JPH08153603A - Ceramic resistor - Google Patents

Ceramic resistor

Info

Publication number
JPH08153603A
JPH08153603A JP6294256A JP29425694A JPH08153603A JP H08153603 A JPH08153603 A JP H08153603A JP 6294256 A JP6294256 A JP 6294256A JP 29425694 A JP29425694 A JP 29425694A JP H08153603 A JPH08153603 A JP H08153603A
Authority
JP
Japan
Prior art keywords
aluminum nitride
group
resistor
lattice constant
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6294256A
Other languages
Japanese (ja)
Other versions
JP3145588B2 (en
Inventor
Hiroshi Aida
比呂史 会田
Kenji Kitazawa
謙治 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29425694A priority Critical patent/JP3145588B2/en
Priority to US08/385,774 priority patent/US5668524A/en
Publication of JPH08153603A publication Critical patent/JPH08153603A/en
Priority to US08/841,605 priority patent/US5777543A/en
Application granted granted Critical
Publication of JP3145588B2 publication Critical patent/JP3145588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To adjust the volumetric specific resistance in the specific range and to stabilize in a wide temperature range by a method wherein the element of twenty-first group in a periodic table is contained in specific atomic %, in an insulator mainly containing aluminum nitride and its lattice constant is controlled in a specific range by solidifying the element in aluminum nitride crystal. CONSTITUTION: Conductivity is given to a ceramic resistor, which is mainly composed of aluminum nitride, by adding to it the second b-group element (0.005 to 25 atomic %). By the solidification of the second b-group element, its lattice constant is in the range of 0.003 to 0.025Å on a-axis and 0.005 to 0.050Å on c-axis, and they are different from the lattice constant of aluminum single unit. The ceramic resistor of the above-mentioned constitution has the volumetric specific resistance of 10<13> Ω-cm or smaller at 25 deg.C, and it is confirmed that its lower limit value is 10<6> Ω-cm. Also, this resistor has excellent resistance stability that the change against the resistance value at 25 deg.C in the range from room temperature to 300 deg.C is in three digits or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ヒータ材料、真空管外
囲管や半導体製造装置における帯電除去材料、ウエハ搬
送用アーム、ウエハハンドリング用治具および静電チャ
ックなどに適した窒化アルミニウムを主体とするセラミ
ック抵抗体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mainly composed of aluminum nitride suitable for heater materials, vacuum tube envelopes and antistatic materials for semiconductor manufacturing equipment, wafer transfer arms, wafer handling jigs and electrostatic chucks. To a ceramic resistor.

【0002】[0002]

【従来技術】従来より、絶縁性のセラミックスの電気抵
抗を調整するための方法としては、絶縁性セラミックス
に対して、導電性材料を添加して抵抗値を制御すること
が一般に行われている。例えば、アルミナに対して窒化
チタンを添加して電気抵抗を小さくすることが行われて
いる。
2. Description of the Related Art Conventionally, as a method for adjusting the electric resistance of insulating ceramics, it has been generally practiced to add a conductive material to the insulating ceramics to control the resistance value. For example, titanium nitride is added to alumina to reduce the electric resistance.

【0003】一方、窒化アルミニウムは、非酸化性セラ
ミックスの1種であり、構造材料や高温材料としての応
用が期待され、最近では耐プラズマに対しても優れた耐
久性を有することが報告されている。よって、この窒化
アルミニウムを静電チャックなど半導体製造装置内の部
品としての応用が考慮されている。しかしながら、この
窒化アルミニウム自体、高絶縁材料であり、室温でも1
16Ω−cm以上の抵抗値を有するために実用化には至
っていないのが現状である。
On the other hand, aluminum nitride is a kind of non-oxidizing ceramics and is expected to be applied as a structural material or a high temperature material, and it has recently been reported that it has excellent durability against plasma resistance. There is. Therefore, application of this aluminum nitride as a component in a semiconductor manufacturing apparatus such as an electrostatic chuck is considered. However, this aluminum nitride itself is a highly insulating material, and even at room temperature, 1
At present, it has not been put into practical use because it has a resistance value of 0 16 Ω-cm or more.

