JP3182772B2 - Method for producing non-reducing dielectric ceramic composition - Google Patents

Method for producing non-reducing dielectric ceramic composition

Info

Publication number
JP3182772B2
JP3182772B2 JP01383091A JP1383091A JP3182772B2 JP 3182772 B2 JP3182772 B2 JP 3182772B2 JP 01383091 A JP01383091 A JP 01383091A JP 1383091 A JP1383091 A JP 1383091A JP 3182772 B2 JP3182772 B2 JP 3182772B2
Authority
JP
Japan
Prior art keywords
slurry
raw
dielectric ceramic
water
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01383091A
Other languages
Japanese (ja)
Other versions
JPH04242005A (en
Inventor
田 信 之 和
野 芳 明 河
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP01383091A priority Critical patent/JP3182772B2/en
Priority claimed from US07/818,294 external-priority patent/US5232880A/en
Publication of JPH04242005A publication Critical patent/JPH04242005A/en
Application granted granted Critical
Publication of JP3182772B2 publication Critical patent/JP3182772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】この発明は非還元性誘電体磁器組
成物の製造方法に関し、特にたとえばニッケルなどの卑
金属を内部電極とする積層セラミックコンデンサなどの
誘電体材料として好適な非還元性誘電体磁器組成物の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-reducing dielectric ceramic composition, and more particularly to a non-reducing dielectric ceramic suitable for a dielectric material such as a multilayer ceramic capacitor having a base metal such as nickel as an internal electrode. The present invention relates to a method for producing a porcelain composition.
【0002】[0002]
【従来の技術】従来の誘電体磁器材料では、中性または
還元性の低酸素分圧下で焼成すると還元され、半導体化
を起こすという性質を有していた。そのため、内部電極
の材料としては、誘電体磁器材料の焼結する温度で溶融
せず、かつ誘電体磁器材料を半導体化させない高い酸素
分圧下で焼成しても酸化されない、たとえばパラジウ
ム,白金などの貴金属を用いなければならず、製造され
る積層セラミックコンデンサの低コスト化の大きな妨げ
となっていた。
2. Description of the Related Art A conventional dielectric porcelain material has the property of being reduced when it is fired under a neutral or reducing low oxygen partial pressure to be converted into a semiconductor. Therefore, as the material of the internal electrode, for example, palladium, platinum, etc., which do not melt at the temperature at which the dielectric ceramic material is sintered, and are not oxidized even when fired under a high oxygen partial pressure that does not turn the dielectric ceramic material into a semiconductor. Precious metals had to be used, which hindered the cost reduction of the manufactured multilayer ceramic capacitor.
【0003】そこで、上記の問題を解決するために、た
とえばニッケルなどの安価な卑金属を内部電極の材料と
して使用し、従来の条件下で焼成すると、電極材料が酸
化してしまい、電極としての機能を果たさない。そのた
め、このような卑金属を内部電極の材料として使用する
ためには、酸素分圧の低い中性または還元性の雰囲気に
おいて焼成しても半導体化せず、コンデンサ用の誘電体
材料として十分な絶縁抵抗値と優れた誘電特性とを有す
る誘電体磁器材料が必要とされている。
[0003] In order to solve the above-mentioned problem, an inexpensive base metal such as nickel is used as a material for the internal electrode, and if fired under conventional conditions, the electrode material is oxidized, and the function as an electrode is reduced. Does not play. Therefore, in order to use such a base metal as a material for an internal electrode, it does not turn into a semiconductor even when fired in a neutral or reducing atmosphere having a low oxygen partial pressure, and has a sufficient insulating property as a dielectric material for a capacitor. There is a need for a dielectric porcelain material having a resistance value and excellent dielectric properties.
【0004】この種の誘電体磁器材料として、特公平2
−63664号公報には、Ce元素を含むチタン酸バリ
ウムは、還元性雰囲気でも還元されず、グレインも小さ
く、高誘電率を示し、非還元性誘電体材料に適すること
が示されている。
As this kind of dielectric porcelain material, Japanese Patent Publication No.
JP-A-63664 discloses that barium titanate containing a Ce element is not reduced even in a reducing atmosphere, has a small grain, shows a high dielectric constant, and is suitable for a non-reducing dielectric material.
【0005】従来、セラミック原料を得る方法として
は、炭酸化物と酸化物とからなる素原料を混合、仮焼し
合成していた。したがって、Ceなどの希土類元素を含
むチタン酸バリウムを製造する場合にも、この方法で合
成していた。
Conventionally, as a method for obtaining a ceramic raw material, a raw material composed of a carbonate and an oxide has been mixed, calcined, and synthesized. Therefore, this method is also used for producing barium titanate containing a rare earth element such as Ce.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記の
従来の方法でセラミック原料を製造すると、素原料自体
を1μm以下にすることは難しかった。そのため、素原
料を仮焼しても、組成的に均一なセラミック原料を得る
ことが難しかった。したがって、希土類元素を含むチタ
ン酸バリウム固溶体を従来の合成方法で製造すると、素
原料の仮焼後に希土類元素が均一に拡散されず、得られ
たチタン酸バリウム固溶体に濃度の高い所ができてしま
う。
However, when a ceramic raw material is manufactured by the above-mentioned conventional method, it is difficult to reduce the raw material itself to 1 μm or less. Therefore, even if the raw material is calcined, it has been difficult to obtain a ceramic raw material having a uniform composition. Therefore, when a barium titanate solid solution containing a rare earth element is manufactured by a conventional synthesis method, the rare earth element is not uniformly diffused after the calcination of the raw material, and a high concentration portion is formed in the obtained barium titanate solid solution. .
