through holes that are not covered with the mask from above the second mask. And a step of heat-treating the mold filled with the N-type and P-type semiconductor compound device materials, A step of changing the N-type and P-type semiconductor compound element materials to N-type and P-type semiconductor compound elements of a sintered body, respectively, and integrally fixing the form, the N-type and P-type semiconductor compound elements, and the electrodes. The electrodes (16, 17) in the electrode forming step include
-Type semiconductor compound device material and P-type semiconductor compound device material are formed on the upper surface and the lower surface of the mold (12) so as to be electrically connected in series in the order of N, P, N, P regularly. And a method for manufacturing a thermoelectric conversion thermomodule.
【請求項5】 絶縁性型枠(12)がB23−PbO系の低
融点ガラス粉末の成形体であって、N型及びP型半導体
化合物素子材料(13a,14a)がそれぞれN型及びP型半導
体化合物粉末を溶剤に混合したスリップであって、N型
及びP型半導体化合物素子材料(13a,14a)の前記型枠(1
2)の透孔(11)への充填がスリップキャスティング法によ
り行われる請求項3又は4記載の熱電変換用サーモモジ
ュールの製造方法。
5. The insulating mold (12) is a molded body of B 2 O 3 —PbO-based low melting point glass powder, wherein the N-type and P-type semiconductor compound element materials (13a, 14a) are N-type, respectively. And a P-type semiconductor compound powder mixed in a solvent, which is a slip (1) of the N-type and P-type semiconductor compound element materials (13a, 14a).
5. The method for manufacturing a thermoelectric conversion thermomodule according to claim 3, wherein the filling of the through hole (11) of 2) is performed by a slip casting method.
【請求項6】 絶縁性型枠(12)がB23−PbO系の低
融点ガラスの焼結体であって、N型及びP型半導体化合
物素子材料(13a,14a)がそれぞれN型及びP型半導体化
合物粉末であって、N型及びP型半導体化合物素子材料
(13a,14a)の前記型枠(12)の透孔(11)への充填が前記粉
末をプレスして行われる請求項3又は4記載の熱電変換
用サーモモジュールの製造方法。
6. The insulating mold (12) is a sintered body of B 2 O 3 —PbO-based low melting point glass, wherein the N-type and P-type semiconductor compound element materials (13a, 14a) are N-type, respectively. And P-type semiconductor compound powders, which are N-type and P-type semiconductor compound device materials
The method for producing a thermoelectric conversion thermomodule according to claim 3 or 4, wherein filling of the through holes (11) of the mold (12) with (13a, 14a) is performed by pressing the powder.
JP6295447A 1994-11-30 1994-11-30 Thermomodule for thermoelectric conversion and production thereof Withdrawn JPH08153899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6295447A JPH08153899A (en) 1994-11-30 1994-11-30 Thermomodule for thermoelectric conversion and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6295447A JPH08153899A (en) 1994-11-30 1994-11-30 Thermomodule for thermoelectric conversion and production thereof

Publications (1)

Publication Number Publication Date
JPH08153899A true JPH08153899A (en) 1996-06-11

Family

ID=17820714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6295447A Withdrawn JPH08153899A (en) 1994-11-30 1994-11-30 Thermomodule for thermoelectric conversion and production thereof

Country Status (1)

Country Link
JP (1) JPH08153899A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010937A1 (en) * 1997-08-25 1999-03-04 Citizen Watch Co., Ltd. Thermoelectric device
WO2006003956A1 (en) * 2004-06-30 2006-01-12 Meidensha Corporation Integrated parallel peltier/seebeck element chip and production method therefor, connection method
WO2008114653A1 (en) 2007-03-22 2008-09-25 Sumitomo Chemical Company, Limited Process for manufacturing thermoelectric conversion module and thermoelectric conversion module
WO2013179840A1 (en) 2012-05-30 2013-12-05 株式会社デンソー Thermoelectric converter manufacturing method, manufacturing method of electronic device provided with thermoelectric converter, and thermoelectric converter
WO2014115803A1 (en) 2013-01-24 2014-07-31 株式会社デンソー Method for manufacturing thermoelectric converter
JP2014179372A (en) * 2013-03-13 2014-09-25 Kitagawa Kogyo Co Ltd Thermoelectric conversion module
JP2015084365A (en) * 2013-10-25 2015-04-30 株式会社デンソー Manufacturing method of thermoelectric conversion device
CN104620402A (en) * 2012-03-29 2015-05-13 赢创工业集团股份有限公司 Powder metallurgical production of a thermoelectric component
US11056633B2 (en) 2016-01-21 2021-07-06 Evonik Operations Gmbh Rational method for the powder metallurgical production of thermoelectric components

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010937A1 (en) * 1997-08-25 1999-03-04 Citizen Watch Co., Ltd. Thermoelectric device
US6314741B1 (en) 1997-08-25 2001-11-13 Citizen Watch Co., Ltd. Thermoelectric device
WO2006003956A1 (en) * 2004-06-30 2006-01-12 Meidensha Corporation Integrated parallel peltier/seebeck element chip and production method therefor, connection method
US8237043B2 (en) 2004-06-30 2012-08-07 Meidensha Corporation Integrated parallel Peltier/Seebeck element chip and production method therefor, connection method
WO2008114653A1 (en) 2007-03-22 2008-09-25 Sumitomo Chemical Company, Limited Process for manufacturing thermoelectric conversion module and thermoelectric conversion module
JP2015518650A (en) * 2012-03-29 2015-07-02 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Production of powder metallurgy of thermoelectric elements
CN104620402A (en) * 2012-03-29 2015-05-13 赢创工业集团股份有限公司 Powder metallurgical production of a thermoelectric component
US9680079B2 (en) 2012-05-30 2017-06-13 Denso Corporation Production method of thermoelectric converter, production method of electronic device equipped with thermoelectric converter, and thermoelectric converter
KR20150002865A (en) 2012-05-30 2015-01-07 가부시키가이샤 덴소 Thermoelectric converter manufacturing method, manufacturing method of electronic device provided with thermoelectric converter, and thermoelectric converter
WO2013179840A1 (en) 2012-05-30 2013-12-05 株式会社デンソー Thermoelectric converter manufacturing method, manufacturing method of electronic device provided with thermoelectric converter, and thermoelectric converter
US9871181B2 (en) 2012-05-30 2018-01-16 Denso Corporation Production method of thermoelectric converter, production method of electronic device equipped with thermoelectric converter, and thermoelectric converter
US9620699B2 (en) 2013-01-24 2017-04-11 Denso Corporation Manufacturing method for thermoelectric conversion device
WO2014115803A1 (en) 2013-01-24 2014-07-31 株式会社デンソー Method for manufacturing thermoelectric converter
JP2014179372A (en) * 2013-03-13 2014-09-25 Kitagawa Kogyo Co Ltd Thermoelectric conversion module
JP2015084365A (en) * 2013-10-25 2015-04-30 株式会社デンソー Manufacturing method of thermoelectric conversion device
WO2015060082A1 (en) * 2013-10-25 2015-04-30 株式会社デンソー Method for manufacturing thermoelectric conversion device
CN105659398A (en) * 2013-10-25 2016-06-08 株式会社电装 Method for manufacturing thermoelectric conversion device
CN105659398B (en) * 2013-10-25 2018-08-10 株式会社电装 The manufacturing method of thermoelectric conversion device
US11056633B2 (en) 2016-01-21 2021-07-06 Evonik Operations Gmbh Rational method for the powder metallurgical production of thermoelectric components

Similar Documents

Publication Publication Date Title
US4902648A (en) Process for producing a thermoelectric module
US2904613A (en) Large area solar energy converter and method for making the same
US3781976A (en) Method of manufacturing chip-shaped solid state electrolytic capacitors
US20130243946A1 (en) Thermoelectric converter element and conductive member for thermoelectric converter element
EP1427026A1 (en) LIGHT&amp;minus;EMITTING OR LIGHT&amp;minus;RECEIVING SEMICONDUCTOR MODULE AND METHOD OF ITS MANUFACTURE
US20050067622A1 (en) Semiconductor device and method of its manufacture
JPH08153899A (en) Thermomodule for thermoelectric conversion and production thereof
CN107960132B (en) Lead carrier with print-formed encapsulation component and conductive path redistribution structure
JP2006319210A (en) Manufacturing method of thermoelectric conversion element
US20230157174A1 (en) Thermoelectric conversion module
US3490141A (en) High voltage rectifier stack and method for making same
JPS58161316A (en) Solid electrolytic condenser
JPH11243169A (en) Thermoelectric cooling module and manufacture thereof
JP5384954B2 (en) Thermoelectric conversion module
DE1564371B2 (en) Rectifiers made from a variety of semiconductor diodes
CN106783782A (en) Many pin surface mount elements and preparation method thereof
JP4165169B2 (en) Manufacturing method of flake type thermistor
KR102366388B1 (en) Thermo electric element
JPH08278196A (en) Infrared detector and manufacture thereof
JP2004071634A (en) Method for producing element of solid electrolytic capacitor and method for producing solid electrolytic capacitor using this element
CN206370419U (en) Many pin surface mount elements
JPH10313134A (en) Manufacture of thermoelectric module
JP2019153664A (en) Manufacturing method of thermoelectric conversion module
WO2014155643A1 (en) Thermoelectric conversion device
JPH09116199A (en) Manufacture of thermoelectric transfer element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020205