JPH0815114A - Thermal fatigue evaluation method for metallic material - Google Patents

Thermal fatigue evaluation method for metallic material

Info

Publication number
JPH0815114A
JPH0815114A JP15014694A JP15014694A JPH0815114A JP H0815114 A JPH0815114 A JP H0815114A JP 15014694 A JP15014694 A JP 15014694A JP 15014694 A JP15014694 A JP 15014694A JP H0815114 A JPH0815114 A JP H0815114A
Authority
JP
Japan
Prior art keywords
test
thermal fatigue
test piece
rapid heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15014694A
Other languages
Japanese (ja)
Inventor
Ryuichi Uchino
野 龍 一 内
Joji Hachisuga
譲 二 蜂須賀
Masaharu Harada
田 政 晴 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP15014694A priority Critical patent/JPH0815114A/en
Publication of JPH0815114A publication Critical patent/JPH0815114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To shorten the time required for evaluation and test by simplifying the method for evaluating the thermal fatigue of a metallic material. CONSTITUTION:A high frequency heating coil 3 is conducted to heat only the rapid heating/cooling part of a test piece 1 located immediately under the coil 3. The rapid heating/cooling part is formed above a part to be evaluated substantially concentrically thereto. Heating is sustained for 5sec and it is interrupted when the temperature at the rapid heating/cooling part reaches about 700 deg.C. Subsequently, it is cooled naturally for 7sec to lower the temperature at the rapid heating/cooling part down to about 300 deg.C. The evaluating part of the test piece 1 is then cooled with cooing water fed through a cooling water pipe 4. Cooling water supply is interrupted upon elapse of 6sec. The temperature at the rapid heating/cooling part is thereby lowered down to about 60 deg.C. Finally the test piece 1 is cooled with the air blown through an air blow piping 5 for 10sec and heated again by conducting the high frequency heating coil 3. The series of operation is repeated thus effecting the thermal fatigue test.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属材料の熱疲労度の
評価方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the degree of thermal fatigue of metallic materials.

【0002】[0002]

【従来の技術】熱疲労とは、熱ひずみの拘束によって生
じる熱応力が繰り返されて起こる破損現象のことであ
る。熱ひずみは、物体外部の熱媒体と物体表面の熱伝
達、物体表面からの内部に伝わる熱伝導によって物体の
温度が変化し、その物体の温度変化に熱膨張係数を乗じ
ることにより求められる。このようにして起こった熱ひ
ずみが様々な形で拘束されて熱応力を生じ、これが繰り
返されることにより熱疲労が起こる。
2. Description of the Related Art Thermal fatigue is a failure phenomenon that is caused by repeated thermal stress caused by restraint of thermal strain. The thermal strain is obtained by multiplying the temperature change of the object by the thermal expansion coefficient, because the temperature of the object changes due to the heat transfer between the heat medium outside the object and the surface of the object and the heat conduction transferred from the surface of the object to the inside. The thermal strain thus generated is constrained in various forms to generate thermal stress, and thermal fatigue occurs by repeating this.

【0003】このようにして起こる熱疲労に対し、材料
の熱疲労度を調べる熱疲労試験がいろいろな方法で行わ
れている。熱疲労試験とは、試験片に加熱及び冷却を1
サイクルとした試験を繰り返し、試験片の熱膨張及び熱
収縮に伴う熱ひずみによる熱疲労度を調べる試験である
が、これは大きく分けて2つに大別できる。1つは外部
拘束型熱疲労試験で、これは試験片を一様に加熱、冷却
し、その膨張、収縮を試験機の剛性によって外部から拘
束するものである。もう1つは内部拘束型熱疲労試験
で、これは物体内の温度差、熱膨張係数の異なる異材の
組合せ等によって物体内部で熱ひずみを拘束させるもの
である。
With respect to the thermal fatigue that occurs in this way, a thermal fatigue test for investigating the thermal fatigue degree of a material is conducted by various methods. The thermal fatigue test means heating and cooling the test piece 1
This is a test in which a cycle test is repeated to examine the degree of thermal fatigue due to thermal strain associated with thermal expansion and thermal contraction of the test piece, which can be roughly divided into two types. One is an external restraint type thermal fatigue test, which heats and cools a test piece uniformly and restrains its expansion and contraction from the outside by the rigidity of a testing machine. The other is an internal restraint type thermal fatigue test, which restrains thermal strain inside the object by a combination of different materials having different thermal expansion coefficients in the object.

【0004】熱疲労試験を行った試験片の熱疲労度を評
価する方法として一般的に行われている方法は、熱疲労
試験の途中で発生する亀裂に着目した評価方法である。
即ち、亀裂の長さを定義してこれ以上長い亀裂が発生し
たときに亀裂発生とし、亀裂発生時の試験サイクル回数
をもって熱疲労度の指標とするものである。図8を例に
とって説明する。図8は、横軸に加熱、冷却を1サイク
ルとした試験サイクル回数を、縦軸に亀裂の発生数をと
り、試験サイクル回数に対する亀裂発生数の関係を示し
たグラフである。試験は4つの材料に対して行い、各材
料は同一の材質で異なった熱処理を施したものを使用し
た。尚、亀裂発生を定義した亀裂長さを1mmとする。
このグラフから、試験サイクル回数2000回で材料A
には亀裂が発生しているが、その他の材料には亀裂が発
生していないことがわかる。従って、材料Aは、熱応力
に対して4材料のうち最も弱いということがわかる。更
に試験サイクル回数3000回、4000回、5000
回での各材料の亀裂発生数を調べることにより、熱に対
して最も強い材料はD、次いでC、B、最も弱いものが
Aであるということがわかる。このように比較していく
ことにより、材料の熱疲労に対する強さを評価すること
ができ、このデータをもとに、材料の選択、異種材料の
優劣の判断、材料に施す熱処理条件、表面処理条件、成
分の配合割合の評価をしていた。
A commonly used method for evaluating the degree of thermal fatigue of a test piece subjected to a thermal fatigue test is an evaluation method that focuses on cracks that occur during the thermal fatigue test.
That is, the length of a crack is defined, and a crack is generated when a crack longer than that is generated, and the number of test cycles at the time of crack generation is used as an index of thermal fatigue. An example will be described with reference to FIG. FIG. 8 is a graph showing the relationship between the number of cracks and the number of test cycles, where the horizontal axis represents the number of test cycles with heating and cooling as one cycle, and the vertical axis represents the number of cracks. The test was performed on four materials, and each material was the same material and subjected to different heat treatments. The crack length defining the occurrence of cracks is 1 mm.
From this graph, the material A was tested at 2000 test cycles.
It can be seen that there are cracks in the other materials but no cracks in the other materials. Therefore, it can be seen that the material A is the weakest of the four materials with respect to thermal stress. Further, the number of test cycles is 3000 times, 4000 times, 5000 times
Examining the number of cracks generated for each material over time reveals that the material most resistant to heat is D, then C, B, and the weakest is A. By making comparisons in this way, it is possible to evaluate the strength of materials against thermal fatigue. Based on this data, selection of materials, judgment of superiority or inferiority of different materials, heat treatment conditions applied to materials, surface treatment The conditions and the blending ratio of the components were evaluated.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
評価方法では試験片に亀裂が発生するまで熱疲労試験を
行わなければならず、多大な時間を要するのみならず、
亀裂を測定する測定者の経験によって評価結果が異なっ
てくるという事態も生じる可能性があり、更に評価に要
する時間もかかるという問題があった。
However, in the conventional evaluation method, the thermal fatigue test must be performed until cracks occur in the test piece, and it not only takes a lot of time,
There is a possibility that the evaluation result may vary depending on the experience of the measurer who measures the crack, and there is a problem that the evaluation takes time.

【0006】[0006]

【課題を解決するための手段】上記技術的課題を解決す
るために請求項1の発明において講じた技術的手段は、
金属材料の熱疲労度を評価する方法において、試験片の
評価部位を急熱、急冷を繰り返して熱疲労試験を行い、
熱疲労による亀裂が前記試験片に生じる前に前記試験を
終了し、前記試験終了後、前記試験片の急熱、急冷部を
跨ぐ方向で表面粗さを測定し、急熱、急冷部に形成され
た凸部の高さを基に材料の熱疲労度を評価する、金属材
料の熱疲労度評価方法を使用したことである。
The technical means taken in the invention of claim 1 to solve the above technical problems are as follows:
In the method of evaluating the degree of thermal fatigue of a metal material, a thermal fatigue test is performed by repeating rapid heating and cooling of the evaluation site of the test piece,
The test is terminated before cracks due to thermal fatigue occur in the test piece, and after the test is finished, rapid heating of the test piece, surface roughness is measured in a direction straddling the rapid cooling portion, rapid heating, forming in the rapid cooling portion. That is, the method for evaluating the thermal fatigue level of a metal material, which evaluates the thermal fatigue level of a material based on the height of the formed convex portion, is used.

【0007】[0007]

【作用】上記技術的手段によれば、熱疲労試験評価部位
に亀裂が発生する前に評価部位が隆起し、表面に凸部が
形成される。又、凸部の高さは評価部位に亀裂が発生す
るまでほぼ直線的に増加する。従って、金属材料の熱疲
労度を評価する場合、従来のように亀裂が発生するまで
熱疲労試験を行わなくてもよく、ある試験サイクル回数
での凸部の高さを基に、材料の熱疲労度を評価すること
ができる。
According to the above technical means, the evaluation portion is raised before the crack is generated in the evaluation portion of the thermal fatigue test, and the convex portion is formed on the surface. Further, the height of the convex portion increases almost linearly until a crack occurs at the evaluation site. Therefore, when evaluating the thermal fatigue degree of a metal material, it is not necessary to perform a thermal fatigue test until a crack occurs as in the conventional case, and the heat of the material is determined based on the height of the convex portion at a certain number of test cycles. The degree of fatigue can be evaluated.

【0008】[0008]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0009】図1に熱疲労試験機の概略図を、図2に熱
疲労試験機の高周波加熱コイル付近の拡大斜視図を、図
3に熱疲労試験機の高周波加熱コイル付近の拡大正面図
を示す。
FIG. 1 is a schematic view of the thermal fatigue testing machine, FIG. 2 is an enlarged perspective view of the vicinity of the high frequency heating coil of the thermal fatigue testing machine, and FIG. 3 is an enlarged front view of the vicinity of the high frequency heating coil of the thermal fatigue testing machine. Show.

【0010】試験片固定用治具2は、その上方に試験片
1が入るように円筒状の孔が設けてあり、該孔に円筒状
の試験片1を入れる。試験片1の形状を図4に示す。本
実施例で使用した試験片1は、直径65mm、高さ60
mmの円筒状の試験片である。前記試験片固定用治具2
に試験片1を挿入したときに上方を向いている円状の平
面を熱疲労試験評価部位(以下、評価部位と称する。)
1aとする。又、試験片1は、締めつけボルト6で側面
を2か所固定する。尚、本実施例において試験片の材質
として鉄鋼材料の一種であるSKD61を使用した。
The jig 2 for fixing the test piece is provided with a cylindrical hole in the upper part thereof so that the test piece 1 can be inserted therein, and the cylindrical test piece 1 is put in the hole. The shape of the test piece 1 is shown in FIG. The test piece 1 used in this example has a diameter of 65 mm and a height of 60.
It is a cylindrical test piece of mm. Jig 2 for fixing the test piece
A circular flat surface that faces upward when the test piece 1 is inserted into the heat fatigue test evaluation site (hereinafter referred to as an evaluation site).
1a. Further, the test piece 1 is fixed at two places on its side surface with the tightening bolts 6. In this example, SKD61, which is a kind of steel material, was used as the material of the test piece.

【0011】高周波加熱コイル3は、試験片1の評価部
位1aの上に対向するかたちで設けられている。
The high frequency heating coil 3 is provided on the evaluation portion 1a of the test piece 1 so as to face it.

【0012】冷却水配管4は、冷却水タンク(図示せ
ず)から供給される冷却水が試験片1の評価部位1aに
降りかかり、効率的に試験片1を冷却できるようにその
先端が試験片1の評価部位1aに向かって配置されてい
る。
The tip of the cooling water pipe 4 is provided so that the cooling water supplied from a cooling water tank (not shown) falls on the evaluation portion 1a of the test piece 1 and the test piece 1 can be efficiently cooled. It is arranged toward one evaluation site 1a.

【0013】エアーブロー配管5は、エアー供給源(図
示せず)から供給されるエアーが試験片1の評価部位1
aに降りかかり、試験片1を効率的に空冷できるように
その先端が試験片1の評価部位1aに向かって配置され
ている。
In the air blow pipe 5, the air supplied from an air supply source (not shown) is the evaluation site 1 of the test piece 1.
The tip of the test piece 1 is arranged toward the evaluation portion 1a of the test piece 1 so that the test piece 1 can be efficiently air-cooled.

【0014】このような構造の熱疲労試験機において、
高周波加熱コイル3に通電する。尚、本実施例におい
て、出力周波数は100KHz、出力電力量は22KV
Aである。すると、試験片1の評価部位1aのうち高周
波加熱コイル3の直下にある部分(以下、急熱急冷部と
称する)1bのみが加熱される。この急熱急冷部1b
は、本実施例の場合図4に示すように評価部位1a上に
その中心とほぼ同じ位置に中心をもつ同心円上に形成さ
れる。5秒間加熱を続け、急熱急冷部1bの温度が約7
00℃となったところで加熱を停止する。その後、7秒
間自然放冷させ、急熱急冷部の温度を約300℃とす
る。自然放冷後、冷却水配管4の先端から冷却水が噴出
し、試験片1の評価部位1aを冷却する。6秒間水冷し
た後冷却水を止める。ここで、急熱急冷部の温度は約6
0℃まで低下する。その後、エアー供給源からエアーが
エアーブロー配管5を伝ってその先端から吹き出し、試
験片1の評価部位1aをエアーブローして空冷する。エ
アーブローを10秒間行った後、再び高周波加熱コイル
3に通電して試験片1を加熱する。これら一連の動作を
繰り返し行うことにより熱疲労試験を行う。なお、図5
に本実施例における試験片1の急熱急冷部1bの温度変
化パターンを示した。
In the thermal fatigue tester having such a structure,
The high frequency heating coil 3 is energized. In this embodiment, the output frequency is 100 KHz and the output electric energy is 22 KV.
A. Then, only the portion 1b of the evaluation portion 1a of the test piece 1 immediately below the high-frequency heating coil 3 (hereinafter, referred to as a rapid heating / quenching portion) is heated. This rapid heating and cooling section 1b
In the case of the present embodiment, as shown in FIG. 4, it is formed on a concentric circle having a center substantially at the same position as the center of the evaluation part 1a. Continue heating for 5 seconds, and the temperature of the rapid heating and cooling section 1b will be about 7
The heating is stopped when the temperature reaches 00 ° C. Then, it is naturally cooled for 7 seconds, and the temperature of the rapid heating and quenching section is set to about 300 ° C. After cooling naturally, cooling water is jetted from the tip of the cooling water pipe 4 to cool the evaluation site 1a of the test piece 1. After cooling with water for 6 seconds, stop the cooling water. Here, the temperature of the rapid heating and cooling section is about 6
It drops to 0 ° C. After that, air is blown from the tip of the air blow pipe 5 from the air supply source, and the evaluation site 1a of the test piece 1 is air blown and air-cooled. After performing air blowing for 10 seconds, the high frequency heating coil 3 is again energized to heat the test piece 1. A thermal fatigue test is performed by repeating these series of operations. Note that FIG.
The temperature change pattern of the rapid heating and quenching part 1b of the test piece 1 in this example is shown in FIG.

【0015】熱疲労試験後、試験片1を取り出し、評価
部位1aの表面粗さを測定する。表面粗さの測定方向
は、円状の評価部位1aの中心から周囲へ向かって急熱
急冷部1bを跨ぐ方向で測定する。測定結果を図6に示
す。図6aは、加熱、冷却10サイクルの熱疲労試験を
行った後に表面粗さを測定したものである。これを見る
と、急熱急冷部が隆起して凸部を形成し、周囲よりも5
μm程盛り上がっていることがわかる。又、図6bは、
加熱、冷却100サイクルの熱疲労試験を行った後に表
面粗さを測定したものである。これを見ると、急熱急冷
部の隆起が更に大きくなっていて周囲よりも7μm程盛
り上がっていることがわかる。又、図6cは、加熱、冷
却1500サイクルの熱疲労試験を行った後に表面粗さ
を測定したもので、急熱急冷部が周囲よりも15μm程
隆起している。図7は、縦軸に隆起して形成された凸部
の高さを、横軸に試験サイクル回数をとり、試験サイク
ル回数に対する凸部の高さの変化を示したグラフであ
る。図7中、(a)のグラフは試験片に熱処理も表面処
理も行わないもの、(b)のグラフは試験片に熱処理の
み行い、表面処理は行わないもの、(c)のグラフは試
験片に熱処理と表面処理の両方を行ったものである。こ
れを見ると、試験開始から10サイクル程は、凸部の高
さが急激に高くなっていることがわかる。しかしその
後、凸部の高さは試験サイクル回数に比例してほぼ直線
的に増加している。やがて、試験サイクル回数を増加し
ても凸部の高さに変化が見られなくなり、最後に亀裂が
発生する。又、3種類の材料を比較してみると、亀裂が
発生するまでの試験サイクル回数は、(a)の場合が一
番短く、次いで(b)の場合、そして(c)の条件が最
も長いことがわかる。又、同じ試験サイクル回数(例え
ば500回)での凸部の高さを比較してみると、(a)
の場合が最も高く、次いで(b)の場合、そして(c)
の条件が最も低いことがわかる。このように、亀裂発生
までの試験サイクル回数を比較してみても、ある試験サ
イクル回数における凸部の高さを比較してみても同じ結
果が得られることがわかる。従って、ある材料の熱処
理、表面処理状態を変えたもの、又は配合割合を変えた
ものの熱疲労度を評価する場合、亀裂発生まで熱疲労試
験を行わなくても、ある試験サイクル回数での凸部の高
さを比較すればよい。
After the thermal fatigue test, the test piece 1 is taken out and the surface roughness of the evaluation site 1a is measured. The surface roughness is measured in the direction from the center of the circular evaluation portion 1a to the periphery and across the rapid heating / cooling portion 1b. The measurement result is shown in FIG. FIG. 6a shows the surface roughness measured after a thermal fatigue test of 10 cycles of heating and cooling. When you see this, the rapid heating and quenching part rises to form a convex part,
It can be seen that the height rises by about μm. Also, FIG. 6b shows
The surface roughness was measured after a thermal fatigue test of 100 cycles of heating and cooling. From this, it can be seen that the swelling of the rapid heating and quenching portion is further increased and is raised by about 7 μm from the surroundings. Further, FIG. 6c shows the surface roughness measured after the thermal fatigue test of 1500 cycles of heating and cooling, in which the rapidly heated and quenched portion is raised by about 15 μm from the surroundings. FIG. 7 is a graph showing the height of the protrusion formed on the vertical axis and the number of test cycles on the horizontal axis, and showing the change in height of the protrusion with respect to the number of test cycles. In FIG. 7, the graph of (a) shows the test piece without heat treatment and surface treatment, the graph of (b) shows the test piece only with heat treatment and no surface treatment, and the graph of (c) shows the test piece. Both are heat-treated and surface-treated. From this, it can be seen that the height of the convex portion sharply increases for about 10 cycles from the start of the test. However, thereafter, the height of the convex portion increases almost linearly in proportion to the number of test cycles. Eventually, even if the number of test cycles is increased, the height of the convex portion remains unchanged, and finally cracks occur. Also, comparing the three types of materials, the number of test cycles until cracking occurs is shortest in case (a), then in case (b), and longest in condition (c). I understand. Further, comparing the heights of the convex portions at the same number of test cycles (for example, 500 times), (a)
Is the highest, then (b), and (c)
It can be seen that the condition of is the lowest. As described above, it is understood that the same result can be obtained by comparing the number of test cycles until the occurrence of cracks and also by comparing the heights of the convex portions at a certain number of test cycles. Therefore, when evaluating the thermal fatigue degree of heat treatment of a certain material, the one whose surface treatment state has been changed, or the one whose compounding ratio has been changed, even if the thermal fatigue test is not performed until crack initiation, the convex portion at a certain number of test cycles Compare the heights of.

【0016】[0016]

【発明の効果】請求項1の発明は、以下の如く効果を有
する。
The invention of claim 1 has the following effects.

【0017】金属材料の熱疲労度を評価する方法におい
て、熱疲労試験後に、試験片の試験評価部位に隆起して
形成された凸部の高さを測定し、比較することにより材
料の熱疲労度の評価をする。これにより、従来熱疲労試
験片に亀裂が生じるまで熱疲労試験を行っていたのに対
して、亀裂が生じる前に熱疲労試験を終了させることが
でき、試験時間が短縮できる。
In the method of evaluating the degree of thermal fatigue of a metal material, after the thermal fatigue test, the height of the convex portion formed by being raised at the test evaluation site of the test piece is measured and compared to determine the thermal fatigue of the material. Evaluate the degree. This allows the thermal fatigue test to be completed before the crack occurs in the conventional thermal fatigue test piece, whereas the thermal fatigue test can be completed before the crack occurs, and the test time can be shortened.

【0018】又、従来試験片に亀裂が生じたか否かの判
断、亀裂の個数の測定等は測定者の経験を必要とし、測
定にもかなりの時間を要していたのに対し、本発明では
試験片の隆起した部位を表面粗さ計等で測定するだけで
あるので、測定者の経験もいらず、簡単に測定できる。
従って、測定者の経験による評価結果の違いもなく、又
評価に要する時間も短縮できる。
Further, in the past, judgment of whether or not a crack had occurred in a test piece, measurement of the number of cracks, and the like required the experience of the measurer, and the measurement also took a considerable amount of time. Then, since only the raised portion of the test piece is measured with a surface roughness meter or the like, the measurement can be easily performed without the experience of a measurer.
Therefore, there is no difference in the evaluation result due to the experience of the measurer, and the time required for the evaluation can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に係る熱疲労試験機の斜視図である。FIG. 1 is a perspective view of a thermal fatigue tester according to this embodiment.

【図2】本実施例に係る熱疲労試験機の高周波加熱コイ
ル付近の拡大斜視図である。
FIG. 2 is an enlarged perspective view of the vicinity of a high frequency heating coil of the thermal fatigue tester according to the present embodiment.

【図3】本実施例に係る熱疲労試験機の高周波加熱コイ
ル付近の拡大正面図である。
FIG. 3 is an enlarged front view of the vicinity of a high frequency heating coil of the thermal fatigue tester according to the present embodiment.

【図4】本実施例に係る試験片の斜視図である。FIG. 4 is a perspective view of a test piece according to the present embodiment.

【図5】本実施例における試験片の加熱、冷却パターン
図である。
FIG. 5 is a heating / cooling pattern diagram of the test piece in this example.

【図6】本実施例に係る熱疲労試験後の試験片の表面粗
さを測定したグラフである。
FIG. 6 is a graph showing the measured surface roughness of the test piece after the thermal fatigue test according to the present embodiment.

【図7】本実施例において熱疲労試験サイクル回数と隆
起して形成された凸部の高さとの関係を示すグラフであ
る。
FIG. 7 is a graph showing the relationship between the number of thermal fatigue test cycles and the height of the convex portion formed by being raised in this example.

【図8】従来技術において熱疲労試験サイクル回数と発
生した亀裂の個数との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the number of thermal fatigue test cycles and the number of cracks that occurred in the prior art.

【符号の説明】 1 試験片 2 試験片固定治具 3 高周波加熱コイル 4 冷却水配管 5 エアーブロー配管 6 締めつけボルト 1a 評価部位 1b 急熱急冷部[Explanation of symbols] 1 test piece 2 test piece fixing jig 3 high frequency heating coil 4 cooling water piping 5 air blow piping 6 tightening bolt 1a evaluation part 1b rapid heating and quenching section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属材料の熱疲労度を評価する方法にお
いて、試験片の評価部位を急熱、急冷を繰り返して熱疲
労試験を行い、熱疲労による亀裂が前記試験片に生じる
前に前記試験を終了し、前記試験終了後、前記試験片の
急熱、急冷部を跨ぐ方向で表面粗さを測定し、急熱、急
冷部に形成された凸部の高さを基に材料の熱疲労度を評
価する、金属材料の熱疲労度評価方法。
1. A method for evaluating the degree of thermal fatigue of a metal material, wherein a thermal fatigue test is performed by repeating rapid heating and rapid cooling of an evaluation site of a test piece, and the test is performed before cracks due to thermal fatigue occur in the test piece. After the end of the test, rapid heating of the test piece, surface roughness is measured in the direction across the quenching portion, rapid heating, thermal fatigue of the material based on the height of the convex portion formed in the quenching portion Evaluation method of thermal fatigue of metal materials.
JP15014694A 1994-06-30 1994-06-30 Thermal fatigue evaluation method for metallic material Pending JPH0815114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15014694A JPH0815114A (en) 1994-06-30 1994-06-30 Thermal fatigue evaluation method for metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15014694A JPH0815114A (en) 1994-06-30 1994-06-30 Thermal fatigue evaluation method for metallic material

Publications (1)

Publication Number Publication Date
JPH0815114A true JPH0815114A (en) 1996-01-19

Family

ID=15490506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15014694A Pending JPH0815114A (en) 1994-06-30 1994-06-30 Thermal fatigue evaluation method for metallic material

Country Status (1)

Country Link
JP (1) JPH0815114A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070228A (en) * 2006-09-14 2008-03-27 Tokyo Electric Power Co Inc:The Device and method for testing thermal fatigue crack development, and test body used for the device
CN104122079A (en) * 2013-04-25 2014-10-29 深圳市海洋王照明工程有限公司 Key cap test method
CN106769597A (en) * 2017-01-16 2017-05-31 西南交通大学 A kind of disc material thermal fatigue tester and test method
CN109060510A (en) * 2018-08-29 2018-12-21 北京航空航天大学 A kind of cooling thermal protection structure of the air can be used for fatigue tester

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070228A (en) * 2006-09-14 2008-03-27 Tokyo Electric Power Co Inc:The Device and method for testing thermal fatigue crack development, and test body used for the device
CN104122079A (en) * 2013-04-25 2014-10-29 深圳市海洋王照明工程有限公司 Key cap test method
CN106769597A (en) * 2017-01-16 2017-05-31 西南交通大学 A kind of disc material thermal fatigue tester and test method
CN109060510A (en) * 2018-08-29 2018-12-21 北京航空航天大学 A kind of cooling thermal protection structure of the air can be used for fatigue tester
CN109060510B (en) * 2018-08-29 2021-02-02 北京航空航天大学 Air cooling heat protection structure for fatigue testing machine

Similar Documents

Publication Publication Date Title
CN107389445B (en) Method for evaluating reheat crack sensitivity of material through stress relaxation test
US6112971A (en) Multi-nozzle combustion end cover vacuum brazing process
US7559251B2 (en) Apparatus for forming thermal fatigue cracks
EP1927668B1 (en) Restoration method for deteriorated part and restoration apparatus for deteriorated part
JP3649223B2 (en) Heat treatment method and heat treatment apparatus for piping system
JPH0815114A (en) Thermal fatigue evaluation method for metallic material
CN106181220B (en) Flame repairing technique after a kind of aluminum alloy welding
JP2013006215A (en) Treatment method for increasing durability of steel structures
JP6042074B2 (en) Ultrasonic shock treatment method
CN112729216A (en) Intelligent real-time monitoring and measuring device for deformation in additive manufacturing process
CN112505286B (en) Detection device and method for zinc-induced liquid metal crack formation condition
TWI827418B (en) How to repair cracks in turbine blades
KR20110016687A (en) Method for removing residual stress of welding portion in structure
JP5349563B2 (en) Shaft enlargement processing method
US5012800A (en) Mechanical-metallurgic process for repairing machines or machine components damaged by cracks, fissures, wearings or squashes made of metallic material difficult to weld and of any forms
CN113201627B (en) Local heat treatment method for inner wall of large quenched and tempered steel pressure container after repair welding
JPH11320120A (en) Steel pipe local joining method
KR20070122349A (en) Apparatus for fomating a thermal-fatigue crack
JP2015129743A (en) Reheat cracking sensitivity evaluation method and reheat cracking suppression method
RU2811004C1 (en) Method for local heat treatment of welded joints of large-sized thick-walled products
JP6841378B2 (en) How to improve fatigue resistance of welded joints
CN114065516A (en) Method for testing and evaluating mechanical property of material after surface damage repair
KR101349952B1 (en) A method for retarding the crack growth on the plate
Buckstegge et al. CORRELATION BETWEEN HEAT-CHECKING RESISTANCE AND IMPACT BENDING ENERGY OF HOT-WORK TOOL STEEL DIN 1.2344.
CN116809745A (en) Forming method and device for blades in three-body welding impeller