JPH0815179A - Surface flaw discriminating method for steel plate - Google Patents

Surface flaw discriminating method for steel plate

Info

Publication number
JPH0815179A
JPH0815179A JP14887494A JP14887494A JPH0815179A JP H0815179 A JPH0815179 A JP H0815179A JP 14887494 A JP14887494 A JP 14887494A JP 14887494 A JP14887494 A JP 14887494A JP H0815179 A JPH0815179 A JP H0815179A
Authority
JP
Japan
Prior art keywords
flaw
signal waveform
input
neural network
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14887494A
Other languages
Japanese (ja)
Inventor
Isato Kanayama
勇人 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14887494A priority Critical patent/JPH0815179A/en
Publication of JPH0815179A publication Critical patent/JPH0815179A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the discriminating time and to improve the discriminating capacity by selecting a neural network which can input all flaw signal waveform range and has an input layer in which the input of a non-flaw signal waveform becomes minimum. CONSTITUTION:When a light from a rodlike light source 12 is reflected on the surface of a steel plate and incident on a line sensor 13, the reflected light is changed in its luminance according to the uneven surface of the plate, and the luminance change is detected as an electric signal. A neural network 2 which calculates the flaw range of the surface of the plate according to a waveform selector 15, inputs the entire flaw signal waveform from the calculated flow signal waveform range and has an input layer in which the input of the non-flaw signal waveform becomes minimum is selected by the detection signal of the sensor 13. The entire flaw signal waveform is input to a neural network arithmetic processor 16, which conducts the neural network calculation based on the input signal waveform and executes the neural network calculation according to the entire flaw signal waveform necessary to discriminate the flaw occupying the main region of the flaw signal waveform range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋼板の圧延時に生じる鋼
板表面疵の疵種や疵グレードを判別する鋼板表面疵判別
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel sheet surface flaw determination method for determining the flaw type and flaw grade of a steel sheet surface flaw that occurs during the rolling of a steel sheet.

【0002】[0002]

【従来の技術】従来、製鋼段階に混入した非金属介在物
や、熱間、冷間圧延段階で物理的な影響などによって生
じる鋼板の表面疵は、鋼板の品質保証を行うため疵種や
疵グレードを判別する必要があった。ところが、表面疵
の疵種や疵グレードは光学式表面疵検出器の検出信号か
ら直接の特徴の抽出を行うことが困難なため、光学式表
面疵検出器の検出信号を疵種や疵グレードを判別できる
よう学習させたニューラル・ネットに入力して判別させ
ていた。(例えば、特開平4−142412号公報、特
開平4−12863号公報。)
2. Description of the Related Art Conventionally, non-metallic inclusions mixed in a steelmaking stage and surface defects of a steel plate caused by physical influences in a hot or cold rolling stage are used to guarantee the quality of the steel plate. It was necessary to determine the grade. However, since it is difficult to extract features directly from the detection signal of the optical surface flaw detector, it is difficult for the flaw type and flaw grade of the surface flaw to detect the flaw type and flaw grade of the optical surface flaw detector. The input was made into the neural net that was learned so that it could be discriminated. (For example, Japanese Patent Application Laid-Open Nos. 4-1442412 and 4-12863.)

【0003】しかしながら、ニューラル・ネットによる
疵種や疵グレードの判別には種々の疵タイプを包括して
入力できる数の入力層ユニットが必要となるため、予想
される最大の表面疵の信号波形が入力されるだけのユニ
ット数が入力層に形成されることとなり、図5に示され
るように表面疵が大きく入力層のユニットの略全数に疵
信号波形が入力され、非疵信号波形が入力されるユニッ
ト数が少ない場合はさほど大きな影響とならないが、図
4に示されるように表面疵が小さく入力層のユニットに
入力される非疵信号波形の範囲が増加すると、表面疵と
は無関係な鋼板の地合部分の非疵波形信号もニューラル
・ネットは学習・判別の演算を行うこととなる。このた
め、表面疵が小さくなるほど不必要な学習・判別の演算
数が増すこととなり、疵種、疵グレードの判別時間が長
くなるうえに、不必要な学習により判別能力の低下をも
たらすという問題もあった。
However, since the number of input layer units capable of comprehensively inputting various flaw types is necessary for the discrimination of flaw types and flaw grades by the neural net, the signal waveform of the maximum expected surface flaw can be obtained. As many units as are input are formed in the input layer, and as shown in FIG. 5, surface flaws are large and flaw signal waveforms are input to almost all the units in the input layer, and non-flaw signal waveforms are input. When the number of units is small, the effect is not so large, but as shown in Fig. 4, when the surface flaw is small and the range of the non-flawed signal waveform input to the unit of the input layer increases, the steel sheet unrelated to the surface flaw For the non-flawed waveform signal in the formation portion of the neural network, the neural network also performs the learning / discrimination operation. Therefore, as the surface flaw becomes smaller, the number of unnecessary learning / discrimination operations increases, which leads to a longer discrimination time for flaw types and flaw grades, as well as a reduction in discrimination ability due to unnecessary learning. there were.

【0004】[0004]

【発明が解決しようとする課題】本発明は前記のような
問題を解決して、鋼板の地合部分の非疵信号波形による
不要な学習と判別をなくし、判別時間の短縮と判別能力
を向上させる学習を行なうことができる鋼板表面疵判別
方法を提供することにある。
SUMMARY OF THE INVENTION The present invention solves the above problems and eliminates unnecessary learning and discrimination due to non-defect signal waveforms in the formation portion of the steel sheet, thereby shortening the discrimination time and improving the discrimination ability. It is to provide a steel plate surface flaw determination method capable of performing learning.

【0005】[0005]

【課題を解決するための手段】前記のような課題を解決
した本発明の鋼板表面疵判別方法は、鋼板の長手方向に
鋼板幅でスキャンする光学式表面疵検出手段により検出
された検出信号から波形選択装置によって疵信号波形範
囲を算出するとともに、入力層のユニット数を異ならせ
た2個以上のニューラル・ネットから全疵信号波形範囲
を入力できる最小のユニットを有するニューラル・ネッ
トを選択し、このニューラル・ネットに疵信号波形領域
を入力して疵種、疵グレードを判別することを特徴とす
るものである。
The steel plate surface flaw determination method of the present invention which has solved the above problems is based on the detection signal detected by the optical surface flaw detection means for scanning the steel sheet in the longitudinal direction by the width of the steel sheet. The flaw signal waveform range is calculated by the waveform selecting device, and the neural net having the smallest unit capable of inputting the entire flaw signal waveform range is selected from two or more neural nets having different numbers of units in the input layer, It is characterized in that a flaw signal waveform region is input to this neural network to determine the flaw type and flaw grade.

【0006】[0006]

【作用】本発明の鋼板表面疵判別方法は、鋼板幅の光学
式表面疵検出手段により通板される鋼板表面を長手方向
にスキャンし、この光学式表面疵検出手段により検出さ
れた検出信号から波形選択装置によって疵信号波形範囲
を算出する。そして、入力層のユニット数を異ならせた
2個以上のニューラル・ネットから全疵信号波形範囲を
入力できる最小のニューラル・ネットを選択して非疵信
号波形範囲の入力が最小限となるようにし、ニューラル
・ネットの学習・判別対象から非疵信号波形範囲が最大
限除かれた疵信号波形領域がニューラル・ネットに入力
されて学習・判別させることにより的確容易に表面疵の
疵種や疵グレードを判別できる。
According to the steel plate surface flaw detection method of the present invention, the steel plate surface that is passed by the optical surface flaw detection means for the width of the steel plate is scanned in the longitudinal direction, and the detection signal detected by this optical surface flaw detection means is used. The flaw signal waveform range is calculated by the waveform selection device. Then, the minimum neural net that can input the entire flaw signal waveform range is selected from two or more neural nets having different numbers of units in the input layer so that the input of the non-fault signal waveform range is minimized. , The flaw signal waveform area in which the non-fault signal waveform range has been removed from the learning / discrimination target of the neural network is input to the neural network for learning / discrimination, so that the flaw types and flaw grades of surface flaws can be easily and accurately obtained. Can be determined.

【0007】[0007]

【実施例】次に、本発明を図示の実施例に基づいて詳細
に説明する。10は光学式表面疵検出手段1としての光
学式表面疵検出装置である。この光学式表面疵検出装置
10は鋼板上方の幅方向に配置される棒状光源12と、
該棒状光源12の鋼板表面の幅方向の反射光の輝度変化
を検出するラインセンサ13とよりなるものである。1
4はラインセンサ13の検出信号をディジタル信号に変
換するA/D変換器、15は疵信号波形の大きさを算出
する波形選択装置であり、該波形選択装置15はA/D
変換器14でディジタル信号に変換された検出信号の波
形振幅のピーク値から疵信号波形を抽出するとともに、
疵信号波形のピーク値から次のピーク値までの疵信号波
形範囲を算出するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the illustrated embodiments. Reference numeral 10 denotes an optical surface flaw detecting device as the optical surface flaw detecting means 1. The optical surface flaw detection device 10 includes a rod-shaped light source 12 arranged in the width direction above the steel plate,
The bar-shaped light source 12 comprises a line sensor 13 for detecting a change in brightness of reflected light in the width direction of the steel plate surface. 1
Reference numeral 4 is an A / D converter that converts the detection signal of the line sensor 13 into a digital signal, and 15 is a waveform selection device that calculates the magnitude of the flaw signal waveform. The waveform selection device 15 is an A / D converter.
While the flaw signal waveform is extracted from the peak value of the waveform amplitude of the detection signal converted into the digital signal by the converter 14,
The flaw signal waveform range from the peak value of the flaw signal waveform to the next peak value is calculated.

【0008】16は前記波形選択装置15に切換スイッ
チ17を介して接続される3つのニューラル・ネット2
よりなるニューラルネット演算処理装置であり、該各ニ
ューラルネット演算処理装置16は入力層、中間層、出
力層からなるもので、各層のユニット規模は基本的な疵
信号パターンに対応するよう設定されており、前記波形
選択装置15により算出された疵信号波形範囲に基づい
てニューラルネット演算処理装置16の入力層に入力さ
れる非疵信号波形が最小となり且つ全疵信号波形が入力
できるニューラルネット演算処理装置16を選択する。
これはニューラルネット演算処理装置16の入力層のユ
ニット数を全ての疵信号波形に対応させることは不可能
で、コストと判別精度の兼ね合いによってユニット数が
設定されるため、非疵信号波形が最小の入力層が選択す
る必要があるからである。
Reference numeral 16 denotes three neural nets 2 which are connected to the waveform selecting device 15 via a changeover switch 17.
The neural network arithmetic processing device is composed of an input layer, an intermediate layer, and an output layer. The unit scale of each layer is set so as to correspond to a basic flaw signal pattern. The neural network operation processing in which the non-fault signal waveform input to the input layer of the neural network operation processing device 16 is minimized and the entire defect signal waveform can be input based on the flaw signal waveform range calculated by the waveform selection device 15 Select device 16.
This is because it is impossible to make the number of units in the input layer of the neural network arithmetic processing unit 16 correspond to all the flaw signal waveforms, and the number of units is set by the balance between cost and discrimination accuracy, so that the non-fault signal waveform is the minimum. This is because the input layer of must be selected.

【0009】このように構成されたものは、通板される
鋼板の上方に設けられた光学式疵検出装置10の棒状光
源12から照射された光源が鋼板表面で反射してライン
センサ13に入射されると、ラインセンサ13に入力さ
れる反射光は鋼板表面の凹凸により輝度変化し、その輝
度変化を電気信号として検出することとなり、ラインセ
ンサ13により検出されたアナログの検出信号はA/D
変換器14によりディジタル信号に変換されたうえ波形
選択成装置15に入力される。このようにして波形選択
装置15に入力されたラインセンサ13の検出信号は、
波形選択装置15により図2、3に示されるように波形
振幅のピーク値と次のピーク値から疵信号波形すなわち
鋼板表面の疵範囲を算出する。そして、算出された疵信
号波形範囲から全疵信号波形が入力され、且つ、非疵信
号波形の入力が最小となる入力層をもつニュウーラル・
ネット2を選択する。
In such a structure, the light source emitted from the rod-shaped light source 12 of the optical flaw detection device 10 provided above the steel plate to be threaded is reflected on the steel plate surface and is incident on the line sensor 13. Then, the reflected light input to the line sensor 13 changes in brightness due to the unevenness of the steel plate surface, and the brightness change is detected as an electric signal, and the analog detection signal detected by the line sensor 13 is A / D.
The signal is converted into a digital signal by the converter 14 and then input to the waveform selection / composition device 15. The detection signal of the line sensor 13 input to the waveform selection device 15 in this way is
As shown in FIGS. 2 and 3, the waveform selecting device 15 calculates the flaw signal waveform, that is, the flaw range on the surface of the steel sheet from the peak value of the waveform amplitude and the next peak value. Then, a neural signal having an input layer in which the entire flaw signal waveform is input from the calculated flaw signal waveform range and the input of the non-fault signal waveform is minimum
Select net 2.

【0010】そして、波形選択装置15によって選択さ
れたニューラル・ネット演算処理装置16と波形選択装
置15とは切換スイッチ17を介して接続されニューラ
ル・ネット演算処理装置16に全疵信号波形が入力され
る。ニューラル・ネット演算処理装置16の入力層のユ
ニット18に入力された信号波形に基づいてニューラル
・ネット演算を行なうが、非疵信号波形は最小とされて
いるためニューラル・ネット演算の行う不必要な学習、
判別による判別時間の延長や判別能力の低下は最小限に
抑えられこととなる。そして疵信号波形領域のうち主領
域を占める疵判別に必要な全疵信号波形によりニューラ
ル・ネット演算を行なわれるため、信頼性の高い学習・
判別が可能となる。また、ニューラル・ネット演算処理
装置16による演算は積和演算と自然指数演算で成り立
つため入力が少なくなるほど演算は少なくなり、計算時
間を短縮できることとなる。
Then, the neural net arithmetic processing unit 16 selected by the waveform selecting unit 15 and the waveform selecting unit 15 are connected via the changeover switch 17, and the neural network arithmetic processing unit 16 is supplied with all the flaw signal waveforms. It The neural net operation is performed based on the signal waveform input to the unit 18 of the input layer of the neural network operation processing device 16. However, since the non-flawed signal waveform is minimized, the neural net operation is not necessary. Learning,
The extension of the discrimination time and the deterioration of the discrimination ability due to the discrimination can be minimized. A neural network operation is performed using all defect signal waveforms required for defect determination that occupy the main region of the defect signal waveform region, so highly reliable learning
It is possible to distinguish. Further, since the calculation by the neural network calculation processing device 16 is composed of the sum of products calculation and the natural exponent calculation, the smaller the number of inputs, the smaller the calculation, and the calculation time can be shortened.

【0011】次に、本発明を対象疵種3種、疵グレード
種3級を入力層のユニット数45、中間層のユニット数
15、出力層のユニット数6とした3層構造パーセプト
ロンにより誤差逆転伝播学習にて実施した場合と、従来
方法との比較を表1に示す。
Next, in the present invention, the error reversal is carried out by a three-layer structure perceptron in which the target flaw type is 3 types, the flaw grade type 3 is 45 in the input layer, 15 in the intermediate layer, and 6 in the output layer. Table 1 shows a comparison between the case of carrying out the propagation learning and the conventional method.

【0012】[0012]

【表1】 なお、実施例では鋼板幅方向の1次元的な検出信号に基
づいて判別を行っているが、2次元的な検出信号に基づ
いて判別を行っても良いことは勿論である。また、実施
例では入力層のユニットを3種類のサイズを有するもの
としているが、判別精度に応じて入力層のユニットサイ
ズを増やせば良いことは勿論である。
[Table 1] In the embodiment, the determination is made based on the one-dimensional detection signal in the steel plate width direction, but it goes without saying that the determination may be made based on the two-dimensional detection signal. Further, in the embodiment, the unit of the input layer has three sizes, but it goes without saying that the unit size of the input layer may be increased according to the discrimination accuracy.

【0013】[0013]

【発明の効果】本発明は前記説明によって明らかなよう
に、疵信号波形領域の疵信号波形範囲を全て入力でき、
非疵信号波形の入力が最小となる入力層を有するニュー
ラル・ネットを選択し、該ニューラル・ネットに疵信号
波形領域を入力させるようにしたから、ニューラル・ネ
ットに入力される非疵信号波形は常に最小となって学習
・判別のニューラル・ネット演算に対する負荷は大きく
ならず、計算時間を短縮することができ、表面疵が小さ
い場合には、判別時間の短縮が可能となるうえに、鋼板
の地合部分の非疵信号波形を学習・判別することにより
生じる判別能力の低下を極力防ぐことができ、信頼性の
高い学習・判別が可能となり、精度の高い疵種、疵グレ
ードの判別を行なうことができる。従って、本発明は従
来の問題を解消した鋼板表面疵判別方法として業界にも
たる益極めて大なものである。
As is apparent from the above description, the present invention can input the entire flaw signal waveform range of the flaw signal waveform area,
Since a neural net having an input layer in which the input of a non-fault signal waveform is the minimum is selected and the flaw signal waveform region is input to the neural net, the non-fault signal waveform input to the neural net is It is always the minimum and does not increase the load on the learning / discrimination neural net operation, and can shorten the calculation time. When the surface flaw is small, the discrimination time can be shortened and the steel plate It is possible to prevent the deterioration of the discriminating ability caused by learning and discriminating the non-defect signal waveform of the formation part as much as possible, and it is possible to perform highly reliable learning and discrimination, and to discriminate the defect type and defect grade with high accuracy. be able to. Therefore, the present invention has a great advantage in the industry as a method for discriminating a steel plate surface flaw that solves the conventional problems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】本発明による表面疵が小さい場合のマスク処理
を示す説明図である。
FIG. 2 is an explanatory diagram showing a masking process when the surface flaw is small according to the present invention.

【図3】本発明による表面疵が大きい場合のマスク処理
を示す説明図である。
FIG. 3 is an explanatory view showing a masking process when the surface flaw is large according to the present invention.

【図4】従来のニューラル・ネットに小さな疵信号波形
が入力された状態を示す説明図である。
FIG. 4 is an explanatory diagram showing a state in which a small flaw signal waveform is input to a conventional neural network.

【図5】従来のニューラル・ネットに大きな疵信号波形
が入力された状態を示す説明図である。
FIG. 5 is an explanatory diagram showing a state in which a large flaw signal waveform is input to a conventional neural network.

【符号の説明】[Explanation of symbols]

1 光学式表面疵検出手段 2 ニューラル・ネット 3 マスク手段 1 Optical Surface Defect Detection Means 2 Neural Net 3 Mask Means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼板の長手方向に鋼板幅でスキャンする
光学式表面疵検出手段により検出された検出信号から波
形選択装置によって疵信号波形範囲を算出するととも
に、入力層のユニット数を異ならせた2個以上のニュー
ラル・ネットから全疵信号波形範囲を入力できる最小の
ユニットを有するニューラル・ネットを選択し、このニ
ューラル・ネットに疵信号波形領域を入力して疵種、疵
グレードを判別することを特徴とする鋼板表面疵判別方
法。
1. A flaw signal waveform range is calculated by a waveform selection device from a detection signal detected by an optical surface flaw detection means that scans in the longitudinal direction of the steel sheet with the width of the steel sheet, and the number of units in the input layer is varied. Select a neural net having the smallest unit capable of inputting the entire flaw signal waveform range from two or more neural nets, and input the flaw signal waveform area to this neural net to determine the flaw type and flaw grade. Steel plate surface flaw detection method characterized by.
JP14887494A 1994-06-30 1994-06-30 Surface flaw discriminating method for steel plate Withdrawn JPH0815179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14887494A JPH0815179A (en) 1994-06-30 1994-06-30 Surface flaw discriminating method for steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14887494A JPH0815179A (en) 1994-06-30 1994-06-30 Surface flaw discriminating method for steel plate

Publications (1)

Publication Number Publication Date
JPH0815179A true JPH0815179A (en) 1996-01-19

Family

ID=15462658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14887494A Withdrawn JPH0815179A (en) 1994-06-30 1994-06-30 Surface flaw discriminating method for steel plate

Country Status (1)

Country Link
JP (1) JPH0815179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11584827B2 (en) 2017-07-25 2023-02-21 3M Innovative Properties Company Photopolymerizable compositions including a urethane component and a reactive diluent, articles, and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11584827B2 (en) 2017-07-25 2023-02-21 3M Innovative Properties Company Photopolymerizable compositions including a urethane component and a reactive diluent, articles, and methods

Similar Documents

Publication Publication Date Title
JPH0815179A (en) Surface flaw discriminating method for steel plate
JP2000221143A (en) Surface inspecting device
JP2890801B2 (en) Surface scratch inspection device
JPH0815178A (en) Surface flaw discriminating method for steel plate
JPH07333197A (en) Automatic surface flaw detector
JP4738243B2 (en) Ultrasonic flaw detection system
JPH0634564A (en) Weld part inspection method of steel plate
JPS6347642A (en) Method for discriminating kind of flaw in surface flaw detection
JPH11135583A (en) Apparatus and method for inspecting pattern on chip
JPH06273349A (en) Flaw decision system
JP2002139478A (en) Creep damage detection method and device of structural material
JP3145296B2 (en) Defect detection method
JPH08220073A (en) Device for evaluating defect-dimension of eddy current flaw-detecting device
JP3526331B2 (en) Pattern inspection equipment
JP2001059836A (en) Method and apparatus for eddy-current flaw detection
JP2000035321A (en) Inspection device for surface of metal zone
JPH05188010A (en) Surface inspecting device
JP2508662Y2 (en) Flaw detection device
JPH04332855A (en) Inspecting apparatus of surface defect of steel plate
JPH075154A (en) Method for automatically deciding pass/fail of concrete product by knocking
JP2000206053A (en) Surface defect inspection method by a plurality of surface defect meters
JP2508662Z (en)
JPH0266446A (en) Method for inspecting surface defect
JPH0282155A (en) Method and device for defect detection
JPH06273348A (en) Surface flaw detection method for steel plate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904