【0007】また、チタン酸バリウムはCeなどの希土
類元素の固溶量によっては、半導体化することが知られ
ている。そのため、従来の方法で得られたチタン酸バリ
ウム固溶体を用いて焼結体を作製すると、焼結体におけ
る希土類元素濃度の高い所では、非還元性チタン酸バリ
ウム固溶体が部分的に半導体化されてしまい、積層コン
デンサにした場合の信頼性低下の原因となっていた。
Further, it is known that barium titanate can be converted into a semiconductor depending on the solid solution amount of a rare earth element such as Ce. Therefore, when a sintered body is manufactured using the barium titanate solid solution obtained by the conventional method, in a place where the rare earth element concentration in the sintered body is high, the non-reducible barium titanate solid solution is partially converted into a semiconductor. As a result, the reliability of the multilayer capacitor is reduced.
【0008】そこで、この発明者は希土類を含む非還元
性のチタン酸バリウム固溶体原料の信頼性を向上させる
べく検討を行った結果、ある組成の非還元性チタン酸バ
リウム固溶体(ペロブスカイト型組成物)において、希
土類元素を粒内に均一に拡散させた場合、従来の非還元
性チタン酸バリウム固溶体やこれにCeなど希土類を加
えた非還元性チタン酸バリウム固溶体に比べ、信頼性が
約1桁以上向上することを見い出した。
Accordingly, the present inventor studied to improve the reliability of a non-reducing barium titanate solid solution raw material containing a rare earth element. As a result, a certain composition of a non-reducing barium titanate solid solution (perovskite type composition) was obtained. In the case where the rare earth element is uniformly diffused in the grains, the reliability is about one order of magnitude or more higher than that of a conventional non-reducing barium titanate solid solution or a non-reducing barium titanate solid solution obtained by adding a rare earth such as Ce to the solid solution. Found to improve.
【0009】それゆえに、この発明の主たる目的は、あ
る組成の非還元性チタン酸バリウム固溶体(ペロブスカ
イト型組成物)において、希土類元素が粒内に均一に拡
散され、積層セラミックコンデンサなどの誘電体材料と
して十分な信頼性をもつ非還元性誘電体磁器組成物の製
造方法を提供することである。
Therefore, a main object of the present invention is to provide a non-reducible barium titanate solid solution (perovskite type composition) in which a rare earth element is uniformly diffused into grains, and a dielectric material such as a multilayer ceramic capacitor. It is an object of the present invention to provide a method for producing a non-reducing dielectric ceramic composition having sufficient reliability.
【0010】[0010]
【課題を解決するための手段】この発明は、一般式が
(A1-x x y BO3 (ただし、AはBa,Sr,C
aおよびMgの中から選ばれる少なくとも1種類以上、
Rは希土類元素の中から選ばれる少なくとも1種類以
上、BはTi,ZrおよびSnの中から選ばれる少なく
とも1種類以上)で表されるペロブスカイト型組成物に
おいて、xおよびyがそれぞれ、0.001≦x≦0.
020、1.002≦y≦1.03の範囲にある非還元
性誘電体磁器組成物の製造方法であって、A元素,R元
素それぞれの水溶性無機塩の水溶液から、炭酸塩および
水酸化物のうち1種類を沈澱させ、第1のスラリを得る
工程と、この第1のスラリとB元素を含む第2のスラリ
とを混合し、混合物を得る工程と、この混合物をろ過,
水洗,乾燥,仮焼,粉砕する工程とを含む、非還元性誘
電体磁器組成物の製造方法である。なお、この発明でい
うところの水溶性無機塩とは、たとえば硝酸塩、塩化
物、ヨウ化物、臭化物などの一般的な無機化合物以外
に、カルボン酸塩をも含むものである。
According to the present invention, the general formula is (A 1 -x R x ) y BO 3 (where A is Ba, Sr, C
at least one selected from a and Mg,
R is at least one kind selected from rare earth elements, and B is at least one kind selected from Ti, Zr and Sn), wherein x and y are each 0.001. ≦ x ≦ 0.
020, a method for producing a non-reducing dielectric ceramic composition in the range of 1.002 ≦ y ≦ 1.03, wherein a carbonate and a hydroxide are prepared from an aqueous solution of a water-soluble inorganic salt of each of the A element and the R element. Precipitation of one of the materials to obtain a first slurry, mixing of the first slurry with a second slurry containing element B to obtain a mixture, filtration of the mixture,
A method for producing a non-reducible dielectric porcelain composition, comprising steps of washing, drying, calcining, and pulverizing. In the present invention,
Examples of water-soluble inorganic salts include nitrates and chlorides.
Other than general inorganic compounds such as materials, iodides and bromides
And a carboxylate.