【0004】このような窒化アルミニウムに対しても、
電気抵抗を小さくする試みが行われている。例えば、窒
化アルミニウムや窒化ホウ素の絶縁性セラミックスに対
してもAlなどの導電性材料を添加して比抵抗を調整す
ることが特開昭56ー4509号に提案されている。ま
た、薄膜状セラミックスにおいては、例えば窒化アルミ
ニウムに金属アルミニウムを分散させて抵抗温度係数の
小さな薄膜抵抗体を得ることも特公昭55ー50364
号に提案されている。
Even with respect to such aluminum nitride,
Attempts have been made to reduce the electrical resistance. For example, JP-A-56-4509 proposes that a conductive material such as Al is added to an insulating ceramic such as aluminum nitride or boron nitride to adjust the specific resistance. In the case of thin film ceramics, it is also possible to obtain a thin film resistor having a small temperature coefficient of resistance by dispersing metallic aluminum in aluminum nitride, for example.
Has been proposed in the issue.

【0005】[0005]

【発明が解決しようとする問題点】一般に、絶縁体の体
積固有抵抗値は温度とともに低下する傾向にあるが、例
えば窒化アルミニウムの場合には室温で1016Ω−cm
から300℃で1011Ω−cm以下まで減少する傾向に
ある。そのため、室温から300℃の高温まで使用する
場合、安定した動作が得られないために、使用温度条件
に制限があるなどの問題があった。また、室温以下では
AlN単体では抵抗が高いために適度の抵抗を有する抵
抗体として利用できないといった欠点があった。
Generally, the volume resistivity of an insulator tends to decrease with temperature. For example, aluminum nitride has a resistivity of 10 16 Ω-cm at room temperature.
To 300 ° C. to 10 11 Ω-cm or less. Therefore, when used from room temperature to a high temperature of 300 ° C., stable operation cannot be obtained, and there is a problem that the operating temperature condition is limited. Further, at room temperature or lower, there is a drawback that AlN alone cannot be used as a resistor having an appropriate resistance because it has a high resistance.

【0006】また、導電性材料を加えることにより電気
抵抗を制御する方法においては、導電性材料自体の特性
により、絶縁性セラミックスが本来有する特性が損なわ
れるなどの問題があった。例えば、耐食性や耐久性に欠
けたり、窒化アルミニウムの特性が劣化したりした。
Further, in the method of controlling the electric resistance by adding the conductive material, there is a problem that the characteristics originally possessed by the insulating ceramics are impaired due to the characteristics of the conductive material itself. For example, the corrosion resistance and durability were poor, and the properties of aluminum nitride were deteriorated.

【0007】[0007]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して特に電気抵抗が1013Ω−cm以下のセラ
ミック抵抗体としてその組成および組織の観点から検討
を重ねた結果、例えば化学気相合成法により形成された
窒化アルミニウムを主成分とする絶縁体中に周期律表第
2b族元素族の元素を0.005〜25原子%含有さ
せ、そして、その元素を窒化アルミニウム結晶中に固溶
させて窒化アルミニウムの格子定数を特定の範囲に制御
することによって、絶縁層の体積固有抵抗が1013Ω−
cm以下の範囲に調整でき、かつ温度変化が小さく広い
温度域において安定した材料特性が得られることを見い
だし本発明に至った。
The inventors of the present invention have made repeated studies on the above problems from the viewpoints of composition and structure as a ceramic resistor having an electric resistance of 10 13 Ω-cm or less. For example, an insulator mainly composed of aluminum nitride formed by a chemical vapor deposition method contains 0.005 to 25 atomic% of an element of the group 2b element group of the periodic table, and the element is an aluminum nitride crystal. The volume resistivity of the insulating layer is 10 13 Ω− by controlling the lattice constant of aluminum nitride to be in a specific range by making a solid solution therein.
It has been found that the material properties can be adjusted to a range of cm or less, the temperature change is small, and stable material properties can be obtained in a wide temperature range, and the present invention has been accomplished.

