JPH08152292A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH08152292A
JPH08152292A JP32149894A JP32149894A JPH08152292A JP H08152292 A JPH08152292 A JP H08152292A JP 32149894 A JP32149894 A JP 32149894A JP 32149894 A JP32149894 A JP 32149894A JP H08152292 A JPH08152292 A JP H08152292A
Authority
JP
Japan
Prior art keywords
refrigerant
core
heat exchanger
tube
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32149894A
Other languages
Japanese (ja)
Inventor
Seiji Kamata
精二 鎌田
Masanao Ando
昌尚 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP32149894A priority Critical patent/JPH08152292A/en
Publication of JPH08152292A publication Critical patent/JPH08152292A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE: To eliminate deterioration of the performance of an aircraft when a heat exchanger is used for the condenser of the air conditioner of the aircraft by so forming a channel area of a refrigerant side as to be altered in the exchanger having a heat transfer unit between a refrigerant channel and a refrigerant cooling fluid channel. CONSTITUTION: A heat exchanger 1 comprises a core 2 for heat exchanging, an inlet 3 for introducing refrigerant to the core 2, a case 4 for covering the core 2 and the inlet 3, and a partition plate 5 for partitioning the core 2 side and the inlet 3 side. The core 2 has a plurality of refrigerant channels 6a to 6e and refrigerant cooling air channels 7a to 7f. The inlet 3 has a cylindrical tube 11, and a columnar moving unit 15 is so engaged with the tube 11 as to be axially movable. The unit 15 is moved via a rack 16 by the rotation of a pinion 17 by a motor 18, thereby selectively closing the inlets 13a to 13e, and the channel area of the refrigerant side of the core 2 is altered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱交換器に関し、航空機
用空調装置のコンデンサに適用して冷媒の熱交換を行な
うのに適するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger, and is suitable for use in a condenser of an air conditioner for an aircraft to perform heat exchange of a refrigerant.

【0002】[0002]

【従来の技術】図5に示す従来の航空機用空調装置10
1は、コンデンサ102と、受液器103と、凍結防止
用ドライヤ104と、フィルタ105と、膨張弁106
と、エバポレータ107と、コンプレッサー108とに
より冷凍サイクルが構成される。また、地上での静止時
にコンデンサ102に冷媒冷却用空気を送るファン10
9と、エバポレータ107から空調空気を機内に送り出
すファン110とを備える。図中矢印は空気の流れ方向
を示す。
2. Description of the Related Art A conventional aircraft air conditioner 10 shown in FIG.
1 is a condenser 102, a liquid receiver 103, an antifreeze dryer 104, a filter 105, and an expansion valve 106.
The evaporator 107 and the compressor 108 form a refrigeration cycle. In addition, the fan 10 that sends the cooling air to the condenser 102 when stationary on the ground
9 and a fan 110 for sending the conditioned air from the evaporator 107 into the machine. The arrow in the figure indicates the direction of air flow.

【0003】そのコンプレッサー108の上下流に配置
される圧力スイッチ111、112からの信号に応じ、
その冷媒冷却用空気の通路に配置されるシャッター11
4の開度を制御する制御装置115が設けられている。
すなわち、冬期や高々度において、そのコンデンサ10
2に送られる冷媒冷却用空気の温度が低くなると、冷媒
圧力が極端に低下して膨張弁106における冷媒の液化
が妨げられるため、その制御装置118はシャッター1
14の開度を小さくし、冷媒冷却用空気の風量を少なく
して熱交換量を減少させている。
In response to signals from the pressure switches 111 and 112 arranged upstream and downstream of the compressor 108,
Shutter 11 arranged in the passage for the cooling air
A control device 115 for controlling the opening degree of No. 4 is provided.
That is, in winter or at high altitude, the capacitor 10
When the temperature of the cooling air for cooling medium sent to 2 is lowered, the pressure of the cooling medium is drastically reduced and the liquefaction of the cooling medium in the expansion valve 106 is hindered.
The opening of 14 is made small, the air volume of the refrigerant cooling air is made small, and the heat exchange amount is made small.

