JPH0815293A - Flow velocity measurement device for liquid - Google Patents

Flow velocity measurement device for liquid

Info

Publication number
JPH0815293A
JPH0815293A JP14502394A JP14502394A JPH0815293A JP H0815293 A JPH0815293 A JP H0815293A JP 14502394 A JP14502394 A JP 14502394A JP 14502394 A JP14502394 A JP 14502394A JP H0815293 A JPH0815293 A JP H0815293A
Authority
JP
Japan
Prior art keywords
sensor
liquid
rod
flow velocity
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14502394A
Other languages
Japanese (ja)
Inventor
Masahiro Toki
岐 正 弘 土
Toshiaki Kawase
瀬 敏 昭 川
Bunichi Sato
藤 文 一 佐
Kazuyoshi Machida
田 和 喜 町
Mitsuo Matsumoto
本 光 雄 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14502394A priority Critical patent/JPH0815293A/en
Publication of JPH0815293A publication Critical patent/JPH0815293A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To eliminate the need of immersing a sensor section in liquid and preparing a calibration curve therein, and easily find a flow velocity value, regardless of the type of the liquid as a measurement object. CONSTITUTION:This device consists of a rod 1 fixed to a pillar 8 in a downward direction, and a sensor 3 fixed to the upper section of the rod 1. The sensor 3 has strain signal generators 5 and two of the generators 5 are arranged in two tiers at 90-degree turned positions. The cavity sections of the generators 5 are provided respectively with a bulge section formed out of four curvatures up and down, and right and left. In addition, the device features that a strain gauge 6 is attached to the side thereof adjacent to respective bulge sections.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液体の流速測定装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid flow velocity measuring device.

【0002】[0002]

【従来技術】液体の流速を測定する装置、例えば溶融金
属の流速測定装置としては、電磁流速計,超音波流速計
等が挙げられる。電磁流速計は特開昭55−12815
6号公報に開示されたものがあり、そのセンサー先端部
の断面図を図6に示す。この流速計は、コイルによって
発生した磁界と溶融金属の流れとの誘導作用によって、
検出器周囲の溶融金属の流速値を検出するものである。
2. Description of the Related Art As a device for measuring the flow velocity of liquid, for example, a device for measuring the flow velocity of molten metal, an electromagnetic velocity meter, an ultrasonic velocity meter and the like can be mentioned. The electromagnetic velocity meter is disclosed in JP-A-55-12815.
There is one disclosed in Japanese Patent No. 6 and a sectional view of the tip of the sensor is shown in FIG. This anemometer is induced by the magnetic field generated by the coil and the flow of molten metal,
The flow velocity value of the molten metal around the detector is detected.

【0003】また超音波流速計は、特開昭56−706
8号公報に開示されたものがあり、この流速計は溶融金
属中に超音波を放射し、溶融金属の流れが音速に与える
変化から溶融金属の流速値を求めるものである。
An ultrasonic velocity meter is disclosed in Japanese Patent Laid-Open No. 56-706.
There is one disclosed in Japanese Patent Publication No. 8 and this velocimeter radiates ultrasonic waves into the molten metal and obtains the flow velocity value of the molten metal from the change in the sonic velocity due to the flow of the molten metal.

【0004】[0004]

【発明が解決しようとする課題】上記図6に示した電磁
流速計の構造は、流速値を検出するセンサー部分の第1
の電極12及び第2の電極14が直接溶融金属19と接
する構造であるため、電極の耐熱温度に限界があり、溶
鋼の様な高温の溶融金属の流速測定には使用できない。
The structure of the electromagnetic anemometer shown in FIG. 6 has the first sensor part for detecting the velocity value.
Since the electrode 12 and the second electrode 14 are in direct contact with the molten metal 19, there is a limit to the heat resistant temperature of the electrode, and it cannot be used for measuring the flow velocity of a molten metal at high temperature such as molten steel.