【0008】即ち、本発明のセラミック抵抗体は、窒化
アルミニウム結晶相を主体とするセラミック抵抗体であ
って、該抵抗体中に周期律表第2b族元素が0.005
〜25原子%存在し、前記結晶相における格子定数がa
軸で0.003〜0.025オングストローム、c軸で
0.005〜0.050オングストロームだけシフトし
た値でであるとともに、25℃における体積固有抵抗が
1013Ω−cm以下であることを特徴とするものであ
る。
That is, the ceramic resistor of the present invention is a ceramic resistor mainly composed of an aluminum nitride crystal phase, and the element of Group 2b of the periodic table is 0.005 in the resistor.
.About.25 atomic%, and the lattice constant in the crystal phase is a
It is a value shifted by 0.003 to 0.025 angstrom on the axis and 0.005 to 0.050 angstrom on the c-axis, and the volume resistivity at 25 ° C. is 10 13 Ω-cm or less. To do.

【0009】以下、本発明を詳述する。本発明における
セラミック抵抗体は、窒化アルミニウムを主体とするも
のであるが、組成上、周期律表第2b族元素を0.00
5〜25原子%含有するものである。この周期律表第2
b族元素量は、窒化アルミニウムに対して導電性を付与
するための重要な元素であり、この元素量が0.005
原子%より少ないと所望の抵抗が得られず、25原子%
を越えると、他の結晶相が生成しやすくなり抵抗制御が
難しくなり、また薄膜においては剥離やクラックが発生
しやすくなる。なお、周期律表第2b族元素とは、具体
的にはZn、Cd、Hgであり、特にZnとCdが成膜
性の点で望ましい。
The present invention will be described in detail below. The ceramic resistor in the present invention is mainly composed of aluminum nitride, but has a composition of 0.002 elements of Group 2b of the periodic table.
The content is 5 to 25 atom%. This Periodic Table No. 2
The b-group element amount is an important element for imparting conductivity to aluminum nitride, and the element amount is 0.005
If it is less than atomic%, the desired resistance cannot be obtained, and it is 25 atomic%.
If it exceeds the range, another crystal phase is likely to be generated, resistance control becomes difficult, and peeling and cracks are likely to occur in the thin film. The elements of Group 2b of the Periodic Table are Zn, Cd, and Hg, and Zn and Cd are particularly preferable in terms of film forming property.

【0010】また、このセラミック抵抗体は、組織上、
窒化アルミニウム結晶を主体とするものであるが、この
抵抗体中の周期律表第2b族元素の一部は窒化アルミニ
ウム結晶中に固溶するが、この結晶中に固溶しきれない
周期律表第2b族元素により周期律表第2b族の窒化物
等の結晶相が20重量%以下の割合で存在する場合もあ
る。また、窒化アルミニウム結晶は、周期律表第2b族
元素の固溶により格子定数が窒化アルミニウムの格子定
数からa軸0.003〜0.025オングストローム、
c軸で0.005〜0.050オングストロームだけシ
フトした値の範囲にあるもので、窒化アルミニウム単体
からなる結晶の格子定数(a軸3.120オングストロ
ーム、c軸4.994オングストローム)とは明らかに
異なる格子定数を有するものである。
This ceramic resistor is structurally
Although mainly composed of aluminum nitride crystal, a part of the Group 2b element of the periodic table in this resistor is solid-solved in the aluminum nitride crystal, but cannot be completely dissolved in this crystal. There may be a case where a crystal phase such as a nitride of Group 2b of the periodic table is present in a proportion of 20% by weight or less due to the Group 2b element. In addition, the aluminum nitride crystal has a lattice constant of 0.003 to 0.025 angstrom from the lattice constant of aluminum nitride due to the solid solution of the Group 2b element of the periodic table,
It is in the range of values shifted by 0.005 to 0.050 angstroms on the c-axis, and it is clear that the lattice constant of crystals made of aluminum nitride alone (a-axis 3.120 angstroms, c-axis 4.994 angstroms) They have different lattice constants.