【0004】なお、制御装置115は、空調空気の温度
センサ113からの信号や、図外操作盤からの空調のオ
ンオフ信号や温度設定信号に応じ、各ファン109、1
10と、コンプレッサー108の駆動モータ118とを
オンオフ制御し、さらに、起動時にバイパス流路の開閉
弁116、117と膨張弁106の開度を制御すること
で、エバポレータ107に適正に液化された冷媒を送り
込む。
The controller 115 responds to the signals from the temperature sensor 113 of the conditioned air, the on / off signal of the air conditioning and the temperature setting signal from the operation panel (not shown), and the fans 109, 1 respectively.
10 and the drive motor 118 of the compressor 108 are controlled to be turned on and off, and the opening and closing valves 116 and 117 and the expansion valve 106 of the bypass passage are controlled at the time of startup, so that the evaporator 107 is appropriately liquefied refrigerant. Send in.

【0005】[0005]

【発明が解決しようとする課題】上記従来の構成では、
シャッター114の開度を小さくすることで熱交換量を
減少させているため、空気抵抗が大きくなって航空機の
性能が低下するという問題がある。また、シャッター1
14を設けることで重量や配置のためのスペースが増加
し、重量増大により航空機の性能が低下する。なお、コ
ンプレッサー108の回転数を可変とすることで冷媒圧
力が極端に低下するのを防止することも考えられるが、
コンプレッサー108の回転数を可変とするにはインバ
ータ等が必要なため重量が増加し、やはり航空機の性能
が低下する。
SUMMARY OF THE INVENTION In the above conventional configuration,
Since the amount of heat exchange is reduced by reducing the opening of the shutter 114, there is a problem that the air resistance increases and the performance of the aircraft deteriorates. Also, shutter 1
Providing 14 increases the weight and space for placement, and the increased weight reduces the performance of the aircraft. It is also possible to prevent the refrigerant pressure from dropping extremely by making the rotation speed of the compressor 108 variable,
Since an inverter or the like is required to change the rotation speed of the compressor 108, the weight increases and the performance of the aircraft also deteriorates.

【0006】本発明は、上記課題を解決することのでき
る熱交換器を提供することを目的とする。
An object of the present invention is to provide a heat exchanger which can solve the above problems.

【0007】[0007]

【課題を解決するための手段】本発明は、冷媒の流路
と、その冷媒を冷却する流体の流路と、前記冷媒流路と
冷媒冷却用流体流路との間に介在する伝熱部とを備える
熱交換器において、冷媒側の流路面積を変更可能にした
ことを特徴とする。
DISCLOSURE OF THE INVENTION According to the present invention, a coolant passage, a fluid passage for cooling the coolant, and a heat transfer section interposed between the coolant passage and the coolant cooling passage. In the heat exchanger provided with, the flow passage area on the refrigerant side can be changed.

【0008】[0008]

【発明の作用および効果】本発明の熱交換器によれば、
冷媒側の流路面積を変更することで熱交換面積を変化さ
せ、冷媒冷却用流体流路における冷媒冷却用流体の流量
を変化させることなく、熱交換量を変化させることがで
きる。これにより、この熱交換器を航空機の空調装置の
コンデンサに利用する場合に、航空機の性能が低下する
のを防止でき、また、冷媒冷却用空気の風量を変化させ
るシャッターが不要になり、重量や配置のためのスペー
スを低減し、航空機の性能が低下するのを防止できる。
According to the heat exchanger of the present invention,
The heat exchange area can be changed by changing the flow passage area on the refrigerant side, and the heat exchange amount can be changed without changing the flow rate of the refrigerant cooling fluid in the refrigerant cooling fluid passage. As a result, when the heat exchanger is used as a condenser of an air conditioner of an aircraft, it is possible to prevent the performance of the aircraft from being deteriorated, and a shutter for changing the air volume of the cooling air for the refrigerant is not required, and the weight and the weight of the air can be reduced. The space for placement can be reduced and the performance of the aircraft can be prevented from being degraded.