【0005】また超音波流速計は、溶融金属中に超音波
を放射することから管内流れの様な線流速を測定する場
合には有効であるが、流れに分布があったり偏流や旋回
流になった場合には使用することができない。
The ultrasonic velocity meter is effective for measuring a linear velocity such as a flow in a pipe because it radiates an ultrasonic wave into molten metal, but there is a distribution in the flow or a drift or a swirling flow. When it becomes, it cannot be used.

【0006】そこで発明者等は支柱に下向きに固定した
棒とその上方に歪みゲージを貼ったセンサーで構成さ
れ、センサーには起歪体を2つ、90°向きを変えた位
置に2段に設け、1つの起歪体に複数枚の歪みゲージを
貼ったことを特徴とする液体の流速測定装置を提案済み
である(特願平4−348926号)。
Therefore, the inventors of the present invention are composed of a rod fixed downward to a support and a sensor having a strain gauge attached above the rod. The sensor has two strain-generating bodies, which are arranged in two stages at 90 ° -turned positions. It has been proposed to provide a liquid flow velocity measuring device characterized in that a plurality of strain gauges are attached to one strain-generating body (Japanese Patent Application No. 4-348926).

【0007】しかし前述した特願平4−348926号
の液体の流速測定装置は、液体の種類によって棒が受け
る力が非常に弱い場合があり、測定値の評価が難しい場
合があることが考えられた。
However, in the liquid velocity measuring device of Japanese Patent Application No. 4-348926 mentioned above, the force received by the rod may be very weak depending on the type of liquid, and it may be difficult to evaluate the measured value. It was

【0008】そのため発明者等は、液体の流速測定装置
においてセンサー検出感度向上のため、最適な起歪体構
造について検討し、本発明を完成させた。
Therefore, the inventors of the present invention have completed the present invention by studying the optimum flexure body structure in order to improve the sensor detection sensitivity in a liquid flow velocity measuring device.

【0009】[0009]

【課題を解決するための手段】すなわち本発明は、支柱
に下向きに固定した棒とその上方に歪みゲージを貼った
センサーで構成され、センサーには起歪体を2つ、90
°向きを変えた位置に2段に設け、該起歪体の空洞部は
それぞれ上下左右に4つの曲面で形成した張り出し部を
設け、それぞれの張り出し部と隣接する側面に歪みゲー
ジを貼ったことを特徴とする液体の流速測定装置であ
る。
[Means for Solving the Problems] That is, the present invention comprises a rod fixed downwardly to a column and a sensor having a strain gauge attached above the rod.
Degrees should be provided in two stages at different positions, and the cavity of the strain-flexing body should be provided with overhangs formed by four curved surfaces in the vertical and horizontal directions, and strain gauges should be attached to the side faces adjacent to each overhang. Is a liquid flow velocity measuring device.

【0010】本発明を添付の図面を参照して以下に詳細
に説明する。
The present invention will be described in detail below with reference to the accompanying drawings.

【0011】図1は、本発明の液体の流速測定装置を説
明する概略図である。
FIG. 1 is a schematic view for explaining a liquid flow velocity measuring device of the present invention.

【0012】本発明は、図1に示すように支柱8に下向
きに固定した棒1及びその上方に固定したセンサー3か
ら構成される。棒1は剛体であればどの様な材質でもよ
いが、測定する液体10が高温の溶融金属である場合に
は、耐火物であるほうが望ましい。またセンサー3の材
質は、主にヤング率の小さいアルミニウムを使用する。
As shown in FIG. 1, the present invention comprises a rod 1 fixed downwardly to a column 8 and a sensor 3 fixed above it. The rod 1 may be made of any material as long as it is a rigid body, but when the liquid 10 to be measured is a high temperature molten metal, it is preferably a refractory material. The material of the sensor 3 is mainly aluminum having a small Young's modulus.