【0011】本発明のセラミック抵抗体は、上記の構成
により25℃において1013Ω−cm以下の体積固有抵
抗を有するもので、その下限値は実験での確認では10
6 Ω−cmであった。しかも、この抵抗体は後述する実
施例から明らかなように、室温から300℃までの温度
領域において、25℃の抵抗値に対する変化が3桁以下
の優れた抵抗安定性を有することも大きな特徴である。
また、−100℃でも室温と変わらない抵抗値を有する
ものである。
The ceramic resistor of the present invention has a volume resistivity of 10 13 Ω-cm or less at 25 ° C. with the above-mentioned structure, and its lower limit value is 10 when confirmed by experiments.
It was 6 Ω-cm. Moreover, as is apparent from the examples described later, this resistor has a great feature that it has an excellent resistance stability in which the change with respect to the resistance value at 25 ° C. is 3 digits or less in the temperature range from room temperature to 300 ° C. is there.
Further, it has a resistance value which is not different from room temperature even at -100 ° C.

【0012】本発明のセラミック抵抗体を製造する方法
としては、上記の構成を満足する限りにおいて格別その
製法を限定するものではないが、その製造の容易性の点
で、特に気相成長法が好ましく、具体的には、スパッタ
リング、イオンプレーティングなどの物理気相合成法
(PVD法)や、プラズマCVD、光CVD、MO(M
etal−organic)CVDなどの化学気相合成
法(CVD法)により形成されるが、これらの中でもC
VD法がよい。これらの成膜法によれば、周期律表第2
b族元素を過剰に固溶させた窒化アルミニウムを合成で
き、本発明により採用される周期律表第2b族元素を
0.01〜25原子%含有して窒化アルミニウム結晶の
格子定数の変化したセラミック抵抗体を得ることができ
る。
As a method for manufacturing the ceramic resistor of the present invention, the manufacturing method is not particularly limited as long as the above-mentioned constitution is satisfied, but the vapor phase growth method is particularly preferable in view of the ease of manufacturing. Preferably, specifically, a physical vapor phase synthesis method (PVD method) such as sputtering or ion plating, plasma CVD, photo CVD, MO (M
It is formed by a chemical vapor deposition method (CVD method) such as metal-organic CVD.
The VD method is good. According to these film forming methods,
A ceramic which can synthesize aluminum nitride in which b group element is excessively solid-solved and which contains 0.01 to 25 atom% of Group 2b element of the periodic table adopted by the present invention and whose lattice constant of aluminum nitride crystal is changed. A resistor can be obtained.

【0013】周期律表第2b族元素としてZnを選択
し、CVD法を用いた具体的な製法としては、原料ガス
としてN2 ガス、NH3 ガス、Zn(CH3 2 および
AlCl3 ガスを用い、これらのガスの流量比をN2
AlCl3 =5〜70、Zn(CH3 2 /NH3
0.001〜5、NH3 /AlCl3 =0.1〜10と
し、成膜温度を850℃以上の比較的高めに設定するこ
とにより作製することができる。AlCl3 の代わりに
AlBr3 等のハロゲン化物やトリメチルアルミニウム
等の有機金属を用いることができる。
Zn is selected as a Group 2b element of the periodic table, and a specific manufacturing method using the CVD method is as follows: N 2 gas, NH 3 gas, Zn (CH 3 ) 2 and AlCl 3 gas are used as raw material gases. And the flow rate ratio of these gases is N 2 /
AlCl 3 = 5~70, Zn (CH 3) 2 / NH 3 =
It can be produced by setting 0.001 to 5 and NH 3 / AlCl 3 = 0.1 to 10 and setting the film forming temperature to a relatively high temperature of 850 ° C. or higher. Instead of AlCl 3 , a halide such as AlBr 3 or an organic metal such as trimethylaluminum can be used.

【0014】その他、周期律表第2b族元素含有ガスと
しては、Zn(CH3 2 、Zn(C2 5 2 、Cd
(CH3 2 、Cd(C2 5 2 、Hg(CH3 2
などが挙げられる。
In addition, as a gas containing a Group 2b element of the periodic table, Zn (CH 3 ) 2 , Zn (C 2 H 5 ) 2 and Cd are used.
(CH 3 ) 2 , Cd (C 2 H 5 ) 2 , Hg (CH 3 ) 2
And the like.