【0009】[0009]

【実施例】図1は、本発明の実施例の熱交換器1の正断
面図を示し、図2は、その熱交換器1の平断面図を示
し、図3は、その熱交換器1の側断面図を示す。その図
1〜図3に示す熱交換器1は、航空機の空調装置のコン
デンサに利用されて冷媒の熱交換用に用いられる。その
空調装置は、従来例で示した空調装置101からシャッ
ター114を取り除いた構成でよい。
1 is a front sectional view of a heat exchanger 1 according to an embodiment of the present invention, FIG. 2 is a plan sectional view of the heat exchanger 1, and FIG. FIG. The heat exchanger 1 shown in FIGS. 1 to 3 is used for a condenser of an air conditioner of an aircraft and used for heat exchange of a refrigerant. The air conditioner may have a configuration in which the shutter 114 is removed from the air conditioner 101 shown in the conventional example.

【0010】図1において、熱交換器1は、熱交換を行
なうコア2と、このコア2に冷媒を導入する導入部3
と、前記コア2と導入部3とを覆うケース4と、コア2
側と導入部3側との仕切りプレート5とを備える。
In FIG. 1, a heat exchanger 1 comprises a core 2 for exchanging heat and an introducing portion 3 for introducing a refrigerant into the core 2.
A case 4 for covering the core 2 and the introduction portion 3, and a core 2
And a partition plate 5 on the introduction section 3 side.

【0011】そのコア2は、5つの冷媒流路6a、6
b、6c、6d、6eと6つの冷媒冷却用空気流路7
a、7b、7c、7d、7e、7fとを有する。本実施
例では、そのケース4に取り付けられた一対の互いに平
行な伝熱プレート(伝熱部)8の対向間を冷媒流路6
a、6b、6c、6d、6eの各々とし、各冷媒流路6
a、6b、6c、6d、6eに伝熱プレート8を介し隣
接する領域の各々を冷媒冷却用空気流路7a、7b、7
c、7d、7e、7fとしている。図2に示すように、
各冷媒流路6a、6b、6c、6d、6eの入口は仕切
りプレート5に形成された開口5a、5b、5c、5
d、5eを介し導入部3に接続され、出口は膨張弁側に
接続される。図1に示すように、各冷媒冷却用空気流路
7a、7b、7c、7d、7e、7fの両端は外気中に
開放されている。なお、各冷媒冷却用空気流路7a、7
b、7c、7d、7e、7fにはフィン7′が配置され
る。各冷媒流路6a、6b、6c、6d、6eにおける
図中実線矢印で示す冷媒の流れ方向と、各冷媒冷却用空
気流路7a、7b、7c、7d、7e、7fにおける冷
媒冷却用空気の図中破線矢印で示す流れ方向とは図中で
は直角としているが、これに限定されるものではない。
The core 2 has five refrigerant flow paths 6a, 6
b, 6c, 6d, 6e and six refrigerant cooling air passages 7
a, 7b, 7c, 7d, 7e, 7f. In the present embodiment, the refrigerant flow path 6 is provided between the pair of parallel heat transfer plates (heat transfer parts) 8 attached to the case 4.
a, 6b, 6c, 6d, 6e, and each refrigerant flow path 6
a, 6b, 6c, 6d, and 6e, each of which is adjacent to each other via the heat transfer plate 8 has a cooling air passage 7a, 7b, 7
c, 7d, 7e and 7f. As shown in FIG.
The inlets of the respective refrigerant channels 6a, 6b, 6c, 6d, 6e are openings 5a, 5b, 5c, 5 formed in the partition plate 5.
It is connected to the introduction part 3 via d and 5e, and the outlet is connected to the expansion valve side. As shown in FIG. 1, both ends of each refrigerant cooling air passage 7a, 7b, 7c, 7d, 7e, 7f are open to the outside air. In addition, each of the cooling air passages 7a, 7
Fins 7'are arranged on b, 7c, 7d, 7e and 7f. The flow direction of the refrigerant indicated by the solid line arrows in the respective refrigerant passages 6a, 6b, 6c, 6d, 6e and the refrigerant cooling air in the respective refrigerant cooling air passages 7a, 7b, 7c, 7d, 7e, 7f. The flow direction shown by the broken line arrow in the drawing is a right angle in the drawing, but the flow direction is not limited to this.

【0012】図3にも示すように、導入部3は、ケース
4に内蔵される円筒形のチューブ11を有し、そのチュ
ーブ11の一端はコンプレッサーから送られる冷媒の搬
送ダクト12に接続され、他端は閉鎖される。図1、図
2に示すように、チューブ11に、周方向に沿うスリッ
ト状の5つの冷媒導入口13a、13b、13c、13
d、13eが、前記仕切りプレート5に形成された開口
5a、5b、5c、5d、5eを介し各冷媒流路6a、
6b、6c、6d、6eの入口に対向する位置に形成さ
れている。これにより、その搬送ダクト12を介しチュ
ーブ11に導入された冷媒は、図中矢印で示すようにチ
ューブ11の各冷媒導入口13a、13b、13c、1
3d、13eから各冷媒流路6a、6b、6c、6d、
6eに導入される。なお、各冷媒流路6a、6b、6
c、6d、6eがチューブ11の外周とケース4の内周
との間を介し互いに連通しないように、仕切りプレート
5に形成された各開口5a、5b、5c、5d、5eの
間の4位置において、チューブ11の外周とケース4の
内周との間に亘る遮蔽板30a、30b、30c、30
dを設けている。
As shown in FIG. 3, the introduction part 3 has a cylindrical tube 11 contained in the case 4, and one end of the tube 11 is connected to a transfer duct 12 for the refrigerant sent from the compressor. The other end is closed. As shown in FIGS. 1 and 2, the tube 11 has five slit-shaped refrigerant introduction ports 13a, 13b, 13c, 13 along the circumferential direction.
d and 13e pass through the openings 5a, 5b, 5c, 5d, and 5e formed in the partition plate 5, and the respective refrigerant flow paths 6a,
It is formed at a position facing the entrances of 6b, 6c, 6d and 6e. As a result, the refrigerant introduced into the tube 11 through the transport duct 12 is cooled by the refrigerant introduction ports 13a, 13b, 13c, 1 of the tube 11 as indicated by arrows in the figure.
3d, 13e to the respective refrigerant flow paths 6a, 6b, 6c, 6d,
6e is introduced. In addition, each refrigerant flow path 6a, 6b, 6
Four positions between the openings 5a, 5b, 5c, 5d, and 5e formed in the partition plate 5 so that the c, 6d, and 6e do not communicate with each other through the outer circumference of the tube 11 and the inner circumference of the case 4. In, the shielding plates 30a, 30b, 30c, 30 extending between the outer circumference of the tube 11 and the inner circumference of the case 4
d is provided.

【0013】図1〜図3に示すように、チューブ11に
は、円柱状の移動体15が軸方向移動可能に挿入されて
いる。そのチューブ11の内周と移動体15の外周との
隙間は、冷媒の流れを阻止するのに充分小さな寸法とす
る。移動体15に、移動体15の軸方向に沿う軸線を有
するラック16が取り付けられ、そのラック16に噛み
合うピニオン17が、チューブ11に取り付けられるモ
ータ18の出力軸に取り付けられる。モータ18により
駆動されるピニオン17の回転がラック16に伝達され
ることで、移動体15はチューブ11内を軸方向移動す
る。移動体15の移動によって、例えば前記搬送ダクト
12から最も離れた位置の冷媒導入口13eと、その冷
媒導入口13eに隣接する冷媒導入口13dとが選択的
に開閉され、それら冷媒導入口13d、13eに対応す
る冷媒流路6d、6eの双方または一方への冷媒の導入
が遮断可能となる。このようにして、移動体15を駆動
することでコア2における冷媒側の流路面積は変更され
る。
As shown in FIGS. 1 to 3, a cylindrical moving body 15 is inserted into the tube 11 so as to be movable in the axial direction. The gap between the inner circumference of the tube 11 and the outer circumference of the moving body 15 has a size small enough to prevent the flow of the refrigerant. A rack 16 having an axis line along the axial direction of the moving body 15 is attached to the moving body 15, and a pinion 17 meshing with the rack 16 is attached to an output shaft of a motor 18 attached to the tube 11. The rotation of the pinion 17 driven by the motor 18 is transmitted to the rack 16 so that the moving body 15 moves in the tube 11 in the axial direction. By the movement of the moving body 15, for example, the refrigerant introduction port 13e at the farthest position from the transfer duct 12 and the refrigerant introduction port 13d adjacent to the refrigerant introduction port 13e are selectively opened and closed, and the refrigerant introduction ports 13d, It is possible to block the introduction of the refrigerant into both or one of the refrigerant channels 6d and 6e corresponding to 13e. In this way, by driving the moving body 15, the flow passage area on the refrigerant side in the core 2 is changed.

【0014】上記熱交換器1によれば、コア2における
冷媒側の流路面積を変更することで熱交換面積を変化さ
せ、冷媒冷却用空気流路7a、7b、7c、7d、7
e、7fにおける冷媒冷却用空気の風量を変化させるこ
となく、熱交換量を変化させることができる。これによ
り、その熱交換器1を航空機の空調装置のコンデンサに
利用する場合に、航空機の性能が低下するのを防止でき
る。また、冷媒冷却用空気の風量を変化させるシャッタ
ーが不要になり、重量や配置のためのスペースを低減
し、航空機の性能が低下するのを防止できる。さらに、
冷媒導入用チューブ11内で移動体15を駆動する駆動
機構を構成するラック16やピニオン17を、そのチュ
ーブ11の内部に配置しているので、その駆動機構の配
置スペースが削減され、熱交換器1が大型化するのを防
止できる。特に、上記実施例では軸方向に長尺なラック
16を、移動体15よりもチューブ11への冷媒導入側
に配置することで、チューブ11が不必要に長くなるの
を防止している。
According to the above heat exchanger 1, the heat exchange area is changed by changing the flow passage area on the refrigerant side in the core 2, and the refrigerant cooling air flow passages 7a, 7b, 7c, 7d, 7 are provided.
The heat exchange amount can be changed without changing the air amount of the refrigerant cooling air in e and 7f. As a result, when the heat exchanger 1 is used as a condenser of an air conditioner of an aircraft, it is possible to prevent the performance of the aircraft from deteriorating. Further, a shutter for changing the amount of air for cooling the refrigerant is not required, the weight and space for arrangement can be reduced, and the performance of the aircraft can be prevented from deteriorating. further,
Since the rack 16 and the pinion 17 forming the drive mechanism for driving the moving body 15 in the refrigerant introduction tube 11 are arranged inside the tube 11, the arrangement space of the drive mechanism is reduced, and the heat exchanger is reduced. 1 can be prevented from increasing in size. Particularly, in the above-described embodiment, the axially long rack 16 is arranged on the refrigerant introduction side of the tube 11 with respect to the moving body 15 to prevent the tube 11 from becoming unnecessarily long.

【0015】なお、本発明は上記実施例に限定されな
い。例えば、上記実施例では2つの冷媒導入口13d、
13eを閉鎖するようにしたが、閉鎖する冷媒導入口の
数は特に限定されない。また、移動体を流体圧アクチュ
エータにより駆動したり、チューブ内における移動体よ
りも軸方向一方側における圧力と軸方向他方側における
圧力との差圧により駆動してもよい。また、チューブは
円筒形に限定されず、例えば角筒形であってもよい。
The present invention is not limited to the above embodiment. For example, in the above embodiment, two refrigerant inlets 13d,
Although 13e is closed, the number of refrigerant inlets to be closed is not particularly limited. Further, the moving body may be driven by a fluid pressure actuator, or may be driven by a pressure difference between a pressure on one side in the axial direction and a pressure on the other side in the axial direction with respect to the moving body in the tube. Further, the tube is not limited to a cylindrical shape, and may be, for example, a rectangular tube shape.

【0016】[0016]

【本発明の実施態様】複数の冷媒流路と、これら冷媒流
路への冷媒導入用チューブを備え、このチューブに各冷
媒流路の入口に対向する複数の冷媒導入口を形成し、そ
のチューブ内を移動することで少なくとも一つの冷媒導
入口を開閉可能な移動体を設け、また、その移動体の駆
動機構の構成部材はチューブ内に配置するのが好まし
い。駆動機構の構成部材をチューブ内に配置すること
で、その駆動機構の配置スペースを削減して熱交換器が
大型化するのを防止でき、重量増大による航空機の性能
低下を防止できる。
BEST MODE FOR CARRYING OUT THE INVENTION A plurality of refrigerant flow paths and tubes for introducing a refrigerant into these refrigerant flow paths are provided, and a plurality of refrigerant introduction ports facing the inlets of the respective refrigerant flow paths are formed in this tube, and the tubes are formed. It is preferable to provide a moving body capable of opening and closing at least one refrigerant introduction port by moving inside, and to arrange the constituent members of the driving mechanism of the moving body in the tube. By disposing the components of the drive mechanism in the tube, it is possible to reduce the space for disposing the drive mechanism, prevent the heat exchanger from increasing in size, and prevent the performance of the aircraft from deteriorating due to the increase in weight.

【0017】また、移動体は軸方向移動する円柱形状に
限定されない。例えば、複数の冷媒流路と、これら冷媒
流路への冷媒導入用チューブを備え、このチューブに各
冷媒流路の入口に対向する複数の冷媒導入口を形成し、
図4に示すようにチューブ40に円筒形の移動体41を
挿入し、この移動体41の回転駆動機構(図示省略)を
設け、その移動体41の周壁に開口41aを形成しても
よい。その移動体41の回転により、図4の(1)に示
すように、移動体41の開口41aとチューブ40の少
なくとも一つの冷媒導入口40aとが重なる状態と、図
4の(2)に示すように、移動体41の周壁が冷媒導入
口40aを閉鎖する状態とに状態変更可能とする。その
開口と重なる時に冷媒導入口40aから冷媒を冷媒流路
に導入する。これにより、移動体を軸方向に移動させる
必要がなくなるので、チューブの軸方向寸法を短くして
熱交換器が大型化するのを防止でき、重量増大による航
空機の性能低下を防止できる。
The moving body is not limited to the cylindrical shape which moves in the axial direction. For example, a plurality of refrigerant flow paths and a tube for introducing refrigerant into these refrigerant flow paths are provided, and a plurality of refrigerant introduction ports facing the inlet of each refrigerant flow path are formed in this tube,
As shown in FIG. 4, a cylindrical moving body 41 may be inserted into the tube 40, a rotary drive mechanism (not shown) for the moving body 41 may be provided, and an opening 41a may be formed in the peripheral wall of the moving body 41. By the rotation of the moving body 41, as shown in (1) of FIG. 4, a state in which the opening 41a of the moving body 41 and at least one refrigerant introduction port 40a of the tube 40 overlap each other, and (2) of FIG. As described above, the state can be changed to the state in which the peripheral wall of the moving body 41 closes the refrigerant introduction port 40a. When overlapping with the opening, the refrigerant is introduced into the refrigerant channel from the refrigerant inlet 40a. As a result, it is not necessary to move the moving body in the axial direction, so that it is possible to prevent the size of the tube in the axial direction from being shortened and prevent the heat exchanger from increasing in size, and to prevent the performance of the aircraft from being deteriorated due to the increase in weight.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の熱交換器の正断面図FIG. 1 is a front sectional view of a heat exchanger according to an embodiment of the present invention.

【図2】本発明の実施例の熱交換器の平断面図FIG. 2 is a plan sectional view of a heat exchanger according to an embodiment of the present invention.

【図3】本発明の実施例の熱交換器の側断面図FIG. 3 is a side sectional view of the heat exchanger according to the embodiment of the present invention.

【図4】本発明の変形例の熱交換器の(1)は冷媒導入
口を閉鎖した状態での部分断面図、(2)は冷媒導入口
を開いた状態での部分断面図
FIG. 4 is a partial cross-sectional view of a heat exchanger of a modified example of the present invention in a state where the refrigerant introduction port is closed, and (2) is a partial cross-sectional view in a state where the refrigerant introduction port is opened.

【図5】従来の空調装置の構成説明図FIG. 5 is an explanatory diagram of a configuration of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

6a、6b、6c、6d、6e 冷媒流路 7a、7b、7c、7d、7e、7f 冷媒冷却用空気 8 伝熱プレート(伝熱部) 15 移動体 6a, 6b, 6c, 6d, 6e Refrigerant channel 7a, 7b, 7c, 7d, 7e, 7f Refrigerant cooling air 8 Heat transfer plate (heat transfer part) 15 Moving body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷媒の流路と、その冷媒を冷却する流体
の流路と、前記冷媒流路と冷媒冷却用流体流路との間に
介在する伝熱部とを備える熱交換器において、冷媒側の
流路面積を変更可能にしたことを特徴とする熱交換器。
1. A heat exchanger comprising: a refrigerant flow path; a fluid flow path for cooling the refrigerant; and a heat transfer section interposed between the refrigerant flow path and the refrigerant cooling fluid flow path. A heat exchanger characterized in that the flow passage area on the refrigerant side can be changed.
JP32149894A 1994-11-29 1994-11-29 Heat exchanger Pending JPH08152292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32149894A JPH08152292A (en) 1994-11-29 1994-11-29 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32149894A JPH08152292A (en) 1994-11-29 1994-11-29 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH08152292A true JPH08152292A (en) 1996-06-11

Family

ID=18133237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32149894A Pending JPH08152292A (en) 1994-11-29 1994-11-29 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH08152292A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100612158B1 (en) * 2003-09-15 2006-08-11 한라공조주식회사 Heat exchanger
KR100810498B1 (en) * 2005-08-04 2008-03-07 이재혁 Apparatus for making electrically charged water
JP2010270983A (en) * 2009-05-22 2010-12-02 Toyota Motor Corp Exhaust heat recovery device
JP2010276272A (en) * 2009-05-28 2010-12-09 Toyota Motor Corp Exhaust heat recovery system
KR101139349B1 (en) * 2005-11-09 2012-05-15 한라공조주식회사 Heat exchanger
WO2015098092A1 (en) * 2013-12-26 2015-07-02 川崎重工業株式会社 Liquefied fuel gas evaporation promoting device and fuel gas supply system for ships
CN107883488A (en) * 2017-10-23 2018-04-06 芜湖美智空调设备有限公司 A kind of air conditioner and its control method
CN107906596A (en) * 2017-10-23 2018-04-13 芜湖美智空调设备有限公司 A kind of air conditioner and its control method
CN110500745A (en) * 2019-08-20 2019-11-26 珠海格力电器股份有限公司 Regulating device, fan coil, air-conditioning system and adjusting method
CN111637629A (en) * 2020-05-27 2020-09-08 广东芬尼电器技术有限公司 Flow path adjustable water storage inner container and heat pump water heater
CN113375482A (en) * 2021-07-15 2021-09-10 华能伊敏煤电有限责任公司汇流河热电分公司 Supercritical fluid heat exchanger

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100612158B1 (en) * 2003-09-15 2006-08-11 한라공조주식회사 Heat exchanger
KR100810498B1 (en) * 2005-08-04 2008-03-07 이재혁 Apparatus for making electrically charged water
KR101139349B1 (en) * 2005-11-09 2012-05-15 한라공조주식회사 Heat exchanger
JP2010270983A (en) * 2009-05-22 2010-12-02 Toyota Motor Corp Exhaust heat recovery device
JP2010276272A (en) * 2009-05-28 2010-12-09 Toyota Motor Corp Exhaust heat recovery system
JP2015124807A (en) * 2013-12-26 2015-07-06 川崎重工業株式会社 Liquefied fuel gas evaporation acceleration apparatus and fuel gas supply system for marine vessel
WO2015098092A1 (en) * 2013-12-26 2015-07-02 川崎重工業株式会社 Liquefied fuel gas evaporation promoting device and fuel gas supply system for ships
CN105829793A (en) * 2013-12-26 2016-08-03 川崎重工业株式会社 Liquefied fuel gas evaporation acceleration apparatus and fuel gas supply system for marine vessel
CN107883488A (en) * 2017-10-23 2018-04-06 芜湖美智空调设备有限公司 A kind of air conditioner and its control method
CN107906596A (en) * 2017-10-23 2018-04-13 芜湖美智空调设备有限公司 A kind of air conditioner and its control method
CN107883488B (en) * 2017-10-23 2020-10-09 芜湖美智空调设备有限公司 Air conditioner and control method thereof
CN107906596B (en) * 2017-10-23 2020-10-09 芜湖美智空调设备有限公司 Air conditioner and control method thereof
CN110500745A (en) * 2019-08-20 2019-11-26 珠海格力电器股份有限公司 Regulating device, fan coil, air-conditioning system and adjusting method
CN111637629A (en) * 2020-05-27 2020-09-08 广东芬尼电器技术有限公司 Flow path adjustable water storage inner container and heat pump water heater
CN113375482A (en) * 2021-07-15 2021-09-10 华能伊敏煤电有限责任公司汇流河热电分公司 Supercritical fluid heat exchanger

Similar Documents

Publication Publication Date Title
JP2610995B2 (en) Vehicle air conditioner
US7159651B2 (en) Air conditioner for vehicle use
US7871316B2 (en) Passage opening and closing device
US7931074B2 (en) Heat exchanger and air conditioner
JP4457958B2 (en) Air conditioner for vehicles
US7775263B2 (en) Heat exchanger
JPH08152292A (en) Heat exchanger
CN104246331A (en) Flow path changeover device
JPH03273923A (en) Air conditioning device for vehicle
JP2014061878A (en) Heat transmission medium device for absorbing heat of motor vehicle and air conditioning system
US9981525B2 (en) Air conditioning unit for vehicle
JP3969099B2 (en) Air conditioner for vehicles
CN108885016B (en) Air conditioner
KR101394329B1 (en) System for supply refrigerants using five way step valve
KR20160146486A (en) Assembly for air distribution for an air conditioning system of an automobile
US2920461A (en) Air conditioning apparatus
US10882380B2 (en) Air conditioning unit for a vehicle
JPH08240337A (en) Air direction louver device
JP2008195209A (en) Vehicular air conditioner
JP2000108640A (en) Air conditioner
US20230400229A1 (en) Flow circuitry and valving for reversible hvac heat exchange configurations
WO2022042101A1 (en) Four-way main valve, four-way reversing valve assembly, and air conditioning unit
KR200147746Y1 (en) Heat exchanger
KR20080075631A (en) Air conditioning device for vehicles
JPH10119545A (en) Right/left independent temperature adjusting/air conditioner