【0011】次に、この発明にかかる非還元性誘電体磁
器組成物の組成範囲を限定した理由について説明する。
Next, the reason for limiting the composition range of the non-reducing dielectric ceramic composition according to the present invention will be described.
【0012】一般式が(A1-x x y BO3 (ただ
し、AはBa,Sr,CaおよびMgの中から選ばれる
少なくとも1種類以上、Rは希土類元素の中から選ばれ
る少なくとも1種類以上、BはTi,ZrおよびSnの
中から選ばれる少なくとも1種類以上)で表されるペロ
ブスカイト型組成物において、xが0.001より小さ
い場合、信頼性向上作用が認められず好ましくない。ま
た、xが0.02を超える場合、逆に信頼性の低下を招
き好ましくない。さらに、yが1.002より小さい場
合、半導体化されやすくなり、信頼性が大幅に低下し好
ましくない。また、yが1.03を超える場合、焼結性
が低下し好ましくない。
The general formula is (A 1 -x R x ) y BO 3 (where A is at least one selected from Ba, Sr, Ca and Mg, and R is at least one selected from rare earth elements) Or more, B is at least one kind selected from Ti, Zr and Sn), and when x is smaller than 0.001, the effect of improving the reliability is not recognized, which is not preferable. On the other hand, when x exceeds 0.02, the reliability is undesirably reduced. Further, when y is smaller than 1.002, the semiconductor becomes easy to be made into a semiconductor, and the reliability is significantly reduced, which is not preferable. On the other hand, when y exceeds 1.03, the sinterability decreases, which is not preferable.
【0013】[0013]
【作用】A元素,R元素それぞれの水溶性無機塩の水溶
液から、炭酸塩または水酸化物として沈澱させて得られ
たスラリの沈澱物は、そのグレインサイズが0.01μ
m程度ときわめて小さい。そのため、A元素とR元素と
の混合度は極めて良くなり、これを使用して作製した非
還元性誘電体磁器組成物では、希土類元素が粒内に均一
に拡散する。
The slurry precipitate obtained by precipitation as a carbonate or hydroxide from an aqueous solution of a water-soluble inorganic salt of each of the A element and the R element has a grain size of 0.01 μm.
m, which is extremely small. Therefore, the degree of mixing of the A element and the R element becomes extremely good, and in the non-reducing dielectric ceramic composition produced using the same, the rare earth element is uniformly diffused in the grains.
【0014】[0014]
【発明の効果】この発明によれば、従来の方法に比べ、
1桁以上の高い平均故障時間を示し、高い信頼性を有し
た非還元性誘電体磁器組成物が得られる。この非還元性
誘電体磁器組成物を積層セラミックコンデンサに使用す
れば、コストの安いNiを内部金属に持った積層セラミ
ックコンデンサにおいて、電極間のセラミック素子部の
厚みを大幅に薄くすることができ、安価でしかも小型で
大容量の積層セラミックコンデンサの製造が可能とな
る。
According to the present invention, compared with the conventional method,
A non-reducing dielectric ceramic composition exhibiting a high average failure time of one or more digits and having high reliability can be obtained. If this non-reducing dielectric ceramic composition is used for a multilayer ceramic capacitor, the thickness of the ceramic element portion between the electrodes can be greatly reduced in a multilayer ceramic capacitor having inexpensive Ni as an internal metal, Inexpensive, small-sized and large-capacity multilayer ceramic capacitors can be manufactured.
【0015】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments.
【0016】[0016]
【実施例】この発明による一般式が(A1-x x y
3 で表されるペロブスカイト型組成物の製造方法につ
いて述べる。ただし、上述の一般式において、AはB
a,Sr,CaおよびMgの中から少なくとも1種類以
上選ばれ、Rは希土類元素の中から少なくとも1種類以
上選ばれ、BはTi,ZrおよびSnの中から少なくと
も1種類以上選ばれる。また、xおよびyはそれぞれ、
0.001≦x≦0.020、1.002≦y≦1.0
3の範囲にある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The general formula according to the present invention is (A 1 -x R x ) y B
A method for producing a perovskite composition represented by O 3 will be described. However, in the above general formula, A is B
At least one kind is selected from a, Sr, Ca and Mg, R is at least one kind selected from rare earth elements, and B is at least one kind selected from Ti, Zr and Sn. X and y are respectively
0.001 ≦ x ≦ 0.020, 1.002 ≦ y ≦ 1.0
3 range.
【0017】まず、A元素,R元素それぞれの水溶性無
機塩の水溶液から、炭酸塩または水酸化物として沈澱さ
せてスラリを作製する。この水溶性無機塩としては、た
とえば硝酸塩,塩化物,ヨウ化物,臭化物,カルボン酸
塩などが挙げられる。なお、炭酸塩として沈澱させる
か、水酸化物として沈澱させるかは、どちらがより安定
に沈澱が生じるかという点から決定される。炭酸塩とし
て沈澱させる場合は、それぞれの水溶性無機塩の水溶液
に、可溶性炭酸塩の水溶液を加え沈澱させるとよいが、
炭酸ガスを吹き込むことによっても可能である。この可
溶性炭酸塩としては、炭酸ソーダ,炭酸アンモニウムな
どがある。また、水酸化物として沈澱させる場合は、そ
れぞれの水溶性無機塩の水溶液に可溶性水酸化物の水溶
液を加え沈澱させる。可溶性水酸化物としては、苛性ソ
ーダ,アンモニア,水酸化カリ,アミン類なとが用いら
れる。
First, a slurry is prepared by precipitating as a carbonate or a hydroxide from an aqueous solution of a water-soluble inorganic salt of each of the A element and the R element. Examples of the water-soluble inorganic salt include nitrate, chloride, iodide, bromide, and carboxylate. The precipitation as a carbonate or a hydroxide is determined from the viewpoint of more stable precipitation. In the case of precipitation as a carbonate, it is advisable to add an aqueous solution of a soluble carbonate to each aqueous solution of a water-soluble inorganic salt and precipitate.
It is also possible by blowing carbon dioxide gas. Examples of the soluble carbonate include sodium carbonate and ammonium carbonate. In the case of precipitation as a hydroxide, an aqueous solution of a soluble hydroxide is added to each aqueous solution of a water-soluble inorganic salt for precipitation. Examples of the soluble hydroxide include caustic soda, ammonia, potassium hydroxide, and amines.
【0018】これら2種類のスラリは、別々の槽で沈澱
させたものを混合する。または、A元素,R元素それぞ
れの水溶性無機塩の水溶液を混合してなる水溶液に、可
溶性炭酸塩の水溶液および可溶性水酸化物の水溶液を順
次加えていき、炭酸塩および水酸化物を順々沈澱させた
スラリを用いてもよい。これらの沈澱物は、そのグレイ
ンサイズが0.01μm前後と極めて小さいため、A元
素とR元素との混合度は、極めて良くなる。
These two types of slurries are mixed by precipitation in separate tanks. Alternatively, an aqueous solution of a soluble carbonate and an aqueous solution of a soluble hydroxide are sequentially added to an aqueous solution obtained by mixing an aqueous solution of a water-soluble inorganic salt of each of the A element and the R element, and the carbonate and the hydroxide are sequentially removed. Precipitated slurry may be used. These precipitates have an extremely small grain size of about 0.01 μm, so that the degree of mixing of the A element and the R element is extremely good.
【0019】次に、B元素の酸化物を混合,粉砕し作製
したスラリに、上記のA元素,R元素が均一に混合され
たスラリを加え、さらに混合する。これをろ過,水洗
後、仮焼することによって、希土類元素が均一に分散し
た原料として、仮焼粉末を得ることができる。
Next, to the slurry prepared by mixing and pulverizing the oxide of the element B, a slurry in which the above-mentioned elements A and R are uniformly mixed is added and further mixed. This is filtered, washed with water, and calcined to obtain a calcined powder as a raw material in which the rare earth element is uniformly dispersed.
【0020】従来の方法で得られた仮焼粉末をX線マイ
クロアナライザで分析すると、未反応希土類元素酸化物
の存在が認められた。それに対し、この発明の方法で得
られた仮焼粉末をX線マイクロアナライザで分析して
も、そのような不均一な分布は全く認められなかった。
さらに、この発明の方法で得られた仮焼粉末を還元性雰
囲気で焼成して得られた磁器組成物では、希土類元素が
ABO3 ペロブスカイト型結晶に均一に固溶しているこ
とが、同様にX線マイクロアナライザで確認できた。そ
のため、この発明の方法で得られた磁器は、従来の非還
元性チタン酸バリウム固溶体や希土類を含むチタン酸バ
リウム固溶体に比べ、絶縁抵抗における信頼性が、1桁
以上向上する。
When the calcined powder obtained by the conventional method was analyzed with an X-ray microanalyzer, the presence of unreacted rare earth element oxide was confirmed. In contrast, when the calcined powder obtained by the method of the present invention was analyzed with an X-ray microanalyzer, no such non-uniform distribution was observed.
Furthermore, in the porcelain composition obtained by calcining the calcined powder obtained by the method of the present invention in a reducing atmosphere, the fact that the rare earth element is uniformly dissolved in the ABO 3 perovskite-type crystal is also confirmed. X-ray microanalyzer confirmed. Therefore, the porcelain obtained by the method of the present invention has an improvement in reliability in insulation resistance of at least one digit compared to conventional non-reducible barium titanate solid solution or barium titanate solid solution containing rare earth.
【0021】なお、この発明にかかる非還元性誘電体磁
器組成物に、通常の窯業技術として行われるように、S
iO2 などの鉱化剤を加えたり、絶縁抵抗を上げるため
MnO,Cr2 3 などを適量加えても、この発明の効
果をなんら損なうものではない。
The non-reducing dielectric porcelain composition according to the present invention is treated with S
Even if a mineralizer such as iO 2 is added or an appropriate amount of MnO, Cr 2 O 3 or the like is added to increase insulation resistance, the effect of the present invention is not impaired at all.
【0022】次に、この発明の実験例について説明す
る。
Next, an experimental example of the present invention will be described.
【0023】まず、原料として、BaCl2 ,SrCl
2 ,MgCl2 ,CeCl3 ,TiO2 ,ZrO2 を表
1に示す割合で準備した。そして、第1の槽においてB
aCl2 ,SrCl2 ,MgCl2 ,CeCl3 の各水
溶液を混合し、これにNa2CO3 を加え、pHを調整
して、BaCO3 ,SrCO3 ,MgCO3 ,Ce
2(CO3 3 として沈澱させてスラリを得た。さら
に、このスラリをろ過した後に水洗した。
First, BaCl 2 , SrCl
2 , MgCl 2 , CeCl 3 , TiO 2 , and ZrO 2 were prepared at the ratios shown in Table 1. Then, in the first tank, B
Each aqueous solution of aCl 2 , SrCl 2 , MgCl 2 , and CeCl 3 is mixed, Na 2 CO 3 is added thereto, the pH is adjusted, and BaCO 3 , SrCO 3 , MgCO 3 , and Ce are mixed.
Slurry was obtained by precipitation as 2 (CO 3 ) 3 . Further, the slurry was filtered and washed with water.
【0024】[0024]
【表1】 [Table 1]
【0025】一方、TiO2 ,ZrO2 は、純度99.
8%以上の素原料を用いて、ジルコニアの直径5mmの
粉砕玉石2000g,純水1000ccとともにボール
ミルに入れて、16時間粉砕混合を行った。そして、上
記の水洗して得たスラリをそのボールミルに加え、さら
に4時間混合した。それをろ過,乾燥して原料粉末を得
た。その後、この原料粉末を1100℃の温度で2時間
仮焼して、(Ba,Sr,Mg,Ce)(Ti,Zr)
3 系の仮焼粉末1を得た。
On the other hand, TiO 2, ZrO 2 is 99.
Using a raw material of 8% or more, the zirconia was put into a ball mill together with 2000 g of crushed cobblestone having a diameter of 5 mm and 1000 cc of pure water, and crushed and mixed for 16 hours. Then, the slurry obtained by washing with water was added to the ball mill and mixed for 4 hours. It was filtered and dried to obtain a raw material powder. Thereafter, the raw material powder is calcined at a temperature of 1100 ° C. for 2 hours to obtain (Ba, Sr, Mg, Ce) (Ti, Zr).
An O 3 -based calcined powder 1 was obtained.
【0026】 次に、原料として、Ba(NO3 2 ,C
a(NO3 2 ・4H2 O,NdCl3 ・6H2 O,T
iO2 ,ZrO2 ,SnO2 を表2に示す割合で準備し
た。そして、第1の槽においてBa(NO3 2 ,Ca
(NO3 2 ・4H2 Oの各水溶液を混合し、これにN
2 CO3 を加え、pHを調整して、BaCO3 ,Ca
CO3 として沈澱させてスラリを得た。さらに、このス
ラリをろ過した後に水洗した。
Next, as a starting material, Ba (NO 3) 2, C
a (NO 3 ) 2 .4H 2 O, NdCl 3 .6H 2 O, T
iO 2 , ZrO 2 , and SnO 2 were prepared at the ratios shown in Table 2. Then, in the first tank, Ba (NO 3 ) 2 , Ca
Each aqueous solution of (NO 3 ) 2 .4H 2 O was mixed,
a 2 CO 3 was added and the pH was adjusted to obtain BaCO 3 and Ca.
Precipitated as CO 3 to give a slurry. Further, the slurry was filtered and washed with water.
【0027】[0027]
【表2】 [Table 2]
【0028】また、第2の槽においてNdCl3 ・6H
2 Oの水溶液に安定剤としてH2 2 を加え、これにN
4 OHを加え、PHを調整して、Ndの沈澱物を得
た。さらに、この沈澱したスラリをろ過した後に水洗し
た。
Further, NdCl 3 · 6H in the second tank
The H 2 O 2 was added as a stabilizer to 2 O aqueous solution, to which N
H 4 OH was added to adjust the pH to obtain a precipitate of Nd. The precipitated slurry was filtered and washed with water.
【0029】 一方、TiO2 ,ZrO2 ,SnO2 は、
純度99.8%以上の素原料を用いて、ジルコニアの直
径5mmの粉砕玉石2000g,純水1000ccとと
もにボールミルに入れて、16時間粉砕混合を行った。
そして、上記の水洗して得た2種のスラリをそのボール
ミルに加え、さらに4時間混合した。それをろ過,乾燥
して原料粉末を得た。その後、この原料粉末を1150
℃の温度で3時間仮焼して、(Ba,Ca,Nd)(T
i,Zr,Sn)O3 系の仮焼粉末2を得た。
[0029] On the other hand, TiO 2, ZrO 2, SnO 2 is,
Using a raw material having a purity of 99.8% or more, the zirconia was placed in a ball mill together with 2000 g of crushed cobblestone having a diameter of 5 mm and 1000 cc of pure water, and crushed and mixed for 16 hours.
Then, the two types of slurries obtained by washing with water were added to the ball mill and mixed for 4 hours. It was filtered and dried to obtain a raw material powder. Thereafter, this raw material powder was added to 1150
(Ba, Ca, Nd) (T
An i, Zr, Sn) O 3 -based calcined powder 2 was obtained.
【0030】 さらに、原料として、Ba(CH3 CO
O)2 ,Sr(NO3 2 ,CaCl2 ,DyCl3
TiO2 ,ZrO2 を表3に示す割合で準備した。そし
て、第1の槽においてBa(CH3 COO)2 ,Sr
(NO3 2 ,CaCl2 ,DyCl3 の各水溶液を混
合し、これにNa2 CO3 を加え、pHを調整して、B
aCO3 ,SrCO3 ,CaCO3 として沈澱させてス
ラリを得た。このスラリをろ過した後に水洗した。
Furthermore, as a starting material, Ba (CH 3 CO
O) 2 , Sr (NO 3 ) 2 , CaCl 2 , DyCl 3 ,
TiO 2 and ZrO 2 were prepared at the ratios shown in Table 3. Then, in the first tank, Ba (CH 3 COO) 2 , Sr
Each aqueous solution of (NO 3 ) 2 , CaCl 2 , and DyCl 3 was mixed, Na 2 CO 3 was added thereto, and the pH was adjusted.
A slurry was obtained by precipitation as aCO 3 , SrCO 3 , and CaCO 3 . This slurry was filtered and washed with water.
【0031】[0031]
【表3】 [Table 3]
【0032】また、第2の槽においてDyCl3 の水溶
液に安定剤としてH2 2 を加え、これにNaOHを加
え、pHを調整して、Dyの沈澱物を得た。この沈澱し
たスラリをろ過した後に水洗した。
In a second tank, H 2 O 2 was added as a stabilizer to an aqueous solution of DyCl 3 , NaOH was added thereto, and the pH was adjusted to obtain a precipitate of Dy. The precipitated slurry was filtered and washed with water.
【0033】 一方、TiO2 ,ZrO2 ,SnO2 は、
純度99.8%以上の素原料を用いて、ジルコニアの直
径5mmの粉砕玉石2000g,純水1000ccとと
もにボールミルに入れて、16時間粉砕混合を行った。
そして、上記の水洗して得た2種のスラリをそのボール
ミルに加え、さらに4時間混合した。さらに、それをろ
過,乾燥して原料粉末を得た。その後、この原料粉末を
1100℃の温度で3時間仮焼して、(Ba,Sr,C
a,Dy)(Ti,Zr)O3 系の仮焼粉末3を得た。
[0033] On the other hand, TiO 2, ZrO 2, SnO 2 is,
Using a raw material having a purity of 99.8% or more, the zirconia was placed in a ball mill together with 2000 g of crushed cobblestone having a diameter of 5 mm and 1000 cc of pure water, and crushed and mixed for 16 hours.
Then, the two types of slurries obtained by washing with water were added to the ball mill and mixed for 4 hours. Further, it was filtered and dried to obtain a raw material powder. Thereafter, the raw material powder was calcined at a temperature of 1100 ° C. for 3 hours to obtain (Ba, Sr, C
a, Dy) (Ti, Zr) O 3 -based calcined powder 3 was obtained.
【0034】 また、純度99.8%以上の素原料である
BaCO3 ,SrCO3 ,MgCO3 ,CeO2 ,Ti
2 ,ZrO2 を表4に示す割合で準備した。そして、
これらの素原料をジルコニアの直径5mmの粉砕玉石5
000g,純水3000ccとともにボールミルに入れ
て、16時間粉砕混合を行った。それをろ過,乾燥して
原料粉末を得た。その後、この原料粉末を1180℃の
温度で仮焼して、従来の固相法としての(Ba,Sr,
Mg,Ce)(Ti,Zr)O3 系の仮焼粉末4を得
た。
Further , BaCO 3 , SrCO 3 , MgCO 3 , CeO 2 , Ti which are raw materials having a purity of 99.8% or more are used.
O 2 and ZrO 2 were prepared at the ratios shown in Table 4. And
These raw materials are crushed boulders 5 mm in diameter of zirconia.
The mixture was put in a ball mill together with 3,000 g of pure water and 3000 cc of pure water, and pulverized and mixed for 16 hours. It was filtered and dried to obtain a raw material powder. Thereafter, the raw material powder is calcined at a temperature of 1180 ° C. to obtain (Ba, Sr,
Mg, Ce) (Ti, Zr) O 3 -based calcined powder 4 was obtained.
【0035】[0035]
【表4】 [Table 4]
【0036】仮焼粉末1,2,3および4それぞれ20
0gを、ジルコニアの直径5mmの粉砕玉石2000
g,有機溶剤,有機バインダの適当量とともに樹脂ポッ
トに入れ、10時間混合し、スラリを得た。
The calcined powders 1, 2, 3 and 4 were each 20
0 g of crushed zirconia stone 5 mm in diameter 2000
g, an organic solvent, and an appropriate amount of an organic binder were put into a resin pot and mixed for 10 hours to obtain a slurry.
【0037】 こうして得られた各々のスラリを使用し
て、ドクタブレードを用いたキャスティング法によっ
て、厚さ15μmのセラミックグリーンシートを作製し
た。このセラミックグリーンシートの上に、Ni粉末を
用いた内部電極ペーストを、通常の積層セラミックコン
デンサを製造する方法によってスクリーン印刷した。そ
して、内部電極ペーストを印刷したグリーンシートを、
積層数が10層となるように積層し、熱プレスを用いて
一体化して、積層体を得た。その後、この積層体を所定
の寸法に切断して、生チップを作製した。
[0037] Using each of the slurries thus obtained, by a casting method using a doctor blade, to produce a ceramic green sheet having a thickness of 15 [mu] m. On this ceramic green sheet, an internal electrode paste using Ni powder was screen-printed by a method for manufacturing an ordinary multilayer ceramic capacitor. And the green sheet printed with the internal electrode paste,
Lamination was performed so that the number of laminations would be 10 layers, and they were integrated using a hot press to obtain a laminated body. Thereafter, the laminate was cut into a predetermined size to produce a raw chip.
【0038】 次に、こうして作製された生チップを温度
300℃、酸素分圧100ppmで2時間保持して、脱
バインダ処理を施した。そして、酸素分圧を3×10-8
atm〜3×10-10 atmに調節した還元雰囲気中に
おいて、脱バインダ処理を施した生チップを、1250
℃〜1300℃の温度で2時間焼成して、焼結体を得
た。この焼結体に外部電極を付けて、仮焼粉末1,2,
3および4から実施例1,実施例2,実施例3および比
較例1の各々の試料を作製した。
Next, the thus prepared raw chip temperature 300 ° C., and held for 2 hours at an oxygen partial pressure of 100 ppm, was subjected to a binder removal process. And the oxygen partial pressure is 3 × 10 -8
In a reducing atmosphere adjusted to atm.about.3 × 10 −10 atm, the raw chips subjected to the binder removal treatment are mixed with 1250 atm.
The sintered body was obtained by firing at a temperature of 1C to 1300C for 2 hours. An external electrode is attached to this sintered body, and calcined powders 1, 2,
From Examples 3 and 4, samples of Example 1, Example 2, Example 3 and Comparative Example 1 were produced.
【0039】 これらの試料の電気特性を測定した結果を
表5に示す。なお、静電容量および誘電損失は、1kH
z,1Vrmsで測定し、誘電率は電極面積および電極
間距離を測定して、静電容量から算出した。また、平均
故障時間(MTTF)は、150℃,4WVのもとでの
故障時間のワイブルプロットより求めた。
[0039] Table 5 shows the results of measurement of electric characteristics of these samples. The capacitance and dielectric loss are 1 kHz
z, 1 Vrms, and the dielectric constant was calculated from the capacitance by measuring the electrode area and the distance between the electrodes. The mean time to failure (MTTF) was determined from a Weibull plot of the time to failure under 150 ° C. and 4 WV.
【0040】[0040]
【表5】 [Table 5]
【0041】従来の固相焼結法によって得られた仮焼粉
末からなる比較例1でのMTTFは、1.3時間と短く
信頼性に劣った。それに対し、この発明に示す方法で作
製した仮焼粉末を用いた磁器からなる実施例1,実施例
2および実施例3でのMTTFは、28.7〜40.5
時間であった。このように従来の方法で作製した仮焼粉
末を用いた磁器からなる比較例1に比べ、MTTFは1
桁以上良くなっていることが確認できた。
The MTTF of Comparative Example 1 consisting of calcined powder obtained by conventional solid phase sintering method was inferior to shorten reliable 1.3 hours. On the other hand, the MTTFs of Examples 1, 2 and 3 made of porcelain using the calcined powder produced by the method shown in the present invention were 28.7 to 40.5.
It was time. Thus, the MTTF is 1 in comparison with Comparative Example 1 made of porcelain using the calcined powder manufactured by the conventional method.
It was confirmed that it was better than an order of magnitude.
フロントページの続き (51)Int.Cl.7 識別記号 FI H01B 3/12 303 H01G 4/12 358 H01G 4/12 358 C04B 35/00 J (58)調査した分野(Int.Cl.7,DB名) H01B 3/00 C04B 35/46 C04B 35/48 C04B 35/49 H01B 3/12 303 H01G 4/12 358 Continuation of the front page (51) Int.Cl. 7 identification symbol FI H01B 3/12 303 H01G 4/12 358 H01G 4/12 358 C04B 35/00 J (58) Investigated field (Int.Cl. 7 , DB name ) H01B 3/00 C04B 35/46 C04B 35/48 C04B 35/49 H01B 3/12 303 H01G 4/12 358

Claims (1)

    (57)【特許請求の範囲】(57) [Claims]
  1. 【請求項1】 一般式が(A1-x x y BO3 (ただ
    し、AはBa,Sr,CaおよびMgの中から選ばれる
    少なくとも1種類以上、Rは希土類元素の中から選ばれ
    る少なくとも1種類以上、BはTi,ZrおよびSnの
    中から選ばれる少なくとも1種類以上)で表されるペロ
    ブスカイト型組成物において、xおよびyがそれぞれ、 0.001≦x≦0.020 1.002≦y≦1.03 の範囲にある非還元性誘電体磁器組成物の製造方法であ
    って、A元素,R元素それぞれの水溶性無機塩の水溶液
    から、炭酸塩および水酸化物のうち1種類を沈澱させ、
    第1のスラリを得る工程、前記第1のスラリとB元素を
    含む第2のスラリとを混合し、混合物を得る工程、およ
    び前記混合物をろ過,水洗,乾燥,仮焼,粉砕する工程
    を含む、非還元性誘電体磁器組成物の製造方法。
    1. The general formula is (A 1 -x R x ) y BO 3 (where A is at least one selected from Ba, Sr, Ca and Mg, and R is selected from rare earth elements) At least one type, and B is at least one type selected from Ti, Zr and Sn), wherein x and y are each 0.001 ≦ x ≦ 0.020 1.002 ≦ y ≦ 1.03, wherein the non-reducing dielectric ceramic composition is prepared from an aqueous solution of a water-soluble inorganic salt of each of the A element and the R element by using one of a carbonate and a hydroxide. To precipitate,
    A step of obtaining a first slurry, a step of mixing the first slurry with a second slurry containing the element B to obtain a mixture, and a step of filtering, washing, drying, calcining, and pulverizing the mixture. And a method for producing a non-reducing dielectric ceramic composition.