【0015】一方、膜を形成する基体としては、あらゆ
るものが使用できるが、具体的にはAl2 3 、AlO
N、Si3 4 、ダイヤモンド、ムライト、ZrO2
W、Mo、Mo−Mn、TiN、SiC、WC、カーボ
ンやSi半導体材料(n型あるいはp型)も挙げられる
が、これらの中でも室温から800℃までの熱膨張係数
が4.0〜8.0×10-6/℃、特に5.0〜7.4×
10-6/℃のものが密着性を考慮すると最も望ましい。
On the other hand, as the substrate for forming the film, any substrate can be used, but specifically, Al 2 O 3 and AlO are used.
N, Si 3 N 4 , diamond, mullite, ZrO 2 ,
W, Mo, Mo-Mn, TiN, SiC, WC, carbon, and Si semiconductor materials (n-type or p-type) are also included, and among these, the coefficient of thermal expansion from room temperature to 800 ° C is 4.0 to 8. 0 × 10 −6 / ° C., especially 5.0 to 7.4 ×
The one having a temperature of 10 −6 / ° C. is most desirable in consideration of the adhesiveness.

【0016】[0016]

【作用】通常、窒化アルミニウムは体積固有抵抗1014
Ω−cmを越える高絶縁体であるが、その窒化アルミニ
ウム結晶中に周期律表第2b族元素を固溶させてアルミ
ニウムまたは窒素を周期律表第2b族元素で置換させる
と、アクセプターとして導電性に寄与し結晶の導電率を
高める作用となすものと考えられる。また、窒化アルミ
ニウム結晶への周期律表第2b族元素の固溶は格子定数
の変化により判定できる。例えば、周期律表第2b族元
素を含まない窒化アルミニウムの格子定数はa軸で3.
120オングストローム、c軸で4.994オングスト
ロームであるが、周期律表第2b族元素が固溶するに従
い、a軸、c軸とも変化する。そして格子定数をこれら
の値からa軸で0.003〜0.025オングストロー
ム、c軸で0.005〜0.050オングストロームだ
けシフトした値にすると体積固有抵抗を1013Ω−cm
以下に制御することができる。
[Function] Normally, aluminum nitride has a volume resistivity of 10 14
Although it is a high insulator exceeding Ω-cm, when an element of Group 2b of the periodic table is dissolved in the aluminum nitride crystal to replace aluminum or nitrogen with an element of the Group 2b of the periodic table, conductivity is obtained as an acceptor. Is considered to contribute to the increase of the conductivity of the crystal. The solid solution of the Group 2b element of the periodic table in the aluminum nitride crystal can be determined by the change in the lattice constant. For example, the lattice constant of aluminum nitride containing no Group 2b element of the periodic table is 3.
It is 120 angstroms and 4.994 angstroms on the c-axis, but as the Group 2b element of the periodic table becomes a solid solution, both the a-axis and the c-axis change. Then, when the lattice constant is shifted from these values by 0.003 to 0.025 angstrom on the a-axis and 0.005 to 0.050 angstrom on the c-axis, the volume resistivity is 10 13 Ω-cm.
The following can be controlled.

【0017】しかも本発明のセラミック抵抗体は温度に
対する抵抗変化が小さく、例えば、一般的窒化アルミニ
ウムの場合、室温(25℃)から300℃までの温度範
囲では1016Ω−cmから1012Ω−cmまで変化する
のに対して、本発明のセラミック抵抗体では例えば、1
12Ω−cmから1010Ω−cmまでと3桁以下しか変
化しないという特徴を有するものである。
Further, the ceramic resistor of the present invention has a small resistance change with temperature. For example, in the case of general aluminum nitride, in the temperature range from room temperature (25 ° C.) to 300 ° C., 10 16 Ω-cm to 10 12 Ω- While it varies up to cm, in the ceramic resistor of the present invention, for example, 1
It has a feature that it changes from 0 12 Ω-cm to 10 10 Ω-cm by 3 digits or less.

【0018】従って、広い温度範囲にわたって安定した
抵抗が必要とされる半導体製造装置中の静電チャックな
どの用途に対しては特に有用性が高いものである。
Therefore, it is particularly useful for applications such as electrostatic chucks in semiconductor manufacturing equipment which require stable resistance over a wide temperature range.