【0013】センサー3の正面図を図2に、また図2の
センサー3を90°回転させた正面図を図3に示す。図
2,3で示すように、センサー3には起歪体4と5を9
0°向きを変えた位置に2段に設ける。起歪体4を例に
挙げて説明すると、起歪体4には上下左右に4つの曲面
で形成した張り出し部4−A,4−B,4−C,4−D
を設ける。張り出し部4−A,4−B,4−C,4−D
により、棒1が受けた抗力を該張り出し部と隣接する側
面の位置A,B,C,Dで応力集中する構造にする。位
置A,B,C,Dには、図2,3で示したように歪みゲ
ージ6−A,6−B,6−C,6−Dを貼る。これらの
歪みゲージは、6−Aと6−B,6−Cと6−Dをそれ
ぞれホイートストン・ブリッジ回路に結線し、動歪み計
に接続する。
A front view of the sensor 3 is shown in FIG. 2, and a front view obtained by rotating the sensor 3 of FIG. 2 by 90 ° is shown in FIG. As shown in FIGS. 2 and 3, the sensor 3 is provided with 9 strain elements 4 and 5.
It is installed in two steps at a position where the direction is changed by 0 °. Explaining the flexure element 4 as an example, the flexure element 4 has overhang portions 4-A, 4-B, 4-C, and 4-D formed by four curved surfaces in the vertical and horizontal directions.
To provide. Overhang part 4-A, 4-B, 4-C, 4-D
As a result, the drag force received by the rod 1 is concentrated at the positions A, B, C and D on the side surfaces adjacent to the projecting portion. Strain gauges 6-A, 6-B, 6-C and 6-D are attached to the positions A, B, C and D as shown in FIGS. These strain gauges connect 6-A and 6-B, 6-C and 6-D to a Wheatstone bridge circuit, respectively, and connect them to a dynamic strain gauge.

【0014】起歪体4についての説明をおこなったが、
起歪体5は起歪体4に対して90°向きを変えているだ
けの違いであり張り出し部の構造については起歪体4と
同一である。
Although the flexure element 4 has been described,
The flexure element 5 is different from the flexure element 4 only in that the direction is changed by 90 °, and the structure of the projecting portion is the same as that of the flexure element 4.

【0015】高融点金属の流速を測定する場合は、歪み
ゲージ6の温度上昇及びセンサー3の熱変形を防止する
目的で図1のように耐熱カバー9を使用することが望ま
しい。
When measuring the flow velocity of the refractory metal, it is desirable to use a heat resistant cover 9 as shown in FIG. 1 in order to prevent the temperature rise of the strain gauge 6 and the thermal deformation of the sensor 3.

【0016】[0016]

【作用】本発明の液体の流速測定装置は、液体10中に
棒1を浸漬させ、液体10の流れ11によって受ける抗
力を歪ゲージ6により歪み量として検出する。例とし
て、図1のように左側から流れてくる液体の流速を測定
する場合について、その方法を説明する。棒1は、液体
10の流れ11によって抗力を受け、図2,図3の歪み
ゲージ6−A,6−B,6−C,6−Dの4枚の歪みゲ
ージが、流れ11によって受ける抗力に応じた歪み量を
検出する。歪みゲージ6−Aと6−B及び6−Cと6−
Dはそれぞれ並列に結線することにより、位置ABと位
置CDにおける歪み量が大きくとれるようにする。
In the liquid flow velocity measuring apparatus of the present invention, the rod 1 is immersed in the liquid 10 and the drag force received by the flow 11 of the liquid 10 is detected by the strain gauge 6 as the strain amount. As an example, a method of measuring the flow velocity of the liquid flowing from the left side as shown in FIG. 1 will be described. The rod 1 is subjected to a drag force by the flow 11 of the liquid 10, and the drag force exerted by the flow 11 by the four strain gauges 6-A, 6-B, 6-C and 6-D of FIGS. The amount of distortion corresponding to is detected. Strain gauges 6-A and 6-B and 6-C and 6-
By connecting D in parallel, it is possible to obtain a large amount of distortion at the positions AB and CD.

【0017】歪みゲージ6−Aの測定歪み量をεAとす
ると、εAは理論的に次式で表せる。
If the measured strain amount of the strain gauge 6-A is ε A , ε A can be theoretically expressed by the following equation.

【0018】[0018]

【数1】 [Equation 1]

【0019】また歪みゲージ6−Cでの測定歪み量をε
Cとすると、εCは次式で表せる。
Further, the strain amount measured by the strain gauge 6-C is expressed by ε
If C , ε C can be expressed by the following equation.

【0020】[0020]

【数2】 [Equation 2]

【0021】ここで記号の説明をすると、 F:棒1が流れ11によって受ける抗力 M:棒1と歪みゲージ6間の曲げモーメント V:棒1が抗力Fを受けることによって発生する引張力 T:流れが一様流でない場合に働く棒1のねじりトルク E:センサー3に使用している材質のヤング率 Z:歪みゲージ張り付け位置A,B,C,Dでのセンサ
ー3の断面係数 S:液体10中に浸漬させた部分の棒1の投影断面積 α:棒1及びセンサー3の温度伝導率 β:棒1及びセンサー3の体積膨張係数 To:温度 x:抗力Fを受ける位置から位置CD間の距離 t:位置ABと位置CD間の距離 上述の(1),(2)式の差をとることにより、
Describing the symbols, F: drag force exerted on the rod 1 by the flow 11 M: bending moment between the rod 1 and the strain gauge 6 V: tensile force generated when the rod 1 receives the drag force T: Torsional torque of the rod 1 that works when the flow is not uniform E: Young's modulus of the material used for the sensor 3 Z: Section coefficient of the sensor 3 at the strain gauge attachment positions A, B, C, D S: Liquid projected cross-sectional area of the bar 1 was immersed part in 10 alpha: thermal diffusivity of the bar 1 and the sensor 3 beta: volume expansion coefficient of the rod 1 and the sensor 3 T o: temperature x: position CD from a position for receiving a force F Distance t: Distance between position AB and position CD By taking the difference between the above equations (1) and (2),

【0022】[0022]

【数3】 (Equation 3)

【0023】となり、モーメントMに関係なく棒1が流
れ11によって受ける抗力Fに比例した歪み量のみを検
出することができる。歪みゲージ6−Bの歪み量εB
ついてはεAと、6−Dの歪み量εDについてはεCとほ
ぼ同じ歪み量であることから、εBとεDの関係について
も(3)式が成立する。
Therefore, regardless of the moment M, it is possible to detect only the amount of strain proportional to the drag force F that the rod 1 receives by the flow 11. Since the strain amount ε B of the strain gauge 6-B is almost the same as ε A and the strain amount ε D of 6-D is the same as ε C , the relation between ε B and ε D is also (3). The formula holds.

【0024】(3)式から、起歪体4,5の構造によっ
て変化するのは、位置ABと位置CD間の距離tと断面
係数Zであるが、それらが一定の条件でも本発明のよう
に起歪体4,5に張り出し部を設けることで、位置A,
B,C,Dで応力が集中し、(3)式で計算される以上
の歪み量が期待できる。
From the equation (3), it is the distance t between the position AB and the position CD and the section coefficient Z that change depending on the structure of the strain generating elements 4 and 5. By providing the flexures 4 and 5 with overhanging portions,
The stress concentrates at B, C, and D, and the strain amount more than that calculated by the equation (3) can be expected.

【0025】歪み量を流れ11の流速値に換算する場合
は、まずオフラインで棒1がうける荷重値と歪み量との
相関を調査しておく。本発明の液体の流速測定装置は、
前述したように棒1が受ける抗力と歪みゲージ6間のモ
ーメントの影響を受けないことから、液体中にて検定を
おこなう必要がない。
When the strain amount is converted into the flow velocity value of the flow 11, first, the correlation between the load value received by the rod 1 and the strain amount is investigated off-line. The liquid flow velocity measuring device of the present invention,
As described above, since there is no influence of the drag force exerted on the rod 1 and the moment between the strain gauges 6, it is not necessary to perform the test in a liquid.

【0026】オフラインで検定した結果によって、歪み
量から棒1が受ける抗力を求めたのち、流体力学理論か
ら流れ11の流速値Uを算出する。抗力を流速値Uに換
算する場合は、以下の式を使用する。
After the resistance applied to the rod 1 is obtained from the amount of strain based on the result of the off-line verification, the flow velocity value U of the flow 11 is calculated from the hydrodynamic theory. When converting the drag force into the flow velocity value U, the following equation is used.

【0027】[0027]

【数4】 [Equation 4]

【0028】ここで記号を説明をすると、 F:棒1が流れ11によって受ける抗力 ρ:液体10の密度 S:液体10中に浸漬させた部分の棒1の投影断面積 Cd:棒1の断面形状及び流れ11のレイノルズ数によ
って決定する抵抗係数 上記の説明は、図1の左側からの流れ11に対するもの
であるが、センサーは2段の起歪体4,5を90°向き
を変えた形でもつことから、液体10の流れの向きも併
せて測定することができる。
Describing the symbols here, F: drag force exerted on the rod 1 by the flow 11 ρ: density of the liquid 10 S: projected cross-sectional area of the rod 1 immersed in the liquid 10 Cd: cross section of the rod 1 The shape and resistance coefficient determined by the Reynolds number of the flow 11 The above description is for the flow 11 from the left side of FIG. 1, but the sensor has a shape in which the two-stage flexure elements 4 and 5 are turned by 90 °. Since it has the same value as above, the direction of the flow of the liquid 10 can also be measured together.

【0029】[0029]

【実施例】本発明による流速測定装置の検出感度は、張
り出し部4−A,4−B,4−C,4−Dの形状が大き
く左右する。そこで起歪体4の形状を変化させたテスト
を実施し、棒1に荷重をかけたときの歪みゲージ6−
A,6−B,6−C,6−Dから得られる歪み量を測定
した。
The detection sensitivity of the flow velocity measuring device according to the present invention greatly depends on the shapes of the overhanging portions 4-A, 4-B, 4-C and 4-D. Therefore, a test was performed in which the shape of the flexure element 4 was changed, and a strain gauge 6-when a load was applied to the rod 1.
The strain amount obtained from A, 6-B, 6-C, 6-D was measured.

【0030】テストで使用したセンサー3の構造を図4
の(a)および(b)に示す。張り出し部と隣接する側
面との距離d及び位置ABと位置CDとの距離tは同一
としてセンサーを製作し、本発明に係わる張り出し部の
効果を調査した。
The structure of the sensor 3 used in the test is shown in FIG.
(A) and (b). The sensor was manufactured with the same distance d between the projecting portion and the adjacent side surface and the distance t between the position AB and the position CD, and the effect of the projecting portion according to the present invention was investigated.

【0031】テスト結果を図5に示す。この結果から、
図4の(b)の形状の方が約2倍の歪み量が得られ、本
発明によりセンサーの検出感度が向上することが判っ
た。
The test results are shown in FIG. from this result,
It was found that the shape of FIG. 4 (b) obtained a strain amount about twice that of the present invention, and that the present invention improves the detection sensitivity of the sensor.

【0032】[0032]

【発明の効果】本発明の液体の流速測定装置は、液体に
作用させる棒と歪みを検知するセンサーが離れていて
も、モーメントの影響を受けないことから、棒が受ける
抗力のみを正確に測定することができ、センサーは直接
液体に浸漬させる必要がないため、測定する液体は水,
高融点の溶融金属等さまざまなものに適用できる。
The liquid flow velocity measuring device of the present invention is not affected by the moment even if the rod acting on the liquid and the sensor for detecting the strain are apart from each other, so that only the drag force applied to the rod is accurately measured. Since the sensor does not have to be directly immersed in the liquid, the liquid to be measured is water,
It can be applied to various materials such as high melting point molten metal.

【0033】オフラインで検定をおこなう際には、従来
のように流速を測定する液体の種類,既知の流速値にお
ける較正をおこなう必要がない。流速値を算出するため
に必要なのは液体の密度のみであり、非常に簡便に検量
線を作成することができる。またセンサーは2つの起歪
部を90°向きを変えてもつことにより、液体の流れの
向きも併せて測定することができ、かつ特願平4−34
8926号で提案した液体の流速測定装置よりも更にセ
ンサーの検出感度が向上した。
When performing the off-line verification, it is not necessary to perform calibration with the kind of liquid for measuring the flow velocity and the known flow velocity value as in the conventional case. Only the density of the liquid is needed to calculate the flow velocity value, and a calibration curve can be created very easily. In addition, the sensor has two strain-flexing parts with their directions changed by 90 °, so that the direction of the flow of the liquid can also be measured together.
The detection sensitivity of the sensor is further improved as compared with the liquid flow velocity measuring device proposed in 8926.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の正面図であり、外ケ−ス
は断面を示す。
FIG. 1 is a front view of an embodiment of the present invention, and an outer case shows a cross section.

【図2】 図1に示すセンサー3ねみを示す拡大正面図
である。
FIG. 2 is an enlarged front view showing a sensor 3 shown in FIG.

【図3】 図1に示すセンサー3ねみを示す拡大側面図
である。
FIG. 3 is an enlarged side view showing a rod of the sensor 3 shown in FIG.

【図4】 (a),(b)は起歪体構造を変化させたテ
ストを実施した時に使用したセンサーの正面図であり、
(a)は比較例を、(b)は本発明の一実施例を示す。
4 (a) and 4 (b) are front views of a sensor used when a test in which a flexure structure is changed is performed,
(A) shows a comparative example, (b) shows an example of the present invention.

【図5】 図4の(a),(b)に示すセンサーで棒に
掛かる荷重と歪みゲージで得られる歪み量との関係を調
査した結果を示すグラフであり、破線は図4の(a)に
示す比較例のものを、実線は図4の(b)に示す本発明
の一実施例のものを示す。
5 is a graph showing the results of an investigation of the relationship between the load applied to the rod by the sensor shown in FIGS. 4 (a) and 4 (b) and the strain amount obtained by the strain gauge, and the broken line in FIG. 4), the solid line shows the example of the present invention shown in FIG. 4B.

【図6】 特開昭55−128156号公報に開示され
た電磁流量計の構造を示した断面図である。
FIG. 6 is a sectional view showing a structure of an electromagnetic flowmeter disclosed in Japanese Patent Laid-Open No. 55-128156.

【符号の説明】[Explanation of symbols]

1:棒 2:治具 3:センサー 4,5:起歪体 6:歪みゲージ 7:治具 8:支柱 9:耐熱カバー 10:液体 11:液体の流
れ 12:第1の電極 13:絶縁筒 14:第2の電極 15:コア 16:コイル 17:充填剤 18:導線 19:溶融金属
1: Bar 2: Jig 3: Sensor 4,5: Strain element 6: Strain gauge 7: Jig 8: Strut 9: Heat-resistant cover 10: Liquid 11: Liquid flow 12: First electrode 13: Insulating cylinder 14: 2nd electrode 15: Core 16: Coil 17: Filler 18: Conductive wire 19: Molten metal

フロントページの続き (72)発明者 町 田 和 喜 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 松 本 光 雄 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内Front page continuation (72) Inventor Machida Kazuki Kimitsu 1 Kimitsu, Nippon Steel Co., Ltd. Kimitsu Steel Works (72) Inventor Mitsuo Matsumoto 1 Kimitsu City Kimitsu Shin Nippon Steel Co., Ltd. Tsu Steel Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】支柱に下向きに固定した棒とその上方に歪
みゲージを貼ったセンサーで構成され、センサーには起
歪体を2つ、90°向きを変えた位置に2段に設け、該
起歪体の空洞部はそれぞれ上下左右に4つの曲面で形成
した張り出し部を設け、それぞれの張り出し部と隣接す
る側面に歪みゲージを貼ったことを特徴とする液体の流
速測定装置。
1. A bar comprising a rod fixed downward to a column and a sensor having a strain gauge attached above the rod. The sensor is provided with two flexures, which are provided in two stages at 90 ° -turned positions. The liquid flow velocity measuring device is characterized in that the cavity portion of the flexure element is provided with protruding portions formed of four curved surfaces in the vertical and horizontal directions, and a strain gauge is attached to a side surface adjacent to each protruding portion.
JP14502394A 1994-06-27 1994-06-27 Flow velocity measurement device for liquid Withdrawn JPH0815293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14502394A JPH0815293A (en) 1994-06-27 1994-06-27 Flow velocity measurement device for liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14502394A JPH0815293A (en) 1994-06-27 1994-06-27 Flow velocity measurement device for liquid

Publications (1)

Publication Number Publication Date
JPH0815293A true JPH0815293A (en) 1996-01-19

Family

ID=15375646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14502394A Withdrawn JPH0815293A (en) 1994-06-27 1994-06-27 Flow velocity measurement device for liquid

Country Status (1)

Country Link
JP (1) JPH0815293A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014079181A1 (en) * 2012-11-26 2014-05-30 宝山钢铁股份有限公司 Device and method for continuously measuring flow rate near liquid steel surface
WO2014079180A1 (en) * 2012-11-26 2014-05-30 宝山钢铁股份有限公司 Device and method for measuring flow rate near liquid steel surface

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014079181A1 (en) * 2012-11-26 2014-05-30 宝山钢铁股份有限公司 Device and method for continuously measuring flow rate near liquid steel surface
WO2014079180A1 (en) * 2012-11-26 2014-05-30 宝山钢铁股份有限公司 Device and method for measuring flow rate near liquid steel surface
CN103837698A (en) * 2012-11-26 2014-06-04 宝山钢铁股份有限公司 Continuous measurement device and method of flow velocity near liquid steel surface
EP2924442A4 (en) * 2012-11-26 2016-09-28 Baoshan Iron & Steel Device and method for continuously measuring flow rate near liquid steel surface
US9631958B2 (en) 2012-11-26 2017-04-25 Baoshan Iron & Steel Co., Ltd. Device for measuring flow rate of steel melt near a surface of the steel melt
US9630242B2 (en) 2012-11-26 2017-04-25 Baoshan Iron & Steel Co., Ltd. Device and method for continuously measuring flow rate near liquid steel surface
EP2924443A4 (en) * 2012-11-26 2017-07-12 Baoshan Iron & Steel Co., Ltd. Device and method for measuring flow rate near liquid steel surface

Similar Documents

Publication Publication Date Title
CA1095095A (en) Load cell
US4616511A (en) Tactile sensor
US4738140A (en) Apparatus for performing pressure, normal force and bending measurements on pipelines
US3411348A (en) Electronic dynamometer
US3592055A (en) Directional sensor
JPS5812525B2 (en) Vibrating wire strain gauge
JPS62273423A (en) Measured value detector
JPH0815293A (en) Flow velocity measurement device for liquid
JPH10502736A (en) Force measuring device
SE528554C2 (en) Mechanical force e.g. force on paper, measuring device for e.g. load cell, has two force receiving elements, transducer and sensor e.g. strain gauge, where sensor has measuring body with four through holes
US6684715B1 (en) Coriolis mass flowmeter with improved accuracy and simplified instrumentation
JPH06324065A (en) Measuring apparatus for flow velocity of liquid
US4002934A (en) Sensitive element of piezooptic measuring converter
JP3477837B2 (en) Magnet position measurement method
JPH0862061A (en) Detecting device for strain
JPH03277973A (en) Semiconductor current meter
JP2670738B2 (en) Method and apparatus for measuring molding characteristics of polymer materials
CN100442022C (en) Flow sensor
JPH04109140A (en) Corrosion sensor with stress detection function
JPH02159531A (en) Measurement of change in deflection shape for construction
JPS6244343Y2 (en)
JP2000275018A (en) Method and apparatus for measuring deformation
KR20060055682A (en) Strain guage sensor
JPH01107113A (en) Vortex flowmeter
JPH0283417A (en) Flowmeter for coke oven

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904