JPH08153604A - Manufacture of laminated type semiconductor ceramic element - Google Patents

Manufacture of laminated type semiconductor ceramic element

Info

Publication number
JPH08153604A
JPH08153604A JP6165992A JP16599294A JPH08153604A JP H08153604 A JPH08153604 A JP H08153604A JP 6165992 A JP6165992 A JP 6165992A JP 16599294 A JP16599294 A JP 16599294A JP H08153604 A JPH08153604 A JP H08153604A
Authority
JP
Japan
Prior art keywords
temperature
semiconductor ceramic
hours
atomic ratio
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6165992A
Other languages
Japanese (ja)
Inventor
Naoto Tsubomoto
直人 坪本
Masahito Morimoto
雅人 森本
Kozo Kusaka
孝三 草加
Osamu Kobayashi
修 小林
Hideji Igarashi
秀二 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP6165992A priority Critical patent/JPH08153604A/en
Publication of JPH08153604A publication Critical patent/JPH08153604A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a laminates type semiconductor ceramic element with a good PTC characteristic with which a reoxidization treatment can be conducted at a low temperature, ohmic contact can be obtained between a ceramic layer and an inner electrode, a low resistance value can be obtained at room temperature and a large resistance fluctuation range can be obtained. CONSTITUTION: When a laminated type semiconductor ceramic element is manufactured, nickel oxide is used as the starting raw material for an internal electrode such a material as wet synthetic barium titanate semiconductor ceramic material which is sintered at 1000 to 1250 deg.C, and reoxidized at 500 to 1000 deg.C, is used for the raw material of ceramic layer, and fired at a low temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正の抵抗温度特性(以
降”PTC特性”と記す)を有する積層型半導体セラミ
ック素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a laminated semiconductor ceramic device having a positive resistance temperature characteristic (hereinafter referred to as "PTC characteristic").

【0002】[0002]

【従来の技術】PTC特性を有する半導体セラミック材
料は、一般的にチタン酸バリウム系であり、温度制御、
電流制限、定温発熱等の用途に広く利用されている。ま
た、上記用途において、消費電力を抑えるために低抵抗
化が要望されており、このような要望に対応するものと
して、例えば特開昭57−60802号公報には積層型
の半導体セラミック素子が提案されている。この積層型
半導体セラミック素子は、チタン酸バリウムを主成分と
するセラミック層とPt−Pd合金からなる内部電極と
を交互に積層して一体焼成したものである。しかしなが
ら、上記積層型半導体セラミック素子では、内部電極と
セラミック層とのオーミック接触が得られにくく、抵抗
値が大幅に上昇するという問題点を有している。
2. Description of the Related Art Semiconductor ceramic materials having PTC characteristics are generally based on barium titanate and are used for temperature control,
Widely used for current limitation, constant temperature heat generation, etc. In addition, in the above-mentioned applications, there is a demand for lower resistance in order to suppress power consumption. To meet such demand, for example, Japanese Laid-Open Patent Publication No. 57-60802 proposes a laminated semiconductor ceramic device. Has been done. In this laminated semiconductor ceramic element, ceramic layers containing barium titanate as a main component and internal electrodes made of a Pt-Pd alloy are alternately laminated and integrally fired. However, the above-mentioned laminated semiconductor ceramic element has a problem that it is difficult to obtain ohmic contact between the internal electrode and the ceramic layer, and the resistance value is significantly increased.

【0003】上記のような内部電極材料に代わるものと
して、ニッケル系金属が提案されている。この場合、通
常の大気焼成では電極が酸化されてしまうため、一旦還
元雰囲気中にて焼成を行った後、ニッケル系金属が酸化
されない程度の温度で再酸化処理を行う必要がある。し
かしこの場合においても、再酸化処理を行う際に、セラ
ミック層と内部電極とのオーミック接触が得られない場
合があり、抵抗値が上昇するという問題がある。
Nickel-based metals have been proposed as an alternative to the above internal electrode materials. In this case, since the electrode is oxidized in normal atmospheric firing, it is necessary to perform the reoxidation treatment at a temperature at which the nickel-based metal is not oxidized after the firing is performed once in the reducing atmosphere. However, even in this case, there is a case where ohmic contact between the ceramic layer and the internal electrode cannot be obtained during the reoxidation process, and there is a problem that the resistance value increases.

【0004】また、たとえオーミック接触が得られた場
合でも、特開平6−151103号公報等に例えられる
ように、従来の1300℃以上の焼成温度を必要とする
半導体セラミックス材料を用いると、再酸化処理温度が
高温となるため、抵抗変化幅が小さくなってしまうとい
う問題があった。
Further, even if ohmic contact is obtained, reoxidation occurs when a conventional semiconductor ceramic material requiring a firing temperature of 1300 ° C. or higher is used as illustrated in JP-A-6-151103. Since the processing temperature becomes high, there is a problem that the resistance change width becomes small.

【0005】[0005]

【発明が解決しようとする課題】以上のように、セラミ
ック層と内部電極とのオーミック接触が得られ、低抵抗
で、かつ十分な抵抗変化幅を有する積層型半導体セラミ
ック素子は得られていなかった。したがって、本発明の
目的はセラミック層と内部電極とのオーミック接触が得
られ、低抵抗で、かつ十分な抵抗変化幅を有する積層型
半導体セラミック素子を提供することにある。
As described above, a multilayer semiconductor ceramic element which has ohmic contact between the ceramic layer and the internal electrode and has a low resistance and a sufficient resistance change width has not been obtained. . Therefore, an object of the present invention is to provide a multi-layer semiconductor ceramic device which has ohmic contact between a ceramic layer and an internal electrode, has a low resistance, and has a sufficient resistance change width.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意研究を重ねたところ、還元雰囲気
中にて焼成を行った後、再酸化処理を行う際に、内部電
極材料に酸化ニッケルを用い、半導体セラミック層の原
料として、1000℃以上1250℃以下で焼結し、5
00℃以上1000℃以下で再酸化される材料を用いる
ことにより、還元雰囲気焼成後の500℃以上1000
℃以下での再酸化処理において、セラミック層と内部電
極との間にオーミック接触が得られ抵抗変化幅が大きく
なることを見いだした。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in order to achieve the above-mentioned object. As a result, when performing reoxidation treatment after firing in a reducing atmosphere, the internal electrode Nickel oxide is used as a material, and is sintered at a temperature of 1000 ° C. or higher and 1250 ° C. or lower as a raw material for the semiconductor ceramic layer, and 5
By using a material that is reoxidized at a temperature of 00 ° C or higher and 1000 ° C or lower, 500 ° C or higher 1000
It has been found that ohmic contact is obtained between the ceramic layer and the internal electrode and the resistance change width is increased in the reoxidation treatment at a temperature of ℃ or below.

【0007】内部電極材料として、従来技術で用いられ
ているニッケルやニッケル合金を、酸化ニッケルに変え
ることによって、なぜ、PTC特性の向上が図れるかは
定かでないが、酸化ニッケルを用いると再酸化時の抵抗
上昇が抑えられ、抵抗変化幅も大きくなる。
It is not clear why the PTC characteristics can be improved by changing nickel or nickel alloy used in the prior art to nickel oxide as the internal electrode material. The rise in resistance is suppressed and the range of resistance change is increased.

【0008】本発明で用いる酸化ニッケルとしては、還
元雰囲気で焼成時に金属に変換するものであれば、特に
限定はないが、内部電極としてセラミックシートに印刷
するため、粒径が5μm以下、好ましくは2μm以下の
ものを用いる。
The nickel oxide used in the present invention is not particularly limited as long as it can be converted into a metal during firing in a reducing atmosphere, but since it is printed on a ceramic sheet as an internal electrode, the particle size is 5 μm or less, preferably. The thickness of 2 μm or less is used.

【0009】上記内部電極材料にはさらに、酸化ニッケ
ル系材料に加えて、通常、電極材料として用いられる材
料、例えばニッケル、白金、パラジウム等を添加するこ
とも、本発明の特性を損なわない範囲で可能である。ま
た、セラミック層との接合性改善の目的で通常用いられ
るホウ素,珪素の少なくとも1種類の元素を含有したガ
ラス成分や、セラミック層と同一または類似組成の粉末
を添加することも、本発明の特性を損なわない範囲で可
能である。
Further, in addition to the nickel oxide-based material, a material usually used as an electrode material, such as nickel, platinum or palladium, may be added to the above-mentioned internal electrode material within a range not impairing the characteristics of the present invention. It is possible. Further, it is also possible to add a glass component containing at least one element of boron and silicon, which is usually used for the purpose of improving the bondability with the ceramic layer, and a powder having the same or similar composition as that of the ceramic layer. It is possible within a range that does not impair

【0010】半導体セラミック層の原料としては、還元
雰囲気で1000℃以上1250℃以下、好ましくは1
100℃以上1200℃以下で焼成することにより焼結
し、かつ、500℃以上1000℃以下、好ましくは7
00℃以上900℃以下で再酸化できる材料を用いる。
The raw material of the semiconductor ceramic layer is 1000 ° C. or more and 1250 ° C. or less, preferably 1 in a reducing atmosphere.
Sintered by firing at 100 ° C. or higher and 1200 ° C. or lower, and 500 ° C. or higher and 1000 ° C. or lower, preferably 7
A material that can be reoxidized at a temperature of 00 ° C to 900 ° C is used.

【0011】半導体セラミック層の原料に、通常の12
50℃以上で焼結する材料を用いると、抵抗変化幅の大
きいPTC特性を有する素子を得るには、その後の再酸
化処理工程において1000℃以上の温度を必要とする
ことになるが、このような高温で再酸化処理を行うと、
内部電極が酸化を起こしてしまい、低抵抗の素子が得ら
れなくなってしまう。また、上記のような材料を用いて
1000℃以下で焼成しても、焼結が不十分となり機械
的にもろく、好ましくない。
As a raw material for the semiconductor ceramic layer, a conventional 12
If a material that sinters at 50 ° C. or higher is used, a temperature of 1000 ° C. or higher is required in the subsequent reoxidation treatment step in order to obtain an element having PTC characteristics with a large resistance change width. If you reoxidize at very high temperature,
The internal electrodes oxidize, and a low resistance element cannot be obtained. Moreover, even if the above materials are used and fired at 1000 ° C. or less, sintering is insufficient and mechanically brittle, which is not preferable.

【0012】十分に焼結し、さらに優れたPTC特性を
示す素子を得るための原料としては、1100℃以上1
200℃以下で焼結する材料が好ましく、このようなセ
ラミック材料を用いて、700℃以上900℃以下で再
酸化処理を行うと、抵抗変化幅のより大きいPTC特性
を有する積層型半導体セラミック素子が得られる。
As a raw material for obtaining an element which is sufficiently sintered and exhibits excellent PTC characteristics, 1100 ° C. or higher and 1
A material that sinters at 200 ° C. or lower is preferable, and if a reoxidation process is performed at 700 ° C. or higher and 900 ° C. or lower using such a ceramic material, a laminated semiconductor ceramic element having a PTC characteristic with a larger resistance change width is obtained. can get.

【0013】再酸化を大気条件下で行う場合には、通常
500℃以上1000℃以下で行う。900℃以上10
00℃以下で再酸化する場合は、酸素分圧を低くするの
が好ましく、500℃以上700℃以下では逆に、酸素
分圧を上げたり、オゾン等の他の酸化剤を用いたり、酸
素を併用使用したりするのが好ましい。
When reoxidation is carried out under atmospheric conditions, it is usually carried out at 500 ° C. or higher and 1000 ° C. or lower. 900 ° C or higher 10
In the case of reoxidation at 00 ° C or lower, it is preferable to lower the oxygen partial pressure. On the contrary, at 500 ° C or higher and 700 ° C or lower, on the contrary, the oxygen partial pressure is increased, other oxidizing agents such as ozone are used, or oxygen is It is preferable to use them together.

【0014】本発明の半導体セラミック層の原料として
は、具体的には例えば、BaTiO3 に必要に応じ、キ
ュリー点シフト等の目的でPbTiO3 ,SrTi
3 ,CaTiO3 を添加した主成分に、半導化剤元素
としてY,Nb,Sb,La,Dy,Ta,Bi等を添
加し、さらに必要に応じMn,Cu,B,Si,Li,
Na,K,Zn,Ni,Al,Mg等の特性改良剤を添
加した材料が好ましいが、上記材料において、従来品を
用いると、1300℃以上という高温での焼成が必要と
なってしまう。そこで、主成分であるチタン酸塩に、微
粒のものを用いると、1000℃以上1250℃以下で
焼結可能となる。
[0014] As the raw material of the semiconductor ceramic layer of the present invention, specifically, for example, necessary to BaTiO 3, PbTiO 3 for the purpose of Curie point shift, SrTi
Y, Nb, Sb, La, Dy, Ta, Bi, etc. are added as semiconducting agent elements to the main component to which O 3 and CaTiO 3 are added, and Mn, Cu, B, Si, Li, and
A material to which a property improving agent such as Na, K, Zn, Ni, Al, or Mg is added is preferable, but if a conventional product is used for the above material, firing at a high temperature of 1300 ° C. or higher is required. Therefore, if a fine-grained titanate is used as the main component, it becomes possible to sinter at 1000 ° C. or higher and 1250 ° C. or lower.

【0015】チタン酸塩のペロブスカイト化合物の微粒
材料は、通常、下記のような工程により製造可能であ
る。すなわち、半導化剤元素を含有するチタン化合物の
溶液またはスラリーと、アルカリ土類金属化合物とを湿
式反応させ、必要に応じて仮焼を行うと、平均粒子径
0.3μm以下の半導化剤を均一に含有したペロブスカ
イト型結晶構造を有した半導体粉末を得ることができ
る。
The fine particle material of the perovskite compound of titanate can be usually produced by the following steps. That is, when a solution or slurry of a titanium compound containing a semiconducting agent element is wet-reacted with an alkaline earth metal compound and calcined as necessary, semiconducting particles having an average particle diameter of 0.3 μm or less are obtained. It is possible to obtain a semiconductor powder having a perovskite type crystal structure that uniformly contains the agent.

【0016】半導化剤元素を含有するチタン化合物の溶
液とは、イオンまたは分子単位で混合された溶液であ
り、例えばチタンの塩化物と半導化剤元素の水溶性化合
物との水溶液や、チタンアルコキシドと半導化剤元素の
アルコキシドとの有機溶媒混合溶液などが適用できる。
具体的には、例えば四塩化チタンもしくは一部水酸基で
置換された塩化チタン溶液と半導化剤元素の塩化物との
塩酸水溶液、チタニウムイソプロポキシドと半導化剤元
素のイソプロポキシドとのイソプロピルアルコール溶液
などである。
The solution of a titanium compound containing a semiconducting element is a solution mixed in ionic or molecular units, for example, an aqueous solution of a chloride of titanium and a water-soluble compound of the semiconducting element, An organic solvent mixed solution of a titanium alkoxide and an alkoxide of a semiconducting element can be applied.
Specifically, for example, an aqueous hydrochloric acid solution of titanium tetrachloride or a titanium chloride solution partially substituted with a hydroxyl group and a chloride of a semiconducting agent element, titanium isopropoxide and isopropoxide of a semiconducting element For example, isopropyl alcohol solution.

【0017】半導化剤元素を含有するチタン化合物のス
ラリーとは、例えば半導化剤元素を含するチタン化合物
の溶液を加水分解して得られる水酸化物、または酸化物
のスラリーを意味する。具体的には、例えば四塩化チタ
ンもしくは一部水酸基で置換された塩化チタン溶液と半
導化剤元素の塩化物との塩酸水溶液を、アンモニアなど
で中和加水分解して得られる、半導化剤元素を含有する
含水水酸化チタンスラリーや、チタニウムイソプロポキ
シドと半導化剤元素のイソプロポキシドとのイソプロピ
ルアルコール溶液に、水を加えて加水分解して得られる
スラリーなどである。
The titanium compound slurry containing a semiconducting agent element means, for example, a hydroxide or a slurry of an oxide obtained by hydrolyzing a solution of a titanium compound containing a semiconducting element. . Specifically, for example, a semiconducting solution obtained by neutralizing and hydrolyzing an aqueous hydrochloric acid solution of titanium tetrachloride or a titanium chloride solution partially substituted with a hydroxyl group and a chloride of a semiconducting agent element with ammonia or the like. Examples include a hydrous titanium hydroxide slurry containing an agent element and a slurry obtained by adding water to an isopropyl alcohol solution of titanium isopropoxide and isopropoxide of a semiconducting agent element to cause hydrolysis.

【0018】アルカリ土類金属化合物としては、水酸化
物、酸化物、無機塩、アルコキシド等の有機アルカリ土
類金属化合物などが使用できる。
As the alkaline earth metal compound, hydroxides, oxides, inorganic salts, organic alkaline earth metal compounds such as alkoxides and the like can be used.

【0019】上記の半導化剤元素を含有するチタン化合
物の溶液またはスラリーと、アルカリ土類金属化合物と
を湿式反応させる場合、例えば水熱反応法、アルコキシ
ド法、共沈仮焼法などが適用可能である。
When the solution or slurry of the titanium compound containing the semiconducting element is wet-reacted with the alkaline earth metal compound, for example, a hydrothermal reaction method, an alkoxide method, a coprecipitation calcination method or the like is applied. It is possible.

【0020】水熱反応法とは、上述したチタンと半導化
剤元素とアルカリ土類金属との各化合物の混合物を熱加
水分解反応して、半導化剤元素含有チタン酸塩を得る方
法である。この際、チタン塩化物と半導化剤元素の水溶
性化合物との水溶液に、あらかじめ塩化バリウムなどの
水溶性アルカリ土類金属化合物を溶解させた溶液を、水
酸化ナトリウムなどの強アルカリ中で熱加水分解しても
構わない。
The hydrothermal reaction method is a method of obtaining a semiconducting agent element-containing titanate by thermal hydrolysis of a mixture of the above-mentioned compounds of titanium, a semiconducting agent element and an alkaline earth metal compound. Is. At this time, a solution prepared by previously dissolving a water-soluble alkaline earth metal compound such as barium chloride in an aqueous solution of titanium chloride and a water-soluble compound of a semiconductor element is heated in a strong alkali such as sodium hydroxide. It may be hydrolyzed.

【0021】アルコキシド法とは、チタン、半導化剤元
素、アルカリ土類金属の各アルコキシドを混合溶解した
有機溶媒溶液に加水して、熱を加えて反応させる方法で
ある。
The alkoxide method is a method in which an alkoxide of titanium, a semiconducting element, and an alkaline earth metal is mixed and dissolved in an organic solvent solution, and heat is applied to cause a reaction.

【0022】共沈仮焼法とは、例えば、チタン塩化物と
半導化剤元素の水溶性化合物との水溶液へ、塩化バリウ
ムなど水溶性アルカリ土類金属化合物を溶解させた溶液
に、シュウ酸を用いて共沈を生じさせ、得られる複合シ
ュウ酸塩を仮焼して半導化剤元素含有チタン酸塩を得る
方法である。
The coprecipitation calcination method is, for example, a solution of a water-soluble alkaline earth metal compound such as barium chloride dissolved in an aqueous solution of titanium chloride and a water-soluble compound of a semiconducting element, and oxalic acid. Is used to cause coprecipitation, and the resulting complex oxalate is calcined to obtain a semiconducting element-containing titanate.

【0023】チタン酸鉛は、半導化剤元素を含有した
0.3μm以下の微粒子酸化チタンまたは水酸化チタン
と酸化鉛(PbOやPb3 4 など)とを湿式反応さ
せ、前駆体を得た後、仮焼反応させることによって得る
ことができる(特開平3−80117号)。
Lead titanate is obtained by wet-reacting fine particle titanium oxide or titanium hydroxide containing a semiconducting element of 0.3 μm or less with lead oxide (PbO, Pb 3 O 4, etc.) to obtain a precursor. After that, it can be obtained by carrying out a calcination reaction (JP-A-3-80117).

【0024】積層セラミックス化する方法は、例えば特
開昭57−60802号公報と同様の方法により、ドク
ターブレードを用いてセラミック材料をシート成形し、
電極をスクリーン印刷することにより行うことができ
る。
The method for forming a laminated ceramics is, for example, the same method as in JP-A-57-60802, and a ceramic material is formed into a sheet by using a doctor blade,
This can be done by screen printing the electrodes.

【0025】[0025]

【作用】 本発明に係る積層型半導体セラミック素子の
製造方法によれば、内部電極材料に酸化ニッケルを採用
し、半導体セラミック層の原料として、1000℃以上
1250℃以下で焼結し、500℃以上1000℃以下
で再酸化できる材料を用いているので、還元雰囲気焼成
後、再酸化処理することによってセラミック層と内部電
極との間に十分なオーミック接触を得ることができ、良
好なPTC特性を有する積層型半導体セラミック素子を
得ることができる。
According to the method for manufacturing a multilayer semiconductor ceramic device of the present invention, nickel oxide is used as the internal electrode material, and the raw material of the semiconductor ceramic layer is sintered at 1000 ° C. or higher and 1250 ° C. or lower, and 500 ° C. or higher. Since a material that can be reoxidized at 1000 ° C. or less is used, it is possible to obtain sufficient ohmic contact between the ceramic layer and the internal electrode by performing reoxidation treatment after firing in a reducing atmosphere, and it has good PTC characteristics. A laminated semiconductor ceramic device can be obtained.

【0026】[0026]

【実施例】次に実施例を挙げて本発明をさらに説明す
る。 〔半導体セラミック材料に用いるチタン酸塩の製造例〕
EXAMPLES The present invention will be further described with reference to examples. [Production Example of Titanate Used for Semiconductor Ceramic Material]

【0027】製造例1 ニオブ含有チタン酸バリウム 塩化チタン水溶液(Tiとして16.5重量%含有)
に、あらかじめ塩酸により溶解させた五塩化ニオブ溶液
を、Nb/Ti原子比が0.22%の含有量になるよう
に添加し、攪拌溶解した。攪拌中さらに純水を加え、1
0倍に希釈した後、5%アンモニア水を、pH8となる
まで3時間かけて添加混合し、中和加水分解反応を行っ
た。上記中和スラリーを、ブフナーロートを用いて吸引
濾過、水洗を行って含水ケーキとした後、このケーキを
TiO2 換算で0.7モル/lの濃度になるように、純
水を加えてスラリー化した。
Production Example 1 Niobium-containing barium titanate aqueous solution of titanium chloride (containing 16.5% by weight of Ti)
A niobium pentachloride solution previously dissolved in hydrochloric acid was added to the above so that the Nb / Ti atomic ratio was 0.22%, and the solution was stirred and dissolved. Add pure water while stirring and add 1
After 0-fold dilution, 5% aqueous ammonia was added and mixed for 3 hours until pH 8 was reached, and a neutralization hydrolysis reaction was performed. The above neutralized slurry is subjected to suction filtration using a Buchner funnel and washed with water to give a water-containing cake, and pure water is added to the cake so that the cake has a concentration of 0.7 mol / l in terms of TiO 2. Turned into

【0028】上記ニオブ含有含水水酸化チタンスラリー
を、攪拌しながら反応系を窒素雰囲気にして、Ba(O
H)2 ・8H2 OをBa/Ti原子比が1.4になるよ
う添加混合したのち、沸騰温度まで約1時間かけて昇温
し、105℃の温度で約4時間水熱反応を行った。その
後、室温まで自然冷却した後、デカンテーシヨンを繰り
返し、ブフナーロートを用いて吸引濾過、水洗を行い、
ケーキを得た。水熱反応後得られたケーキは、TiO2
換算で0.7モル/lの濃度になるように純水を加えて
再分散し、スラリー化した。このバリウム/チタン含有
スラリーを攪拌しながら60℃に加温して、その温度に
保持しながら、Ba/Ti原子比調整の目的で、10%
酢酸溶液の添加とサンプリングを繰り返し、蛍光X線分
析装置を用いて組成分析を行い、Ba/Ti原子比を
1.005に調整し、その状態を1時間保持した。
While stirring the niobium-containing hydrous titanium hydroxide slurry described above, the reaction system was placed in a nitrogen atmosphere, and Ba (O 2
After H) 2 · 8H 2 O and Ba / Ti atomic ratio was added and mixed so as to be 1.4, the temperature was raised over a period of about 1 hour to boiling temperature, carried out for about 4 hours hydrothermal reaction at a temperature of 105 ° C. It was Then, after naturally cooling to room temperature, decantation was repeated, suction filtration using a Buchner funnel, and washing with water were performed.
Got a cake The cake obtained after the hydrothermal reaction was TiO 2
Pure water was added and redispersed to a slurry of a concentration of 0.7 mol / l in terms of conversion. This barium / titanium-containing slurry was heated to 60 ° C. with stirring and maintained at that temperature for the purpose of adjusting the Ba / Ti atomic ratio by 10%.
The addition of acetic acid solution and sampling were repeated, composition analysis was performed using a fluorescent X-ray analyzer, the Ba / Ti atomic ratio was adjusted to 1.005, and this state was maintained for 1 hour.

【0029】上記Ba/Ti原子比を調整したスラリー
は、その後、ブフナーロートを用いて吸引濾過、水洗を
行い、乾燥した。得られた粉体は、その粒子径を走査形
電子顕微鏡で、結晶形をX線回折装置でそれぞれ測定し
たところ、平均粒子径が0.08μmの立方晶ペロブス
カイト型結晶構造を有するチタン酸バリウム粉体であっ
た。上記粉体をさらに800℃で2時間仮焼し、平均粒
子径が0.1μmのニオブ含有チタン酸バリウムペロブ
スカイト型結晶微粉体とし、ボールミルにより5時間湿
式粉砕し、乾燥させた。仮焼後の粉体は、蛍光X線分析
装置を用いて組成分析した結果、Ba/Ti原子比が
1.005であり、Nb/Ti原子比が0.22%であ
った。
The slurry having the adjusted Ba / Ti atomic ratio was then subjected to suction filtration using a Buchner funnel, washed with water, and dried. The particle diameter of the obtained powder was measured with a scanning electron microscope and the crystal shape was measured with an X-ray diffractometer. As a result, a barium titanate powder having a cubic perovskite crystal structure with an average particle diameter of 0.08 μm was obtained. It was a body. The above powder was further calcined at 800 ° C. for 2 hours to obtain a barium titanate perovskite type crystal fine powder containing niobium having an average particle diameter of 0.1 μm, wet pulverized with a ball mill for 5 hours, and dried. The powder after calcination was subjected to composition analysis using a fluorescent X-ray analyzer, and as a result, the Ba / Ti atomic ratio was 1.005 and the Nb / Ti atomic ratio was 0.22%.

【0030】製造例2 イットリウム含有チタン酸バリ
ウム 塩化チタン水溶液(Tiとして16.5重量%含有)
に、あらかじめ塩酸により溶解させた硝酸イットリウム
溶液を、Y/Ti原子比が0.3%の含有量になるよう
に添加し、攪拌溶解した。攪拌中さらに純水を加え、1
0倍に希釈した後、5%アンモニア水を、pH8となる
まで3時間かけて添加混合し、中和加水分解反応を行っ
た。上記中和スラリーを、ブフナーロートを用いて吸引
濾過、水洗を行い、イットリウム含有含水水酸化チタン
ケーキを得た後、このケーキをTiO2 換算で0.7モ
ル/lの濃度になるように、純水を加えてスラリー化し
た。
Production Example 2 Yttrium-containing barium titanate aqueous solution of titanium chloride (containing 16.5% by weight of Ti)
A yttrium nitrate solution previously dissolved in hydrochloric acid was added to the above so that the Y / Ti atomic ratio was 0.3%, and the solution was stirred and dissolved. Add pure water while stirring and add 1
After 0-fold dilution, 5% aqueous ammonia was added and mixed for 3 hours until pH 8 was reached, and a neutralization hydrolysis reaction was performed. The above neutralized slurry is subjected to suction filtration using a Buchner funnel and washed with water to obtain a yttrium-containing water-containing titanium hydroxide cake, and the cake has a concentration of 0.7 mol / l in terms of TiO 2 . Pure water was added to make a slurry.

【0031】上記で得られたイットリウム含有含水水酸
化チタンスラリーを、攪拌しながら反応系を窒素雰囲気
にして、Ba(OH)2 ・8H2 OをBa/Ti原子比
が1.4になるよう添加混合したのち、沸騰温度まで約
1時間かけて昇温し、105℃の温度で約4時間水熱反
応を行った。その後、室温まで自然冷却した後、デカン
テーシヨンを繰り返し、ブフナーロートを用いて吸引濾
過、水洗を行った。水熱反応後得られたケーキは、Ti
2 換算で0.7モル/lの濃度になるように純水を加
えて再分散し、スラリー化した。
The yttrium-containing hydrous titanium hydroxide slurry obtained above was stirred and the reaction system was placed in a nitrogen atmosphere so that Ba (OH) 2 .8H 2 O had a Ba / Ti atomic ratio of 1.4. After the addition and mixing, the temperature was raised to the boiling temperature over about 1 hour, and the hydrothermal reaction was performed at a temperature of 105 ° C. for about 4 hours. Then, after naturally cooling to room temperature, decantation was repeated, suction filtration using a Buchner funnel, and washing with water were performed. The cake obtained after the hydrothermal reaction is Ti
Pure water was added so as to have a concentration of 0.7 mol / l in terms of O 2 and redispersed to form a slurry.

【0032】このバリウム/チタン含有スラリーを攪拌
しながら60℃に加温して、その温度に保持しながら、
Ba/Ti原子比調整の目的で、10%酢酸溶液の添加
とサンプリングを繰り返し、蛍光X線分析装置を用いて
組成分析を行い、Ba/Ti原子比を1.000に調整
し、その状態を1時間保持した。上記Ba/Ti原子比
を調整したスラリーは、その後、ブフナーロートを用い
て吸引濾過、水洗を行い、乾燥した。得られた粉体を、
さらに800℃で2時間仮焼することにより、平均粒子
径が0.1μmのイットリウム含有チタン酸バリウムペ
ロブスカイト型結晶微粉体とし、ボールミルにより5時
間湿式粉砕し、乾燥させた。仮焼後の粉体は、蛍光X線
分析装置を用いて組成分析した結果、Ba/Ti原子比
が1.000であり、Y/Ti原子比が0.3%であっ
た。
The barium / titanium-containing slurry was heated to 60 ° C. with stirring and maintained at that temperature.
For the purpose of adjusting the Ba / Ti atomic ratio, addition of 10% acetic acid solution and sampling were repeated, composition analysis was performed using a fluorescent X-ray analyzer, and the Ba / Ti atomic ratio was adjusted to 1.000. Hold for 1 hour. The slurry having the adjusted Ba / Ti atomic ratio was then suction filtered using a Buchner funnel, washed with water, and dried. The obtained powder is
Further, it was calcined at 800 ° C. for 2 hours to obtain yttrium-containing barium titanate perovskite type crystal fine powder having an average particle diameter of 0.1 μm, wet pulverized with a ball mill for 5 hours, and dried. As a result of compositional analysis of the powder after calcination using a fluorescent X-ray analyzer, the Ba / Ti atomic ratio was 1.000 and the Y / Ti atomic ratio was 0.3%.

【0033】製造例3 イットリウム含有チタン酸スト
ロンチウム 製造例2と同様の工程で得られた、TiO2 換算で0.
7モル/lの濃度に分散したイットリウム含有含水水酸
化チタンスラリーに、攪拌しながら反応系を窒素雰囲気
にして、Sr(OH)2 ・8H2 OをSr/Ti原子比
が1.4になるよう添加混合したのち、沸騰温度まで約
1時間かけて昇温し、105℃の温度で約4時間水熱反
応を行った。その後、室温まで自然冷却した後、デカン
テーシヨンを繰り返し、ブフナーロートを用いて吸引濾
過、水洗を行った。水熱反応後得られたケーキは、Ti
2 換算で0.7モル/lの濃度になるように純水を加
えて再分散し、スラリー化した。
Production Example 3 Yttrium-containing strontium titanate Obtained in the same process as in Production Example 2 and converted into TiO 2 in a value of 0.
The yttrium-containing hydrous titanium hydroxide slurry dispersed at a concentration of 7 mol / l was placed in a nitrogen atmosphere while stirring to make Sr (OH) 2 .8H 2 O have an Sr / Ti atomic ratio of 1.4. After such addition and mixing, the temperature was raised to the boiling temperature over about 1 hour, and the hydrothermal reaction was carried out at a temperature of 105 ° C. for about 4 hours. Then, after naturally cooling to room temperature, decantation was repeated, suction filtration using a Buchner funnel, and washing with water were performed. The cake obtained after the hydrothermal reaction is Ti
Pure water was added so as to have a concentration of 0.7 mol / l in terms of O 2 and redispersed to form a slurry.

【0034】このストロンチウム/チタン含有スラリー
を攪拌しながら60℃に加温して、その温度に保持しな
がら、Sr/Ti原子比調整の目的で、10%酢酸溶液
の添加とサンプリングを繰り返し、蛍光X線分析装置を
用いて組成分析を行い、Sr/Ti原子比を1.000
に調整し、その状態を1時間保持した。上記Sr/Ti
原子比を調整したスラリーは、その後、ブフナーロート
を用いて吸引濾過、水洗を行い、乾燥した。得られた粉
体を、さらに800℃で2時間仮焼することにより、平
均粒子径が0.05μmのイットリウム含有チタン酸ス
トロンチウムペロブスカイト型結晶微粉体とし、ボール
ミルにより5時間湿式粉砕し、乾燥させた。仮焼後の粉
体は、蛍光X線分析装置を用いて組成分析した結果、S
r/Ti原子比が1.000であり、Y/Ti原子比が
0.3%であった。
This strontium / titanium-containing slurry was heated to 60 ° C. with stirring, and while maintaining this temperature, addition of 10% acetic acid solution and sampling were repeated to adjust the Sr / Ti atomic ratio, and fluorescence was added. The composition was analyzed using an X-ray analyzer, and the Sr / Ti atomic ratio was 1.000.
And the state was maintained for 1 hour. Above Sr / Ti
The slurry having the adjusted atomic ratio was then subjected to suction filtration using a Buchner funnel, washed with water, and dried. The obtained powder was further calcined at 800 ° C. for 2 hours to obtain yttrium-containing strontium titanate perovskite type crystal fine powder having an average particle diameter of 0.05 μm, wet pulverized with a ball mill for 5 hours, and dried. . The composition of the powder after calcination was S analyzed by an X-ray fluorescence analyzer,
The r / Ti atomic ratio was 1.000 and the Y / Ti atomic ratio was 0.3%.

【0035】製造例4 イットリウム含有チタン酸カル
シウム 製造例2と同様の工程で得られた、TiO2 換算で0.
7モル/lの濃度に分散したイットリウム含有含水水酸
化チタンスラリーに、攪拌しながら反応系を窒素雰囲気
にして、Ca(OH)2 ・8H2 OをCa/Ti原子比
が1.000になるよう添加混合したのち、沸騰温度ま
で約1時間かけて昇温し、105℃の温度で約4時間還
流を行った。その後、室温まで自然冷却した後、蒸発乾
固させ、さらに800℃で2時間仮焼することにより、
平均粒子径が0.13μmのイットリウム含有チタン酸
カルシウムペロブスカイト型結晶微粉体とし、ボールミ
ルにより5時間湿式粉砕した後、乾燥させた。得られた
粉体は、蛍光X線分析装置を用いて組成分析した結果、
Ca/Ti原子比が1.000であり、Y/Ti原子比
が0.3%であった。
Production Example 4 Yttrium-Containing Calcium Titanate Obtained in the same process as in Production Example 2 and converted to TiO 2 of 0.
The yttrium-containing hydrous titanium hydroxide slurry dispersed at a concentration of 7 mol / l was placed in a nitrogen atmosphere while stirring to make Ca (OH) 2 .8H 2 O have a Ca / Ti atomic ratio of 1.000. After such addition and mixing, the temperature was raised to the boiling temperature over about 1 hour and refluxed at a temperature of 105 ° C. for about 4 hours. Then, naturally cool to room temperature, evaporate to dryness, and calcine at 800 ° C. for 2 hours,
Yttrium-containing calcium titanate perovskite type crystal fine powder having an average particle diameter of 0.13 μm was obtained, wet pulverized with a ball mill for 5 hours, and then dried. The obtained powder was subjected to composition analysis using a fluorescent X-ray analyzer,
The Ca / Ti atomic ratio was 1.000 and the Y / Ti atomic ratio was 0.3%.

【0036】製造例5 イットリウム含有チタン酸鉛 製造例2と同様の工程で得られた、TiO2 換算で0.
7モル/lの濃度に分散したイットリウム含有含水水酸
化チタンスラリーに、攪拌しながら反応系を窒素雰囲気
にして、Pb3 4 をPb/Ti原子比が1.000に
なるよう添加混合したのち、沸騰温度まで約1時間かけ
て昇温し、105℃の温度で約4時間還流を行った。そ
の後、室温まで自然冷却した後、蒸発乾固させ、さらに
500℃で2時間仮焼することにより、平均粒子径が
0.05μmのイットリウム含有チタン酸鉛ペロブスカ
イト型結晶微粉体とし、ボールミルにより5時間湿式粉
砕した後、乾燥させた。得られた粉体は、蛍光X線分析
装置を用いて組成分析を行った結果、Pb/Ti原子比
が1.000であり、Y/Ti原子比が0.3%であっ
た。
Production Example 5 Yttrium-containing lead titanate Obtained in the same process as in Production Example 2 and converted to TiO 2 in a quantity of 0.1.
After adding the Pb 3 O 4 to the yttrium-containing hydrous titanium hydroxide slurry dispersed at a concentration of 7 mol / l under stirring in a nitrogen atmosphere in the reaction system so that the Pb / Ti atomic ratio becomes 1.000, The temperature was raised to the boiling temperature over about 1 hour and refluxed at a temperature of 105 ° C. for about 4 hours. Then, the mixture was naturally cooled to room temperature, evaporated to dryness, and calcined at 500 ° C. for 2 hours to obtain a yttrium-containing lead titanate perovskite type crystal fine powder having an average particle diameter of 0.05 μm, which was then ball milled for 5 hours. After wet grinding, it was dried. As a result of composition analysis using an X-ray fluorescence analyzer, the obtained powder had a Pb / Ti atomic ratio of 1.000 and a Y / Ti atomic ratio of 0.3%.

【0037】[0037]

【実施例1】製造例1で得たニオブ含有チタン酸バリウ
ムに、Mnを0.02原子%添加した粉末に、有機バイ
ンダー、溶剤、及び分散剤を混合してスラリー化した
後、ドクターブレード法により、セラミックグリーンシ
ートを形成した。
Example 1 A powder obtained by adding 0.02 atomic% of Mn to the niobium-containing barium titanate obtained in Production Example 1 was mixed with an organic binder, a solvent, and a dispersant to form a slurry, which was then subjected to a doctor blade method. Thus, a ceramic green sheet was formed.

【0038】酢酸ニッケルを1000℃で仮焼して酸化
ニッケルとした粉末に、ワニスを混合して電極ペースト
を作成し、上記セラミックグリーンシート上に内部電極
を印刷した。
An electrode paste was prepared by mixing a varnish with a powder of nickel acetate that had been calcined at 1000 ° C. to form nickel oxide, and the internal electrodes were printed on the ceramic green sheet.

【0039】電極印刷後のグリーンシートは、内部電極
が左右交互に露出するように積層し、加圧圧着、切断を
行い、積層体を得た。作成した積層体は、内部電極に挟
まれたセラミックグリーンシートが5層となるよう積層
し、さらに、この上下に保護層として、内部電極を印刷
していないセラミックグリーンシートを積層した構造で
ある。
After printing the electrodes, the green sheets were laminated so that the internal electrodes were alternately exposed to the left and right, and pressure-bonded and cut to obtain a laminate. The produced laminated body has a structure in which the ceramic green sheets sandwiched by the internal electrodes are laminated in five layers, and further the ceramic green sheets on which the internal electrodes are not printed are laminated as protective layers above and below this.

【0040】上記積層体を大気中で加熱して脱バインダ
ー処理を施し、その後、一酸化炭素/アルゴン=10/
90の還元雰囲気中にて、1175℃または1200℃
まで昇温し、それぞれ2時間焼成した。焼成後、大気中
にて500〜1000℃の間の一定温度で2時間再酸化
処理を行い、焼結体を得た。得られた焼結体は、左右側
面にオーミック銀ペーストを塗布し、大気中で焼き付け
を行って外部電極を形成し、各内部電極と通電できるよ
うにした。
The above-mentioned laminated body is heated in the atmosphere for debinding, and then carbon monoxide / argon = 10 /
1175 ° C or 1200 ° C in 90 reducing atmosphere
The temperature was raised to 2 ° C., and each was fired for 2 hours. After firing, reoxidation treatment was performed in the air at a constant temperature of 500 to 1000 ° C. for 2 hours to obtain a sintered body. The obtained sintered body was coated with ohmic silver paste on the left and right side surfaces and baked in the atmosphere to form external electrodes so that each internal electrode could be energized.

【0041】表1および表2に、実施例において得られ
た積層型半導体セラミック素子の特性試験結果を示す。
表1は、焼成温度を1175℃とし、再酸化処理温度を
500〜1000℃の間で100℃毎に変化させた場合
の、各試料の室温での抵抗値〔Ω〕と室温〜280℃に
おける抵抗変化幅を示したものである。なお、抵抗変化
幅〔桁〕は次式により算出した。 抵抗変化幅〔桁〕=Log10(R2 /R1 ) ここで、R2 は室温〜280℃における最大抵抗値、R
1 は室温〜280℃における最小抵抗値である。表2
は、焼成温度を1200℃とした場合の、上記特性試験
結果である。
Tables 1 and 2 show the characteristic test results of the laminated semiconductor ceramic elements obtained in the examples.
Table 1 shows the resistance value [Ω] of each sample at room temperature and the room temperature to 280 ° C. when the firing temperature was 1175 ° C. and the reoxidation treatment temperature was changed between 500 to 1000 ° C. at every 100 ° C. This shows the resistance change width. The resistance change width [digit] was calculated by the following equation. Resistance change width [digit] = Log 10 (R 2 / R 1 ) where R 2 is the maximum resistance value at room temperature to 280 ° C., R
1 is the minimum resistance value at room temperature to 280 ° C. Table 2
Shows the results of the above characteristic test when the firing temperature was 1200 ° C.

【0042】[0042]

【比較例1】セラミックグリーンシート上に印刷する内
部電極として、実施例1で用いた酸化ニッケルの代わり
に、ニッケル金属を原料として用いている市販ニッケル
ペーストを使用する以外は、実施例1と同じ積層型半導
体セラミック素子を製造した。表3に、比較例1で得ら
れた積層型半導体セラミック素子の特性試験結果を示
す。
[Comparative Example 1] The same as Example 1 except that a commercial nickel paste using nickel metal as a raw material was used instead of the nickel oxide used in Example 1 as the internal electrodes printed on the ceramic green sheets. A multilayer semiconductor ceramic device was manufactured. Table 3 shows the characteristic test results of the multilayer semiconductor ceramic device obtained in Comparative Example 1.

【0043】[0043]

【比較例2】内部電極に酸化ニッケルを用い、セラミッ
ク層の原料として、市販のBaCO3 ,TiO2 ,Nb
2 5 ,MnCO3 を実施例1と同様の配合で混合し、
さらにSiO2 を1.5モル%添加して1100℃で2
時間仮焼して得られた粉体を用いて、積層型半導体セラ
ミック素子を製造した。表4に、比較例2で得られた積
層型半導体セラミック素子の特性試験結果を示す。
Comparative Example 2 Nickel oxide was used for the internal electrodes, and commercially available BaCO 3 , TiO 2 , Nb were used as raw materials for the ceramic layer.
2 O 5 and MnCO 3 were mixed in the same composition as in Example 1,
Add 1.5 mol% of SiO 2 and add 2 at 1100 ℃.
A multilayer semiconductor ceramic element was manufactured using the powder obtained by calcination for a period of time. Table 4 shows the characteristic test results of the multilayer semiconductor ceramic device obtained in Comparative Example 2.

【0044】実施例1と比較例2から明らかなように、
従来セラミック材料を用い、1300℃で焼成した場合
には、抵抗温度変化幅が小さいものしか得られず、たと
え抵抗温度変化幅が2桁を超える場合があっても、抵抗
値も大きくなってしまう。また、実施例1と比較例1か
ら明らかなように、低温焼結セラミック材料に金属ニッ
ケルペーストを組み合わせた場合には、800℃以上の
再酸化処理は抵抗値が上昇してしまって使用できず、7
00℃以下の再酸化処理においても、ニッケル酸化物と
低温焼結セラミック材料を用いた実施例1の場合に比
べ、相当する特性は劣っていた。
As is clear from Example 1 and Comparative Example 2,
When a conventional ceramic material is used and fired at 1300 ° C., only a small resistance temperature change width can be obtained. Even if the resistance temperature change width exceeds two digits, the resistance value also increases. . Further, as is clear from Example 1 and Comparative Example 1, when the low temperature sintered ceramic material was combined with the metallic nickel paste, the reoxidation treatment at 800 ° C. or higher increased the resistance value and could not be used. , 7
Even in the reoxidation treatment at 00 ° C. or lower, the corresponding characteristics were inferior as compared with the case of Example 1 using the nickel oxide and the low temperature sintered ceramic material.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【実施例2】上述した製造例2〜5の各々で作成したイ
ットリウム含有チタン酸バリウム、イットリウム含有チ
タン酸ストロンチウム、イットリウム含有チタン酸カル
シウム、およびイットリウム含有チタン酸鉛を、0.3
モル%のイットリウムを含有するBa0.68Sr0.06Ca
0.01Pb0.25TiO3 の組成となるように配合し、さら
に窒化ホウ素を1.0モル%、Mnを0.08モル%添
加した。上記混合粉を、ボールミルを用いて10時間湿
式混合し、乾燥させて試料粉を得、次に、実施例1と同
様にして積層体を作成した。作成した積層体は、大気中
で加熱して脱バインダー処理を施し、その後、H2/N
2 =5/95の還元雰囲気中にて1100℃まで昇温
し、2時間焼成した。焼成後、大気中にて600〜90
0℃の間の一定温度で2時間再酸化処理を行い、焼結体
を得た。得られた焼結体に実施例1と同様にして外部電
極を作成し、特性試験を行った。結果を表5に示す。
Example 2 The yttrium-containing barium titanate, the yttrium-containing strontium titanate, the yttrium-containing calcium titanate, and the yttrium-containing lead titanate prepared in each of the above-described Production Examples 2 to 5 were mixed with 0.3
Ba 0.68 Sr 0.06 Ca containing mol% yttrium
The composition was 0.01 Pb 0.25 TiO 3 and boron nitride was added at 1.0 mol% and Mn was added at 0.08 mol%. The mixed powder was wet-mixed for 10 hours using a ball mill and dried to obtain a sample powder, and then a laminated body was prepared in the same manner as in Example 1. The produced laminate is heated in the air to be debindered, and then H 2 / N
In a reducing atmosphere of 2 = 5/95, the temperature was raised to 1100 ° C. and firing was performed for 2 hours. 600 ~ 90 in the air after firing
A reoxidation treatment was performed at a constant temperature between 0 ° C. for 2 hours to obtain a sintered body. External electrodes were formed on the obtained sintered body in the same manner as in Example 1 and a characteristic test was conducted. The results are shown in Table 5.

【0050】[0050]

【比較例3】市販のBaCO3 ,SrCO3 ,CaCO
3 ,鉛丹,TiO2 ,Y2 3 を、実施例2の組成と同
様に配合し、さらに窒化ホウ素を1.0モル%、Mnを
0.08モル%添加した。上記混合粉を、ボールミルを
用いて10時間湿式混合し、乾燥後、1100℃で2時
間仮焼して試料粉を得、実施例1と同様にして積層体を
作成した。作成した積層体は、大気中で加熱して脱バイ
ンダー処理を施し、その後、H2/N2 =5/95の還
元雰囲気中にて1300℃まで昇温し、2時間焼成し
た。この後、大気中にて600〜900℃の間の一定温
度で2時間再酸化処理を行い、焼結体を得た。得られた
焼結体に実施例1と同様にして外部電極を作成し、特性
試験を行った。結果を表6に示す。
Comparative Example 3 Commercially available BaCO 3 , SrCO 3 , CaCO
3 , lead oxide, TiO 2 , and Y 2 O 3 were blended in the same manner as in the composition of Example 2, and further 1.0 mol% of boron nitride and 0.08 mol% of Mn were added. The mixed powder was wet-mixed for 10 hours using a ball mill, dried, and then calcined at 1100 ° C. for 2 hours to obtain a sample powder, and a laminate was prepared in the same manner as in Example 1. The produced laminate was heated in the air to be subjected to a binder removal treatment, and then heated to 1300 ° C. in a reducing atmosphere of H 2 / N 2 = 5/95 and baked for 2 hours. After that, reoxidation treatment was performed in the atmosphere at a constant temperature of 600 to 900 ° C. for 2 hours to obtain a sintered body. External electrodes were formed on the obtained sintered body in the same manner as in Example 1 and a characteristic test was conducted. The results are shown in Table 6.

【0051】[0051]

【表5】 [Table 5]

【0052】[0052]

【表6】 [Table 6]

【0053】表5および表6からも明らかなように、高
温焼結セラミック材料を用いた場合にも、本発明品に比
べて特性が劣るものしか得られなかった。
As is clear from Tables 5 and 6, even when the high-temperature sintered ceramic material was used, only inferior characteristics were obtained as compared with the product of the present invention.

【0054】[0054]

【発明の効果】以上説明したように、本発明の積層型半
導体セラミック素子の製造にあたり、内部電極の出発原
料に酸化ニッケルを用いることにより、上記素子の室温
における抵抗を低く抑えることができ、また、セラミッ
ク層の原料に低温焼結チタン酸バリウム系半導体セラミ
ック材料を用いて低温で焼成を行うことで、500℃以
上の再酸化処理温度でも、抵抗変化幅を十分大きくする
効果を有している。
As described above, in manufacturing the multilayer semiconductor ceramic device of the present invention, by using nickel oxide as the starting material for the internal electrodes, the resistance of the device at room temperature can be suppressed to a low level. By using a low-temperature sintered barium titanate-based semiconductor ceramic material as the raw material of the ceramic layer and firing at low temperature, it has the effect of sufficiently increasing the resistance change width even at a reoxidation treatment temperature of 500 ° C. or higher. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/64 M (72)発明者 小林 修 大阪府大阪市大正区船町1丁目3番47号 テイカ株式会社内 (72)発明者 五十嵐 秀二 神奈川県横須賀市津久井754─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication C04B 35/64 M (72) Inventor Osamu Kobayashi 1-347 Funamachi, Taisho-ku, Osaka-shi, Osaka (72) Inventor Shuji Igarashi 754 Tsukui, Yokosuka City, Kanagawa Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体セラミック層と内部電極とを交互
に積層して還元雰囲気焼成した後、再酸化処理して得ら
れる積層型半導体セラミック素子を製造する際、上記内
部電極の金属材料として酸化ニッケルを用い、半導体セ
ラミック層の原料として、1000℃以上1250℃以
下で焼結し、かつ、500℃以上1000℃以下で再酸
化される材料を用いることを特徴とする積層型半導体セ
ラミック素子の製造方法。
1. When manufacturing a multilayer semiconductor ceramic device obtained by alternately stacking semiconductor ceramic layers and internal electrodes, firing them in a reducing atmosphere, and then performing reoxidation treatment, nickel oxide is used as the metal material of the internal electrodes. And a material that is sintered at 1000 ° C. or higher and 1250 ° C. or lower and reoxidized at 500 ° C. or higher and 1000 ° C. or lower is used as a raw material for the semiconductor ceramic layer. .
【請求項2】 半導体セラミック層の原料として、11
00℃以上1200℃以下で焼結し、かつ、700℃以
上900℃以下で再酸化される材料を用いる請求項1記
載の積層型半導体セラミック素子の製造方法。
2. As a raw material for a semiconductor ceramic layer, 11
The method for manufacturing a multilayer semiconductor ceramic device according to claim 1, wherein a material that is sintered at a temperature of 00 ° C. or higher and 1200 ° C. or lower and is reoxidized at a temperature of 700 ° C. or higher and 900 ° C. or lower is used.
JP6165992A 1994-06-24 1994-06-24 Manufacture of laminated type semiconductor ceramic element Pending JPH08153604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6165992A JPH08153604A (en) 1994-06-24 1994-06-24 Manufacture of laminated type semiconductor ceramic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6165992A JPH08153604A (en) 1994-06-24 1994-06-24 Manufacture of laminated type semiconductor ceramic element

Publications (1)

Publication Number Publication Date
JPH08153604A true JPH08153604A (en) 1996-06-11

Family

ID=15822866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6165992A Pending JPH08153604A (en) 1994-06-24 1994-06-24 Manufacture of laminated type semiconductor ceramic element

Country Status (1)

Country Link
JP (1) JPH08153604A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984355B2 (en) * 1999-11-02 2006-01-10 Murata Manufacturing Co., Ltd. Semiconducting ceramic material, process for producing the ceramic material, and thermistor
WO2007034830A1 (en) * 2005-09-20 2007-03-29 Murata Manufacturing Co., Ltd. Stacked positive coefficient thermistor
WO2007034831A1 (en) * 2005-09-20 2007-03-29 Murata Manufacturing Co., Ltd. Stacked positive coefficient thermistor
JP2009227477A (en) * 2008-03-19 2009-10-08 Hitachi Metals Ltd Method for producing semiconductor porcelain composition, and heater using semiconductor porcelain composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984355B2 (en) * 1999-11-02 2006-01-10 Murata Manufacturing Co., Ltd. Semiconducting ceramic material, process for producing the ceramic material, and thermistor
DE10053768B4 (en) * 1999-11-02 2009-04-23 Murata Mfg. Co., Ltd., Nagaokakyo-shi Laminated PTC thermistor and method for its production
WO2007034830A1 (en) * 2005-09-20 2007-03-29 Murata Manufacturing Co., Ltd. Stacked positive coefficient thermistor
WO2007034831A1 (en) * 2005-09-20 2007-03-29 Murata Manufacturing Co., Ltd. Stacked positive coefficient thermistor
JP2009227477A (en) * 2008-03-19 2009-10-08 Hitachi Metals Ltd Method for producing semiconductor porcelain composition, and heater using semiconductor porcelain composition
US8766145B2 (en) 2008-03-19 2014-07-01 Hitachi Metals, Ltd. Process for producing semiconductive porcelain composition and heater employing semiconductive porcelain composition

Similar Documents

Publication Publication Date Title
JP3780851B2 (en) Barium titanate, production method thereof, dielectric ceramic and ceramic electronic component
JP3838036B2 (en) Dielectric porcelain composition, capacitor using the same, and method of manufacturing the same
JP4165893B2 (en) Semiconductor ceramic, multilayer semiconductor ceramic capacitor, and method of manufacturing semiconductor ceramic
JP5120255B2 (en) Dielectric ceramic and manufacturing method thereof, and multilayer ceramic capacitor
JP2001506425A (en) Ceramic multilayer capacitors
TWI441791B (en) Dielectric ceramic and laminated ceramic capacitor
JP3389408B2 (en) Multilayer capacitors
JPWO2009041160A1 (en) Dielectric ceramic and multilayer ceramic capacitor
US5232880A (en) Method for production of nonreducible dielectric ceramic composition
JP5573729B2 (en) Method for producing perovskite complex oxide
JP5733313B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2002234771A (en) Oxide powder having tetragonal perovskite structure, method for producing the same, dielectric ceramic and multilayer ceramic capacitor
JP2019131437A (en) Dielectric ceramic composition, electronic component, and multilayer ceramic capacitor
JP2019131436A (en) Dielectric ceramic composition, electronic component, and multilayer ceramic capacitor
JPH08153605A (en) Manufacture of laminated type semiconductor ceramic element
JP3796771B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
JPH08153604A (en) Manufacture of laminated type semiconductor ceramic element
JP5299400B2 (en) Method for producing composite oxide powder
JP4462438B2 (en) Piezoelectric ceramic composition, multilayer piezoelectric element, and method for producing multilayer piezoelectric element
JP3182772B2 (en) Method for producing non-reducing dielectric ceramic composition
JP2000256062A (en) Multilayer semiconductor ceramic device
JP4643443B2 (en) Method for producing barium titanate powder
JP2001316176A (en) Dielectric ceramic, laminated ceramic capacitor and manufacturing method of dielectric ceramic
JP2004210613A (en) Dielectric ceramic, its producing method and laminated ceramic capacitor
JP2002087879A (en) Dielectric ceramic composition and laminated ceramic capacitor using the same