【0019】[0019]

【実施例】【Example】

実施例1 窒化アルミニウム質焼結体からなる基体表面に化学気相
合成法によってAlN膜を形成した。AlN膜の成膜
は、基体を外熱式によって900℃に加熱した炉に入
れ、窒素を8SLM、アンモニアを1SLM、0〜0.
5SLMの周期律表第2b族元素含有ガスを流して圧力
を50torrとした。さらに、塩化アルミニウム(A
lCl3 )を0.3SLMの流量で導入して反応を開始
し、400μmの膜厚の膜を形成した。
Example 1 An AlN film was formed on the surface of a substrate made of an aluminum nitride sintered body by a chemical vapor deposition method. The AlN film is formed by placing the substrate in a furnace heated to 900 ° C. by an external heating method, nitrogen 8 SLM, ammonia 1 SLM, 0 to 0.
A gas containing an element of Group 2b of the periodic table of 5 SLM was caused to flow to a pressure of 50 torr. Furthermore, aluminum chloride (A
lCl 3 ) was introduced at a flow rate of 0.3 SLM to start the reaction to form a film having a thickness of 400 μm.

【0020】得られた膜に対してX線回折法でSi(S
RM640b)を標準試料として角度補正を行い、ピー
クトップ法により算出した。測定面指数は(100)、
(002)、(101)、(102)、(110)、
(103)、(112)、(004)であった。
The obtained film was analyzed by X-ray diffraction to obtain Si (S
The angle was corrected using RM640b) as a standard sample, and the peak top method was used for calculation. The measurement plane index is (100),
(002), (101), (102), (110),
The values were (103), (112), and (004).

【0021】[0021]

【表1】 [Table 1]

【0022】表1の結果から明らかなように、窒化アル
ミニウム中の周期律表第2b族元素量および格子定数は
周期律表第2b族元素含有ガスの流量によって変化し、
周期律表第2b族元素含有ガスを全く導入せず、周期律
表第2b族元素も不純物レベルの0.0001原子%の
場合には、体積固有抵抗も9×1015Ω−cmと高絶縁
性であったが、周期律表第2b族元素含有ガスの流量を
徐々に増加させるに伴い、膜中の第2b族元素量が増加
するとともに、格子定数も次第に小さくなり、体積固有
抵抗も1.2×106 Ω−cmまで低下した。なお、得
られた窒化アルミニウム膜はX線回折測定から(00
2)に配向するAlN膜であった。
As is clear from the results shown in Table 1, the amount of the Group 2b element in the periodic table and the lattice constant in aluminum nitride vary depending on the flow rate of the gas containing the Group 2b element in the periodic table,
When the group 2b element-containing gas of the periodic table was not introduced at all and the group 2b element of the periodic table was also 0.0001 atom% of the impurity level, the volume resistivity was 9 × 10 15 Ω-cm and high insulation was achieved. However, as the flow rate of the group 2b element-containing gas of the periodic table gradually increases, the amount of the group 2b element in the film increases, the lattice constant also gradually decreases, and the volume resistivity becomes 1 It decreased to 0.2 × 10 6 Ω-cm. Note that the obtained aluminum nitride film was (00
It was an AlN film oriented in 2).

【0023】[0023]