JP01383091A 1991-01-11 1991-01-11 Method for producing non-reducing dielectric ceramic composition Expired - Lifetime JP3182772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01383091A JP3182772B2 (en) 1991-01-11 1991-01-11 Method for producing non-reducing dielectric ceramic composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP01383091A JP3182772B2 (en) 1991-01-11 1991-01-11 Method for producing non-reducing dielectric ceramic composition
US07/818,294 US5232880A (en) 1991-01-11 1992-01-09 Method for production of nonreducible dielectric ceramic composition
DE19924200356 DE4200356C2 (en) 1991-01-11 1992-01-09 Process for making a non-reducible dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPH04242005A JPH04242005A (en) 1992-08-28
JP3182772B2 true JP3182772B2 (en) 2001-07-03

Family

ID=11844194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01383091A Expired - Lifetime JP3182772B2 (en) 1991-01-11 1991-01-11 Method for producing non-reducing dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JP3182772B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3503568B2 (en) 2000-04-07 2004-03-08 株式会社村田製作所 Non-reducing dielectric ceramic and multilayer ceramic capacitor using the same
JP4802490B2 (en) * 2004-12-13 2011-10-26 Tdk株式会社 Electronic component, dielectric ceramic composition and method for producing the same
CN102120698B (en) * 2010-12-24 2013-08-07 钱云春 Barium zirconate-based medium and high voltage ceramic dielectric capacitor material
CN102120697B (en) * 2010-12-24 2013-08-07 钱云春 Doped and modified barium zirconate-based ceramic capacitor material
CN102120696B (en) * 2010-12-24 2013-08-07 钱云春 Ceramic material for doping modification of barium titanate-based high-voltage capacitor
CN102120702B (en) * 2010-12-24 2013-08-07 钱云春 Impact-resistant strontium zirconate-based high-voltage ceramic capacitor material

Also Published As

Publication number Publication date
JPH04242005A (en) 1992-08-28

Similar Documents

Publication Publication Date Title
US7157396B2 (en) Dielectric ceramic composition and method of production and electronic device of the same
JP3361091B2 (en) Dielectric porcelain and electronic components
JP3760364B2 (en) Dielectric porcelain composition and electronic component
EP2980043B1 (en) Dielectric ceramic composition and dielectric element
JP4720193B2 (en) Dielectric ceramic and manufacturing method thereof, and multilayer ceramic capacitor
JP3592097B2 (en) Multilayer capacitors containing barium-titanate doped with silver and rare earth metals
KR100944100B1 (en) Stacked semiconductor ceramic capacitor with varistor function and method for manufacturing the same
JP3934352B2 (en) Multilayer ceramic chip capacitor and manufacturing method thereof
KR100888020B1 (en) Dielectric ceramics and multi layer ceramic capacitor
JP4782552B2 (en) Dielectric porcelain
JP5131595B2 (en) Dielectric ceramic, ceramic electronic component, and multilayer ceramic capacitor
KR100418599B1 (en) An oxide having a perovskite structure, barium titanite, and manufacturing method therefor, dielectric ceramic, and ceramic electronic component
JP4110978B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP6502092B2 (en) Multilayer ceramic capacitor
JP3838036B2 (en) Dielectric porcelain composition, capacitor using the same, and method of manufacturing the same
JP3418091B2 (en) Dielectric porcelain and manufacturing method thereof
EP1767507B1 (en) Dielectric ceramic composition and laminated ceramic capacitor
US7498285B2 (en) Nonreducing dielectric ceramic, and manufacturing method and monolithic ceramic capacitor of the same
JP3161278B2 (en) Dielectric porcelain composition
JPWO2006018928A1 (en) Dielectric ceramic and multilayer ceramic capacitor
JP3882054B2 (en) Multilayer ceramic capacitor
CN102060521B (en) Hexagonal type barium titanate powder, producing method thereof, dielectric ceramic composition and electronic component
CN101088960B (en) Electronic device, dielectric ceramic composition and the production method
JP2681214B2 (en) Composition for ceramic dielectric, ceramic dielectric obtained by using the same, and method for producing the same
KR101494851B1 (en) Laminated ceramic capacitor and method for producing laminated ceramic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10