【発明の効果】以上詳述した通り、本発明によれば、窒
化アルミニウム中の周期律表第2b族元素量及び格子定
数を制御することにより、室温における体積固有抵抗が
1013Ω−cm以下で、−100℃から300℃までの
温度における抵抗変化の小さい抵抗体を得ることができ
る。
As described above in detail, according to the present invention, the volume resistivity at room temperature is 10 13 Ω-cm or less by controlling the amount of the Group 2b element of the periodic table and the lattice constant in aluminum nitride. Thus, it is possible to obtain a resistor whose resistance change is small at temperatures from −100 ° C. to 300 ° C.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】窒化アルミニウム結晶相を主体とするセラ
ミック抵抗体であって、該抵抗体中に周期律表第2b族
元素が0.005〜25原子%存在し、前記結晶相にお
ける格子定数が窒化アルミニウム単相の格子定数からa
軸で0.003〜0.025オングストローム、c軸で
0.005〜0.050オングストロームだけシフトし
た値であるとともに、25℃における体積固有抵抗が1
13Ω−cm以下であることを特徴とするセラミック抵
抗体。
1. A ceramic resistor having an aluminum nitride crystal phase as a main component, wherein 0.005 to 25 atom% of a Group 2b element of the periodic table is present in the resistor, and the lattice constant in the crystal phase is From the lattice constant of aluminum nitride single phase a
The value is shifted by 0.003 to 0.025 angstrom on the axis and 0.005 to 0.050 angstrom on the c axis, and the volume resistivity at 25 ° C. is 1
A ceramic resistor having a resistance of 0 13 Ω-cm or less.
【請求項2】前記抵抗体が化学気相合成法により形成さ
れたものである請求項1記載のセラミック抵抗体。
2. The ceramic resistor according to claim 1, wherein the resistor is formed by a chemical vapor deposition method.
JP29425694A 1994-01-09 1994-11-29 Ceramic resistor Expired - Fee Related JP3145588B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29425694A JP3145588B2 (en) 1994-11-29 1994-11-29 Ceramic resistor
US08/385,774 US5668524A (en) 1994-02-09 1995-02-09 Ceramic resistor and electrostatic chuck having an aluminum nitride crystal phase
US08/841,605 US5777543A (en) 1994-01-09 1997-04-30 Ceramic resistor and electrostatic chuck having an aluminum nitride crystal phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29425694A JP3145588B2 (en) 1994-11-29 1994-11-29 Ceramic resistor

Publications (2)

Publication Number Publication Date
JPH08153603A true JPH08153603A (en) 1996-06-11
JP3145588B2 JP3145588B2 (en) 2001-03-12

Family

ID=17805371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29425694A Expired - Fee Related JP3145588B2 (en) 1994-01-09 1994-11-29 Ceramic resistor

Country Status (1)

Country Link
JP (1) JP3145588B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225249B1 (en) 1998-07-08 2001-05-01 Toshiba Ceramics Co., Ltd. Aluminum nitride sintered body, method of producing thereof, electrostatic chuck, susceptor, dummy wafer, clamp ring and particle catcher using the same
US7929269B2 (en) 2008-09-04 2011-04-19 Momentive Performance Materials Inc. Wafer processing apparatus having a tunable electrical resistivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225249B1 (en) 1998-07-08 2001-05-01 Toshiba Ceramics Co., Ltd. Aluminum nitride sintered body, method of producing thereof, electrostatic chuck, susceptor, dummy wafer, clamp ring and particle catcher using the same
US7929269B2 (en) 2008-09-04 2011-04-19 Momentive Performance Materials Inc. Wafer processing apparatus having a tunable electrical resistivity

Also Published As

Publication number Publication date
JP3145588B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
US5777543A (en) Ceramic resistor and electrostatic chuck having an aluminum nitride crystal phase
EP0899358B1 (en) Silicon carbide fabrication
JP2004319737A (en) Material for thermistor, and method for manufacturing the same
US20090111678A1 (en) High resistivity silicon carbide
JP3145574B2 (en) Ceramic resistor
KR101628691B1 (en) Control method of electrical conductivity for CVD SiC
US5350720A (en) Triple-layered ceramic heater
JP3273110B2 (en) Ceramic resistor
JP3145575B2 (en) Ceramic resistor
JP3145588B2 (en) Ceramic resistor
JPH08102485A (en) Electrostatic chuck
US6365460B1 (en) Production of silicon carbide bodies
JP3297571B2 (en) Electrostatic chuck
JP2620293B2 (en) Diamond modification method
JP3152857B2 (en) Electrostatic chuck
JPH0855899A (en) Electrostatic chuck
JPH06163201A (en) Resistance thin film
JPH04128369A (en) Target for sputtering of silicon carbide and its production
JPH03252307A (en) Polycrystal silicon carbide
US6479174B1 (en) Silicon carbide body
US20240052521A1 (en) Methods of forming silicon carbide coated base substrates at multiple temperatures
JPH07153370A (en) Discharge tube
WO2023171270A1 (en) Polycrystalline sic molded article and method for producing same
JPH0786379A (en) Semiconductor manufacturing suscepter
JPH06168883A (en) Formation of polycrystal silicon thin film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090105

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees