JP3622022B2 - Strength inspection method for members - Google Patents

Strength inspection method for members Download PDF

Info

Publication number
JP3622022B2
JP3622022B2 JP21204496A JP21204496A JP3622022B2 JP 3622022 B2 JP3622022 B2 JP 3622022B2 JP 21204496 A JP21204496 A JP 21204496A JP 21204496 A JP21204496 A JP 21204496A JP 3622022 B2 JP3622022 B2 JP 3622022B2
Authority
JP
Japan
Prior art keywords
jig
stress
strength
heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21204496A
Other languages
Japanese (ja)
Other versions
JPH1038777A (en
Inventor
隆治 佐藤
景久 浜崎
猛 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP21204496A priority Critical patent/JP3622022B2/en
Publication of JPH1038777A publication Critical patent/JPH1038777A/en
Application granted granted Critical
Publication of JP3622022B2 publication Critical patent/JP3622022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、あらゆる部材の強度を検査する方法及び硬質部材の応力又は歪みを測定する方法に関し、特に材質強度のワイブル係数が低い部材や、不良率をできるだけ0に近づける必要がある部材、あるいは著しく高い信頼性が要求される部材等の強度を検査する方法及び応力又は歪みを測定する方法に関する。
【0002】
【従来の技術】
部材の強度検査方法として、液圧ポンプで水又は油等の液体及びゴム状弾性体を介して、セラミックス製部品に内圧、すなわち保証応力を印加する方法(特開平4−256829号)、液圧ポンプで水又は油等の液体及び弾性チューブを介して、セラミックス製部品に内圧、すなわち保証応力を印加する方法(特開平5−133842号)、又加圧装置でセラミック製品を金属製治具に押し付けつつ加熱することで、熱伸び応力と摩擦により、セラミックス部品に保証応力を印加する方法(特開平4−350534号)等が開示されている。
【0003】
【発明が解決しようとする課題】
しかし、これらの方法には種々の問題がある。例えば、特開平4−256829号及び特開平5−133842号の方法では、液体及びゴム状弾性体を介して、最低50MPa レベルの液圧を印加するため、それ相当の高コストの圧力容器装置(シールド材、ゴム状弾性体の型代を含む)が必要となる。また、製品破損時に液体飛散が考えられるため、シール性の箱体で装置全体を覆う必要がある。さらに図9に示す二段のリング1の一体形状品の場合、二段リングに同時に圧力を印加する場合、二段リングの内側に同時に密接する半円環状の治具93等が更に必要となる。
【0004】
また、特開平4−350534号の方法では、セラミックス製品と金属製治具の間の静摩擦係数μにより、金属製治具の熱伸び応力を製品の端面部のみに印加する。μ=0.3 〜0.4 とセラミックス製品と金属製治具間に滑りが発生するため、製品に与えたい径方向荷重の2.5 〜3.3 倍の圧縮荷重を製品にかける必要がある。また、熱伸び応力を製品の端面部のみに印加するため、長尺の製品に軸方向にほぼ均一に引張り応力を発生させることが不可能であり、また短尺の製品に応力を発生させる場合でも、より大きい圧縮荷重を製品にかける必要がある。そのことによる製品の強度の低下、又そのために必要となる加圧装置のコストアップが懸念される。
【0005】
従って、本発明の目的は、安価な装置を用い、簡単な操作で、部材の任意な部位に圧縮応力及び引っ張り応力を自在に付与できる部材の強度検査方法及び硬質部材の応力又は歪みを測定する方法を提供することである。
【0006】
【課題を解決するための手段】
上記目的に鑑み鋭意研究の結果、本発明者等は、治具を使用して部材の強度を検査する場合に、(a) 治具及び部材の一方が他方に遊嵌するように治具の形状を定めるとともに、治具の材質を部材と異なる熱膨張率を有するように選定し、前記治具と部材を遊嵌の関係に係合し、加熱又は冷却すると、両者の熱膨張率の差から、部材に所定の圧縮又は引張応力がかかり、もって部材の強度を検査できるとともに、硬質部材の応力又は歪みを測定できること、並びに (b) 前記加熱後に治具又は(硬質)部材を急冷するか、前記冷却後に治具又は(硬質)部材を急加熱すると、(硬質)部材の強度低下を防止できることを発見し、本発明に想到した。
【0007】
すなわち、治具を使用して部材の強度を検査する本発明の部材強度検査方法は、(1) 前記部材の強度検査に必要な応力を実用中に発生する最大応力より決定し、(2) 前記強度検査応力から、前記部材と異なる熱膨張率を有する治具の材質、及び前記治具と前記部材との遊嵌の初期クリアランスを定め、(3) 前記材質の治具及び前記部材の一方を他方に遊嵌し、(4) 検査開始温度から所定の温度まで前記治具及び/又は前記部材を加熱又は冷却することにより、前記部材に応力を与え、(5) 前記加熱後に前記治具又は前記部材を急冷するか、前記冷却後に前記治具又は前記部材を急加熱することにより遊嵌状態に戻し、 (6)前記部材にクラックが発生したか否かを検出することを特徴とする。
【0008】
また、本発明の硬質部材の応力又は歪みを測定する方法は、(1) 前記硬質部材に応力又は歪みの測定手段を設け、(2) 前記硬質部材と異なる熱膨張率を有する材質からなる治具と前記硬質部材との遊嵌の初期クリアランスを定め、(3) 前記材質の治具及び前記硬質部材のいずれか一方を他方に遊嵌し、(4) 測定開始温度から所定の温度まで前記治具及び/又は前記部材を加熱又は冷却することにより、前記硬質部材に作用荷重を発生させ、(5) 前記応力又は歪み測定手段を用いて、前記作用荷重から生じる応力又は歪みを測定し、次いで (6) 前記加熱後に前記治具又は前記部材を急冷するか、前記冷却後に前記治具又は前記部材を急加熱することにより遊嵌状態に戻すことを特徴とする。
【0009】
【発明の実施の形態】
以下本発明を詳細に説明する。
[1] 部材の強度検査方法
(1) 部材
本発明の方法によりあらゆる部材の強度検査に適用可能である。例えば木材、ポリマー樹脂、金属等が挙げられる。特に材料強度のワイブル係数が低いものや、不良率をできるだけ0に近づける必要があるもの、あるいは著しく高い信頼性が要求されるもの等があり、例えば各種のセラミックス、カーボン、金属間化合物等、非常に硬度が高いが変形能又は塑性が低い材質からなる硬質脆性部材が適する。セラミック材としては、窒化珪素、炭化珪素、アルミナ、ジルコニア等の各種の強度材が本発明の強度検査方法に好適である。
【0010】
(2) 部材の強度を検査するのに必要な応力の決定
部材の強度を検査するのに必要な応力は、一般に部材が実際の作動時に受ける応力、特に実際の作動時に受ける最大応力より求められる。例えば、▲1▼部材が実際の作動時に受ける応力に、▲2▼部材の材料強度のワイブル係数、▲3▼不良品確率、▲4▼長時間の疲労による強度低下率から求められる安全係数を掛けた値を、強度検査に必要な応力とする。しかしこの方法に限らず、種々の方法で強度検査に必要な応力を決定することができる。
【0011】
(3) 治具の材質、サイズ及び形状の決定
強度検査応力、及び部材の熱膨張率、ヤング率、ポアソン比等より、治具の材質、部材と治具との間の初期クリアランス、加熱により応力を発生させる場合の加熱温度、及び冷却により応力を発生させる場合の冷却温度を決定する。治具は検査すべき部材と異なる熱膨張率を有する材質からなる。また熱膨張率の差で応力が発生したときに、治具自身が塑性変形せず、弾性変形域内に収まるようなものが好ましい。このような治具の材質として、検査すべき部材の熱膨張率に応じて金属、セラミックス、ポリマー等あらゆる材質を用いることができる。
【0012】
一般に、治具と部材との熱膨張率の差が大きいほど、高い応力が得られる。このため、部材と治具の熱膨張率の差は0.5 ×10−6−1以上が好ましく、5×10−6−1以上がより好ましい。
【0013】
部材と治具との初期クリアランスが小さいほど、低い加熱温度又は冷却温度にて高い応力が得られるが、初期クリアランスが小さすぎると、治具と部材との遊嵌が困難になる。部材と治具との間の初期クリアランスは、治具及び部材の形状及びサイズ、治具と部材との熱膨張率の差、必要とする応力等の条件をもとに適宜設定することができるが、一般に30〜100 μmとするのが好ましい。
【0014】
(4) 治具の作製と遊嵌
決定された材質と初期クリアランスのデータに基づき、治具を作製する。本発明では、部材の被検部位に治具が上記初期クリアランスをもって当接し、均等に部材に応力を与えるように、治具の形状を決めればよい。
【0015】
(5) 治具及び/又は部材の加熱又は冷却
検査時には、治具及び部材の一方を他方に遊嵌し、所定の温度まで部材及び/又は治具を加熱又は冷却する。加熱する手段として、電気炉、誘導加熱装置、熱風ヒーター等が挙げられる。また、冷却する手段として、電気冷却装置、水冷スプレー、空冷ジェット等が挙げられる。加熱温度としては、治具の弾性率の温度による低下が大きくない範囲内で使用するのが好ましい。スチール製治具を使用する場合、最大300 ℃が好ましい。
【0016】
治具及び部材の一方を他方に遊嵌する場合の組み合わせは以下の通りである。それぞれの場合について説明する。

Figure 0003622022
【0017】
(a) 治具の熱膨張率が部材より大きい場合
(i) 引張応力
部材が凹部及び/又は中空部を有する時には、治具を部材の凹部及び/又は中空部に所定のクリアランスで遊嵌し、治具、又は治具及び部材を加熱すると、部材に引張応力が発生する。
【0018】
(ii)圧縮応力
治具が凹部及び/又は中空部を有する時には、部材を治具の凹部及び/又は中空部に遊嵌する。この場合、スタート時の温度で所定のクリアランスがある状態で、治具、又は治具及び部材を冷却すると、部材に圧縮応力が発生する。
【0019】
(b) 治具の熱膨張率が部材より小さい場合
(i) 引張応力
部材が凹部及び/又は中空部を有する時には、治具を部材の凹部及び/又は中空部に遊嵌する。スタート時の温度で所定のクリアランスがある状態で、部材、又は治具及び部材を冷却すると、部材に引張応力が発生する。
【0020】
(ii)圧縮応力
治具が凹部及び/又は中空部を有する時には、部材を治具の凹部及び/又は中空部に所定のクリアランスで遊嵌し、部材、又は部材及び治具を加熱すると、部材に圧縮応力が発生する。
【0021】
引張応力及び圧縮応力のいずれの場合も、加熱した後遊嵌状態になるまで冷却する時には、内側にある治具又は部材を急冷するのが好ましい。具体的には、▲1▼内側にある治具の方が熱膨張率が大きい場合には、内側にある治具を急冷し、▲2▼内側にある部材の方が熱膨張率が大きい場合には、内側にある部材を急冷する。また、内側にある部材を急冷すると同時に、外側にある治具を加熱してもよい。このような場合に治具又は部材を徐冷すると、治具が部材に与える応力がなかなか小さくならず、部材の強度低下が起きるおそれがある。
【0022】
また、冷却した後遊嵌状態になるまで昇温させる時には、外側にある治具又は部材を急加熱するのが好ましい。具体的には、▲1▼外側にある治具の方が熱膨張率が大きい場合には、外側にある治具を急加熱し、▲2▼外側にある部材の方が熱膨張率が大きい場合には、外側にある部材を急加熱する。また、外側にある部材又は治具を急加熱すると同時に、内側にある治具又は部材を冷却してもよい。このような場合に治具又は部材を徐々に昇温すると、治具が部材に与える応力がなかなか小さくならず、部材の強度低下が起きるおそれがある。
【0023】
(6) 部材中のクラックの検出
加熱又は冷却の完了後部材を治具から分離し、部材内にクラックが発生したか否かを検出する。クラックの検出方法は公知のものでよいが、例として蛍光探傷法、X線透過探傷法等が挙げられる。
【0024】
なお、工程(4) の加熱又は冷却を複数回繰り返し、部材の疲労検査を行うこともできる。
【0025】
部材の中空部内に治具を遊嵌した一例を図1に示す。この例では、部材1は断面がエの字状で全体がドーナツ状になっている形状を有し、内方及び外方に突出するリング部11、12を有する。部材1より治具3の方が大きな熱膨張率を有する場合には、治具3、又は治具3及び部材1を加熱する。また部材1より治具3の方が小さな熱膨張率を有する場合には、両者を遊嵌し、部材1、又は部材1及び治具3を冷却する。
【0026】
以下、窒化珪素系セラミックス製の部材1と、スチール製の治具3を使用する場合について、詳細に説明する。この場合には、治具3の方が部材1より大きな熱膨張率を有するので、治具3と部材1のリング部11とのクリアランスを直径で70±2μmとして、室温で部材1に治具3を遊嵌する。遊嵌した状態で110 ℃の炉に入れ、部材1及び治具3が110 ℃になるまで保持する。炉から取り出した後、室温まで強制空冷又は水冷で急冷し、部材1から治具3を取り除く。次いで上記の方法でクラックの有無を検出する。
【0027】
図2に示す実施例では、部材2は2つの突起部21、22を有する。2つの突起部21、22の間に棒状の治具5を遊嵌し、加熱又は冷却することにより、部材2の2つの突起部21、22の付け根部に引張応力を付与することができる。図3の実施例では、部材2は角の丸い筒状である。棒状治具5を部材2の四つの内面に所定のクリアランスをもって当接するように嵌挿する。図4の実施例では、棒状部材2を円筒状治具5の内面に所定のクリアランスをもって当接するように、治具5の中空部に遊嵌する。
【0028】
本発明では、1つの治具で部材の一個所の強度検査を行うことができるが、1つの治具で部材の複数個所の強度検査を同時に行うこともできる。また1つの治具で複数の部材の強度検査を行うことができるし、複数の治具で1つの部材の強度検査を行うこともできる。
【0029】
[2] 硬質部材の応力又は歪みの測定方法
本発明の硬質部材の応力又は歪みの測定方法は、以下の順序で行う。
(1) 前記硬質部材に応力又は歪みの測定手段を設け、
(2) 前記硬質部材と異なる熱膨張率を有する材質からなる治具と前記硬質部材との遊嵌の初期クリアランスを定め、
(3) 前記材質の治具及び前記硬質部材のいずれか一方を他方に遊嵌し、
(4) 測定開始温度から所定の温度まで前記治具及び/又は前記硬質部材を加熱又は冷却することにより、前記硬質部材に作用荷重を発生させ、
(5) 前記応力又は歪み測定手段を用いて、前記作用荷重から生じる応力又は歪みを測定し、
(6) 前記加熱後に前記治具又は前記硬質部材を急冷するか、前記冷却後に前記治具又は前記硬質部材を急加熱することにより遊嵌状態に戻す。
【0030】
硬質部材の応力又は歪みの測定方法は基本的に上記[1] に記載した方法と同じであるが、硬質部材に発生させる作用荷重は、治具と硬質部材との間のクリアランス及び治具の熱膨張率等を適宜選択することにより、任意に設定することができる。また、硬質部材の所定部位に設けられる応力又は歪みの測定手段として、歪みゲージ等の計測機器が挙げられる。本発明の硬質部材の応力又は歪みの測定方法を用いれば、硬質部材の破断強度等を測定することができる。
【0031】
【実施例】
本発明を以下の実施例により詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0032】
実施例1
粉末(純度99.9%、日本イットリウム(株)製)1.5 〜5.0 重量%と、Al粉末(SAFFILアルミナファイバー、ICI社製)1.0 〜5.0 %と、Si粉末(UBE−SN−E09、宇部興産(株)製)残部とからなる出発材料をスリップキャスティング法で成形し、1900℃で焼結し、仕上げ加工を行って、図1に示す形状のセラミックリング1を作製した。セラミックリング1は内方及び外方に突出する一対のリング部11、12を有していた。セラミックリング1の特性及び寸法は以下の通りであった。
密度 :3.21g/cm
熱膨張率:3.0 ×10−6−1
内径A:119.060 mm、
内径B:119.090 mm、
内径C:125.0 mm、
外径D:161.0 mm
高さH:17.5 mm
すみR: 1.0 mm
リング部11の肉厚W1:3.5 mm
リング部12の肉厚W2:3.5 mm
リングの肉厚T:8.0 mm
【0033】
また、リング部11の肉厚にはばらつきがあり、標準肉厚3.5mm に対して、部分的に3.1mm のところがあり、なおその3.1mm の部分には、図6に示すような切欠きがある。
【0034】
一方、高周波焼き入れを行った円柱状の炭素鋼S35C製治具3(熱膨張率:12×10−6−1、表面硬度HC:40〜55、高さ45 mm 、直径 118.990 mm )を準備した。治具3とリング部11との初期クリアランスは70μmであり、リング部12との初期クリアランスは100 μmであった。
【0035】
リング1上で発生する歪みを測定するために、リング部11の上面及び下面の内径Aにできるだけ近い部位及びリング部12の上面及び下面の内径Bにできるだけ近い部位に円周方向に歪みゲージ(ZFLA−1及びZFLA−6、東京測器研究所(株)製)を貼り付けた。
【0036】
図1に示すように、セラミックリング1の中空部に治具3を挿入して治具台4上に置き、両者を電気炉で加熱した。加熱速度は約6℃/分であった。110 ℃まで加熱した後、すぐに電気炉から取り出し、主として治具3をエアブローで急冷して、セラミックリング1を治具から外した。この後、セラミックリング1を蛍光探傷法で検査し、クラックの有無を調べた。クラックが入ってなければ、セラミックリング1の強度を合格とし、クラックが入っていれば不合格とした。
【0037】
110 ℃まで加熱したときのリング部11及びリング部12の歪み量を温度に対してプロットしたものを図5に示す。75℃に加熱したときにリング部11の内径が治具3に当接し、75℃以上では、リング部11の歪み量がほぼ直線的に増加した。一方、リング部12は100 ℃で治具に当接し、それ以後歪み量が直線的に増加した。また、リング部11の肉厚には、ばらつきが有り、標準肉厚3.5mm に対して、部分的に3.1mm のところがある。この部分に歪みゲージを貼り付け、発生する歪み量を図5にプロットすると、薄肉であるため、発生する円周応力が標準肉厚3.5mm 部より大きくなった。110 ℃での各リング部の円周方向歪み量と円周応力をまとめて表1に示す。
【0038】
Figure 0003622022
【0039】
本検査では、表1に示すようにリング11の標準肉厚3.5mm に対して、肉厚3.1mm の薄い部分に発生する円周応力が高くなるが、本セラミックスリング1の実用中においても、同様な円周応力が発生する場合、肉厚の薄い部分により高い応力が発生する。
【0040】
実施例2
実施例1と同じ方法でセラミックスリング1に対して再度強度検査を行った。リング部11の肉厚3.1mm 部であり、図6及び7に示す切欠き6が存在する部分及びリング部12(標準肉厚3.5mm )の歪み量を温度に対してプロットしたグラフを図8に示す。
【0041】
図8からわかるように、110 ℃までは実施例1の結果と±9μの誤差で再現性よくトレースする。 122.5℃に加熱したとき、リング1のうち、リング部11の肉厚3.1mm 部であり、図6及び7に示す切欠き6が存在する部分の歪み量が481 μになり、この部分に146.7MPaの円周応力が発生し、セラミックスリング1が破断した。リングにクラックが発生する時期は歪みゲージより検出する歪み量の急激な降下により検出可能である。また、破壊起点はリング部11の高歪み発生箇所31であり、リング1の破断強度は図7に示したリング1の高歪み発生個所31に発生する応力により求められる。高歪み発生個所31に発生する応力は、円周応力146.7MPaに、有限要素法で求めた高歪み発生個所31の応力集中係数α2.0 を乗じて293.4MPaと得られる。よって、リング1の破断強度は293.4MPaとなる。
【0042】
このようにして、本発明の方法を用いてセラミックスの強度を測定することができる。また、この強度試験において高歪み発生個所31に最大応力が発生したが、実機使用において同様な円周応力が発生する場合、同じように高歪み発生個所31に応力が集中し、最大応力が発生する。
【0043】
【発明の効果】
以上詳述した通り、本発明によれば、遊嵌自在の治具を用いて部材の強度検査を行うため、短時間で効率的な強度検査ができるとともに、実機での発生応力をほぼ再現できる。また発生する応力を容易に制御することができ、再現性も高い。さらに設備が簡単で安価に部材の強度検査及び応力、歪みの測定を行うことができる。このような本発明の部材の強度検査方法及び硬質部材の応力又は歪みの測定方法はセラミック部材を始めとしたあらゆる部材の強度検査に幅広く利用することができる。
【図面の簡単な説明】
【図1】本発明の一実施例による部材と治具とを遊嵌した状態の概略断面図である。
【図2】本発明の他の実施例による部材と治具とを遊嵌した状態の概略断面図である。
【図3】本発明のさらに他の実施例による部材と治具とを遊嵌した状態の概略断面図である。
【図4】本発明のさらに他の実施例による部材と治具とを遊嵌した状態の概略断面図である。
【図5】実施例1においてセラミックリングと金属治具とを遊嵌して測定した円周方向歪み量と温度との関係を示すグラフである。
【図6】図1に示すセラミックリングの部分横断面図である。
【図7】図1に示すセラミックリングの内部から見た部分側面図である。
【図8】実施例2においてセラミックリングと金属治具とを遊嵌して測定した円周方向歪み量と温度との関係を示すグラフである。
【図9】従来の方法による部材と治具とを遊嵌した状態の概略断面図(a)と平面図(b)である。
【符号の説明】
1・・・セラミックリング
2・・・部材
3、5・・・治具
4・・・治具台
11、12・・・リング部
31・・・高歪み発生個所
6・・・切欠き
91・・・ゴム状弾性体
92・・・圧力媒体
93・・・半円環状治具[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for inspecting the strength of any member and a method for measuring the stress or strain of a hard member, and in particular, a member having a low material strength Weibull coefficient, a member whose defect rate needs to be as close to 0 as possible, or remarkably The present invention relates to a method for inspecting the strength of a member or the like that requires high reliability and a method for measuring stress or strain.
[0002]
[Prior art]
As a method for inspecting the strength of a member, a method of applying internal pressure, that is, a guarantee stress to a ceramic part through a liquid such as water or oil and a rubber-like elastic body with a hydraulic pump (Japanese Patent Laid-Open No. 4-256929), hydraulic pressure A method of applying internal pressure, that is, guaranteed stress, to a ceramic part through a liquid such as water or oil and an elastic tube with a pump (Japanese Patent Laid-Open No. 5-133842), and a ceramic product to a metal jig with a pressure device A method (Japanese Patent Laid-Open No. 4-350534) or the like for applying a guarantee stress to a ceramic component by heat elongation stress and friction by heating while pressing is disclosed.
[0003]
[Problems to be solved by the invention]
However, these methods have various problems. For example, in the methods of JP-A-4-256929 and JP-A-5-133842, a liquid pressure of at least 50 MPa level is applied via a liquid and a rubber-like elastic body. Shield material and rubbery elastic body mold allowance) are required. In addition, since the liquid may be scattered when the product is broken, it is necessary to cover the entire apparatus with a sealing box. Furthermore, in the case of the integrally formed product of the two-stage ring 1 shown in FIG. 9, when a pressure is simultaneously applied to the two-stage ring, a semi-annular jig 93 that is in close contact with the inside of the two-stage ring is further required. .
[0004]
In the method disclosed in Japanese Patent Laid-Open No. 4-350534, the thermal elongation stress of the metal jig is applied only to the end surface of the product by the coefficient of static friction μ between the ceramic product and the metal jig. Since μ = 0.3 to 0.4 and slip occurs between the ceramic product and the metal jig, it is necessary to apply a compressive load 2.5 to 3.3 times the radial load to be applied to the product. is there. In addition, since the thermal elongation stress is applied only to the end face of the product, it is impossible to generate a tensile stress almost uniformly in the axial direction on a long product, and even when stress is generated on a short product. It is necessary to apply a larger compressive load to the product. As a result, there is a concern that the strength of the product may be reduced, and the cost of the pressurizing apparatus required for that purpose may be increased.
[0005]
Accordingly, an object of the present invention is to measure the strength or stress of a hard member and to measure the stress or strain of a hard member that can freely apply compressive stress and tensile stress to any part of the member with a simple operation using an inexpensive apparatus. Is to provide a method.
[0006]
[Means for Solving the Problems]
As a result of diligent research in view of the above object, the present inventors have determined that when a jig is used to inspect the strength of a member, (a) one of the jig and the member is loosely fitted to the other. When determining the shape and selecting the material of the jig to have a different coefficient of thermal expansion from that of the member, engaging the jig and the member in a loose-fitting relationship, and heating or cooling, the difference in the coefficient of thermal expansion between the two from consuming a predetermined compressive or tensile stress member, it has with it testing the strength of the member, Rukoto can measure stress or strain of the rigid member, as well as (b) a jig after said heating or (rigid) member quenching Alternatively, it was discovered that if the jig or the (hard) member is heated rapidly after the cooling, the strength of the (hard) member can be prevented from being lowered, and the present invention has been conceived.
[0007]
That is, the member strength inspection method of the present invention in which the strength of the member is inspected using a jig is determined by (1) the stress necessary for the strength inspection of the member determined from the maximum stress generated in practical use, (2) From the strength inspection stress, a material of a jig having a coefficient of thermal expansion different from that of the member, and an initial clearance for loose fitting between the jig and the member are determined. (3) One of the jig of the material and the member (4) Stress is applied to the member by heating or cooling the jig and / or the member from an inspection start temperature to a predetermined temperature, and (5) the jig after the heating. Alternatively, the member is rapidly cooled, or the jig or the member is rapidly heated after the cooling to return to a loose-fitting state, and (6) detecting whether or not a crack has occurred in the member. .
[0008]
Further, the method for measuring the stress or strain of the hard member of the present invention comprises: (1) providing the hard member with stress or strain measuring means; and (2) a treatment made of a material having a thermal expansion coefficient different from that of the hard member. Determining an initial clearance of loose fitting between the tool and the hard member, (3) loosely fitting either the jig of the material or the hard member to the other, (4) from the measurement start temperature to a predetermined temperature By heating or cooling the jig and / or the member, an operating load is generated on the hard member. (5) Using the stress or strain measuring means, the stress or strain generated from the operating load is measured , Next, (6) the jig or the member is rapidly cooled after the heating, or the jig or the member is rapidly heated after the cooling to return to the loose fitting state .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[1] Member Strength Inspection Method (1) Member The method of the present invention can be applied to any member strength inspection. For example, wood, polymer resin, metal and the like can be mentioned. In particular, there are materials whose Weibull coefficient of material strength is low, those where the defect rate needs to be as close to 0 as possible, or those where extremely high reliability is required, such as various ceramics, carbon, intermetallic compounds, etc. In particular, a hard brittle member made of a material having high hardness but low deformability or low plasticity is suitable. As the ceramic material, various strength materials such as silicon nitride, silicon carbide, alumina, and zirconia are suitable for the strength inspection method of the present invention.
[0010]
(2) Determination of the stress required to inspect the strength of the member The stress required to inspect the strength of the member is generally determined from the stress that the member receives during actual operation, particularly the maximum stress that is received during actual operation. . For example, (1) the stress that the member receives during actual operation is: (2) the Weibull coefficient of the material strength of the member, (3) the probability of defective products, and (4) the safety factor calculated from the strength reduction rate due to long-term fatigue. The multiplied value is the stress required for strength inspection. However, the stress necessary for the strength inspection can be determined by various methods without being limited to this method.
[0011]
(3) Determination of jig material, size and shape Strength inspection stress, thermal expansion coefficient of member, Young's modulus, Poisson's ratio, etc., jig material, initial clearance between member and jig, heating The heating temperature for generating stress and the cooling temperature for generating stress by cooling are determined. The jig is made of a material having a coefficient of thermal expansion different from that of the member to be inspected. Further, it is preferable that when the stress is generated due to the difference in coefficient of thermal expansion, the jig itself is not plastically deformed and fits within the elastic deformation region. As a material for such a jig, any material such as metal, ceramics, and polymer can be used according to the coefficient of thermal expansion of the member to be inspected.
[0012]
In general, the greater the difference in coefficient of thermal expansion between the jig and the member, the higher the stress. For this reason, the difference in coefficient of thermal expansion between the member and the jig is preferably 0.5 × 10 −6 K −1 or more, and more preferably 5 × 10 −6 K −1 or more.
[0013]
As the initial clearance between the member and the jig is smaller, a higher stress is obtained at a lower heating temperature or cooling temperature. However, if the initial clearance is too small, loose fitting between the jig and the member becomes difficult. The initial clearance between the member and the jig can be appropriately set based on conditions such as the shape and size of the jig and the member, the difference in coefficient of thermal expansion between the jig and the member, and the required stress. However, generally it is preferable to set it as 30-100 micrometers.
[0014]
(4) Manufacture of a jig and a jig based on the material and the initial clearance data determined to be loosely fitted. In the present invention, the shape of the jig may be determined so that the jig comes into contact with the test site of the member with the initial clearance and applies stress to the member evenly.
[0015]
(5) At the time of heating or cooling inspection of the jig and / or member, one of the jig and the member is loosely fitted to the other, and the member and / or the jig is heated or cooled to a predetermined temperature. Examples of the heating means include an electric furnace, an induction heating device, a hot air heater, and the like. Examples of the cooling means include an electric cooling device, a water-cooled spray, and an air-cooled jet. It is preferable to use the heating temperature within a range where the decrease in the elastic modulus of the jig due to the temperature is not large. When using a steel jig, a maximum of 300 ° C is preferred.
[0016]
Combinations when one of the jig and the member is loosely fitted to the other are as follows. Each case will be described.
Figure 0003622022
[0017]
(A) When the coefficient of thermal expansion of the jig is larger than that of the member (i) When the tensile stress member has a recess and / or a hollow portion, the jig is loosely fitted into the recess and / or the hollow portion of the member with a predetermined clearance. When the jig or the jig and the member are heated, tensile stress is generated in the member.
[0018]
(Ii) When the compression stress jig has a concave portion and / or a hollow portion, the member is loosely fitted into the concave portion and / or the hollow portion of the jig. In this case, when the jig or the jig and the member are cooled in a state where there is a predetermined clearance at the temperature at the start, compressive stress is generated in the member.
[0019]
(B) When the coefficient of thermal expansion of the jig is smaller than that of the member (i) When the tensile stress member has a concave portion and / or a hollow portion, the jig is loosely fitted into the concave portion and / or the hollow portion of the member. When the member or the jig and the member are cooled in a state where there is a predetermined clearance at the temperature at the start, tensile stress is generated in the member.
[0020]
(Ii) When the compression stress jig has a recess and / or a hollow part, the member is loosely fitted into the recess and / or the hollow part of the jig with a predetermined clearance, and the member, or the member and the jig is heated, Compressive stress is generated.
[0021]
In both cases of tensile stress and compressive stress, it is preferable to rapidly cool the jig or member on the inside when cooling to a loose fit state after heating. Specifically, (1) If the inner jig has a higher coefficient of thermal expansion, quench the inner jig, and (2) the inner member has a higher coefficient of thermal expansion. First, the member inside is rapidly cooled. Moreover, you may heat the jig | tool in an outer side simultaneously with rapidly cooling the member in an inner side. In such a case, when the jig or the member is gradually cooled, the stress applied to the member by the jig is not easily reduced, and the strength of the member may be reduced.
[0022]
Further, when the temperature is raised to the loose-fitted state after cooling, it is preferable to rapidly heat the jig or member on the outside. Specifically, (1) when the outer jig has a larger coefficient of thermal expansion, the outer jig is rapidly heated, and (2) the outer member has a larger coefficient of thermal expansion. In some cases, the outer member is rapidly heated. Moreover, you may cool the jig | tool or member in an inner side simultaneously with rapidly heating the member or jig | tool in an outer side. In such a case, when the temperature of the jig or member is gradually increased, the stress applied to the member by the jig is not easily reduced, and the strength of the member may be reduced.
[0023]
(6) Detection of cracks in the member After completion of heating or cooling, the member is separated from the jig, and it is detected whether or not a crack has occurred in the member. The crack detection method may be a known one, but examples include a fluorescent flaw detection method and an X-ray transmission flaw detection method.
[0024]
In addition, the heating or cooling in the step (4) can be repeated a plurality of times to conduct a fatigue inspection of the member.
[0025]
An example in which a jig is loosely fitted in the hollow portion of the member is shown in FIG. In this example, the member 1 has a shape in which the cross section is an “E” shape and the whole is a donut shape, and includes ring portions 11 and 12 protruding inward and outward. When the jig 3 has a larger coefficient of thermal expansion than the member 1, the jig 3 or the jig 3 and the member 1 are heated. Further, when the jig 3 has a smaller coefficient of thermal expansion than the member 1, both are loosely fitted to cool the member 1 or the member 1 and the jig 3.
[0026]
Hereinafter, the case where the silicon nitride ceramic member 1 and the steel jig 3 are used will be described in detail. In this case, since the jig 3 has a larger coefficient of thermal expansion than the member 1, the clearance between the jig 3 and the ring portion 11 of the member 1 is set to 70 ± 2 μm in diameter, and the jig is attached to the member 1 at room temperature. 3 is loosely fitted. The loosely fitted state is placed in a furnace at 110 ° C. and held until the member 1 and the jig 3 reach 110 ° C. After removing from the furnace, the jig 3 is removed from the member 1 by rapid cooling to room temperature by forced air cooling or water cooling. Next, the presence or absence of cracks is detected by the above method.
[0027]
In the embodiment shown in FIG. 2, the member 2 has two protrusions 21 and 22. By loosely fitting the rod-shaped jig 5 between the two protrusions 21 and 22 and heating or cooling, a tensile stress can be applied to the bases of the two protrusions 21 and 22 of the member 2. In the embodiment of FIG. 3, the member 2 has a cylindrical shape with rounded corners. The rod-shaped jig 5 is inserted so as to contact the four inner surfaces of the member 2 with a predetermined clearance. In the embodiment of FIG. 4, the rod-like member 2 is loosely fitted in the hollow portion of the jig 5 so as to contact the inner surface of the cylindrical jig 5 with a predetermined clearance.
[0028]
In the present invention, the strength inspection of one part of the member can be performed with one jig, but the strength inspection of a plurality of parts of the member can be performed simultaneously with one jig. Further, the strength inspection of a plurality of members can be performed with one jig, and the strength inspection of one member can be performed with a plurality of jigs.
[0029]
[2] Method for Measuring Stress or Strain of Hard Member The method for measuring the stress or strain of the hard member of the present invention is performed in the following order.
(1) Provide a means for measuring stress or strain on the hard member,
(2) An initial clearance for loose fitting between the hard member and a jig made of a material having a different coefficient of thermal expansion from the hard member is determined,
(3) Either one of the jig of the material and the hard member is loosely fitted to the other,
(4) By heating or cooling the jig and / or the hard member from the measurement start temperature to a predetermined temperature, an acting load is generated on the hard member,
(5) Using the stress or strain measuring means, measure the stress or strain resulting from the applied load ,
(6) The jig or the hard member is rapidly cooled after the heating, or the jig or the hard member is rapidly heated after the cooling to return to the loose fitting state.
[0030]
The method for measuring the stress or strain of the hard member is basically the same as the method described in [1] above. However, the working load generated on the hard member depends on the clearance between the jig and the hard member and the jig. It can be arbitrarily set by appropriately selecting a coefficient of thermal expansion or the like. Further, as a stress or strain measuring means provided at a predetermined portion of the hard member, a measuring instrument such as a strain gauge can be cited. If the method for measuring stress or strain of a hard member of the present invention is used, the breaking strength of the hard member can be measured.
[0031]
【Example】
The present invention will be described in detail by the following examples, but the present invention is not limited to these examples.
[0032]
Example 1
Y 2 O 3 powder (purity 99.9%, manufactured by Nippon Yttrium Co., Ltd.) 1.5-5.0 wt%, Al 2 O 3 powder (SAFFIL alumina fiber, manufactured by ICI) 1.0-5. A starting material consisting of 0% and the remainder of Si 3 N 4 powder (UBE-SN-E09, Ube Industries, Ltd.) is formed by slip casting, sintered at 1900 ° C., and finished. A ceramic ring 1 having the shape shown in FIG. 1 was produced. The ceramic ring 1 had a pair of ring portions 11 and 12 protruding inward and outward. The characteristics and dimensions of the ceramic ring 1 were as follows.
Density: 3.21 g / cm 3
Thermal expansion coefficient: 3.0 × 10 −6 K −1
Inner diameter A: 119.060 mm,
Inner diameter B: 119.090 mm,
Inner diameter C: 125.0 mm,
Outer diameter D: 161.0 mm
Height H: 17.5 mm
Corner R: 1.0 mm
Thickness W1 of the ring part 11: 3.5 mm
Wall thickness W2 of the ring part 12: 3.5 mm
Ring wall thickness T: 8.0 mm
[0033]
Further, the thickness of the ring portion 11 varies, and there is a portion of 3.1 mm with respect to the standard thickness of 3.5 mm, and the portion of 3.1 mm is as shown in FIG. There is a notch.
[0034]
On the other hand, a cylindrical carbon steel S35C steel jig was induction hardening 3 (thermal expansion coefficient: 12 × 10 -6 K -1, the surface hardness H R C: 40 to 55, height 45 mm, diameter 118. 990 mm). The initial clearance between the jig 3 and the ring portion 11 was 70 μm, and the initial clearance with the ring portion 12 was 100 μm.
[0035]
In order to measure the strain generated on the ring 1, a strain gauge (circumferentially) is provided in a circumferential direction at a portion as close as possible to the inner diameter A of the upper surface and lower surface of the ring portion 11 and a portion as close as possible to the inner diameter B of the upper surface and lower surface of the ring portion 12 ZFLA-1 and ZFLA-6, manufactured by Tokyo Sokki Kenkyujo Co., Ltd.) were attached.
[0036]
As shown in FIG. 1, the jig | tool 3 was inserted in the hollow part of the ceramic ring 1, and it set | placed on the jig | tool base 4, and both were heated with the electric furnace. The heating rate was about 6 ° C./min. After heating to 110 ° C., the ceramic ring 1 was immediately removed from the electric furnace, and the jig 3 was mainly quenched by air blow to remove the ceramic ring 1 from the jig. Thereafter, the ceramic ring 1 was inspected by a fluorescent flaw detection method to check for cracks. If there was no crack, the strength of the ceramic ring 1 was accepted, and if there was a crack, it was rejected.
[0037]
FIG. 5 shows a plot of the amount of strain of the ring portion 11 and the ring portion 12 when heated to 110 ° C. versus temperature. When heated to 75 ° C., the inner diameter of the ring portion 11 abuts against the jig 3, and at 75 ° C. or higher, the amount of distortion of the ring portion 11 increased substantially linearly. On the other hand, the ring portion 12 contacted the jig at 100 ° C., and thereafter, the amount of strain increased linearly. Further, the thickness of the ring portion 11 varies, and there is a portion of 3.1 mm with respect to the standard thickness of 3.5 mm. When a strain gauge is attached to this portion and the amount of strain generated is plotted in FIG. 5, since it is thin, the generated circumferential stress is larger than the standard thickness of 3.5 mm. Table 1 summarizes the amount of circumferential strain and the circumferential stress of each ring portion at 110 ° C.
[0038]
Figure 0003622022
[0039]
In this inspection, as shown in Table 1, the circumferential stress generated in the thin portion of the thickness of 3.1 mm is higher than the standard thickness of 3.5 mm of the ring 11. However, when a similar circumferential stress is generated, a high stress is generated in a thin portion.
[0040]
Example 2
The strength test was performed again on the ceramic ring 1 in the same manner as in Example 1. FIG. 6 is a graph in which the thickness of the ring portion 11 is 3.1 mm and the strain amount of the ring portion 12 (standard thickness 3.5 mm) shown in FIGS. 6 and 7 is plotted against the temperature. As shown in FIG.
[0041]
As can be seen from FIG. 8, tracing is performed with good reproducibility up to 110 ° C. with the result of Example 1 and an error of ± 9 μm. When heated to 122.5 ° C., the thickness of the ring portion 11 of the ring 1 is 3.1 mm, and the distortion amount of the portion where the notch 6 shown in FIGS. 6 and 7 is present is 481 μm. A circumferential stress of 146.7 MPa was generated in the portion, and the ceramic ring 1 was broken. The time when a ring is cracked can be detected by a sharp drop in the amount of strain detected by a strain gauge. Further, the fracture starting point is a high strain occurrence location 31 of the ring portion 11, and the breaking strength of the ring 1 is obtained by the stress generated at the high strain occurrence location 31 of the ring 1 shown in FIG. The stress generated at the high strain generation location 31 is obtained as 293.4 MPa by multiplying the circumferential stress 146.7 MPa by the stress concentration factor α2.0 of the high strain generation location 31 obtained by the finite element method. Therefore, the breaking strength of the ring 1 is 293.4 MPa.
[0042]
In this way, the strength of the ceramic can be measured using the method of the present invention. Further, in this strength test, the maximum stress is generated at the high strain occurrence location 31. However, when the same circumferential stress is generated when the actual machine is used, the stress is similarly concentrated at the high strain occurrence location 31 and the maximum stress is generated. To do.
[0043]
【The invention's effect】
As described above in detail, according to the present invention, since the strength inspection of a member is performed using a freely-fitting jig, an efficient strength inspection can be performed in a short time, and the generated stress in an actual machine can be substantially reproduced. . Moreover, the generated stress can be easily controlled, and the reproducibility is high. Furthermore, the equipment is simple and inexpensive, and the strength inspection of the member and the measurement of stress and strain can be performed. Such a strength inspection method for members and a method for measuring stress or strain of a hard member according to the present invention can be widely used for strength inspection of all members including ceramic members.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a state in which a member and a jig according to an embodiment of the present invention are loosely fitted.
FIG. 2 is a schematic cross-sectional view of a state in which a member and a jig according to another embodiment of the present invention are loosely fitted.
FIG. 3 is a schematic cross-sectional view of a state in which a member and a jig according to still another embodiment of the present invention are loosely fitted.
FIG. 4 is a schematic cross-sectional view of a state in which a member and a jig according to still another embodiment of the present invention are loosely fitted.
5 is a graph showing the relationship between the amount of strain in the circumferential direction and the temperature measured by loosely fitting a ceramic ring and a metal jig in Example 1. FIG.
6 is a partial cross-sectional view of the ceramic ring shown in FIG.
7 is a partial side view seen from the inside of the ceramic ring shown in FIG. 1. FIG.
8 is a graph showing the relationship between the amount of strain in the circumferential direction and the temperature measured by loosely fitting a ceramic ring and a metal jig in Example 2. FIG.
9A and 9B are a schematic cross-sectional view (a) and a plan view (b) of a state in which a member and a jig are loosely fitted by a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ceramic ring 2 ... Member 3, 5 ... Jig 4 ... Jig stand 11, 12 ... Ring part 31 ... High distortion generating part 6 ... Notch 91- ..Rubber elastic body 92 ... Pressure medium 93 ... Semi-annular jig

Claims (13)

治具を使用して部材の強度を検査する方法であって、(1) 前記部材の強度検査に必要な応力を実用中に発生する最大応力より決定し、(2) 前記強度検査応力から、前記部材と異なる熱膨張率を有する治具の材質、及び前記治具と前記部材との遊嵌の初期クリアランスを定め、(3) 前記材質の治具及び前記部材の一方を他方に遊嵌し、(4) 検査開始温度から所定の温度まで前記治具及び/又は前記部材を加熱又は冷却することにより、前記部材に応力を与え、(5) 前記加熱後に前記治具又は前記部材を急冷するか、前記冷却後に前記治具又は前記部材を急加熱することにより遊嵌状態に戻し、 (6) 前記部材にクラックが発生したか否かを検出することを特徴とする方法。It is a method for inspecting the strength of a member using a jig, and (1) the stress necessary for the strength inspection of the member is determined from the maximum stress generated in practical use, and (2) from the strength inspection stress, Determine the material of the jig having a different coefficient of thermal expansion from the member, and the initial clearance of loose fitting between the jig and the member, and (3) loosely fit one of the jig and the member to the other. (4) Stress is applied to the member by heating or cooling the jig and / or the member from an inspection start temperature to a predetermined temperature, and (5) the jig or the member is rapidly cooled after the heating. Alternatively, after the cooling, the jig or the member is rapidly heated to return to a loose fitting state, and (6) it is detected whether or not a crack has occurred in the member. 請求項1に記載の部材の強度検査方法において、前記工程(4) (6) を繰り返すことを特徴とする方法。The method for inspecting strength of a member according to claim 1, wherein the steps (4) to (6) are repeated. 請求項1又は2に記載の部材の強度検査方法において、前記部材と前記治具との熱膨張率の差0.5 ×10-6K-1以上とし、高い応力を発生させることを特徴とする方法。3. The strength inspection method for a member according to claim 1, wherein a difference in coefficient of thermal expansion between the member and the jig is 0.5 × 10 −6 K −1 or more, and high stress is generated. Method. 請求項1〜3のいずれかに記載の部材の強度検査方法において、前記部材は凹部及び/又は中空部を有し、前記部材より大きな熱膨張率を有する治具を前記部材の凹部及び/又は中空部に遊嵌し、前記治具又は前記治具と前記部材とを加熱して前記部材に応力を与えた後、前記治具を急冷して遊嵌状態に戻すことを特徴とする方法。The member strength inspection method according to any one of claims 1 to 3, wherein the member has a recess and / or a hollow portion, and a jig having a larger coefficient of thermal expansion than the member is used as the recess and / or the member. A method of loosely fitting in a hollow part, heating the jig or the jig and the member to give stress to the member, and then rapidly cooling the jig to return to the loose-fitted state . 請求項1〜3のいずれかに記載の部材の強度検査方法において、前記部材は凹部及び/又は中空部を有し、前記部材より小さい熱膨張率を有する治具を前記部材の凹部及び/又は中空部に遊嵌し、前記部材又は前記治具と前記部材とを冷却して前記部材に応力を与えた後、前記部材を急加熱して遊嵌状態に戻すことを特徴とする方法。The strength inspection method for a member according to any one of claims 1 to 3, wherein the member has a recess and / or a hollow portion, and a jig having a thermal expansion coefficient smaller than that of the member is used as the recess and / or the member. A method of loosely fitting in a hollow portion, cooling the member or the jig and the member and applying stress to the member, and then rapidly heating the member to return to the loosely fitted state . 請求項1〜3のいずれかに記載の部材の強度検査方法において、前記治具は凹部及び/又は中空部を有し、前記治具より大きな熱膨張率を有する前記部材を前記治具の凹部及び/又は中空部に遊嵌し、前記部材又は前記治具と前記部材とを加熱して前記部材に応力を与えた後、前記部材を急冷して遊嵌状態に戻すことを特徴とする方法。The strength inspection method for a member according to any one of claims 1 to 3, wherein the jig has a recess and / or a hollow portion, and the member having a larger coefficient of thermal expansion than the jig is the recess of the jig. And / or loosely fitting in the hollow portion, heating the member or the jig and the member to give stress to the member, and then rapidly cooling the member to return to the loosely fitted state. . 請求項1〜3のいずれかに記載の部材の強度検査方法において、前記治具は凹部及び/又は中空部を有し、前記治具より小さな熱膨張率を有する前記部材を前記治具の凹部及び/又は中空部に遊嵌し、前記治具又は前記治具と前記部材とを冷却して前記部材に応力を与えた後、前記治具を急加熱して遊嵌状態に戻すことを特徴とする方法。4. The member strength inspection method according to claim 1, wherein the jig has a recess and / or a hollow portion, and the member having a smaller coefficient of thermal expansion than the jig is a recess of the jig. And / or loosely fitting into the hollow portion, cooling the jig or the jig and the member and applying stress to the member, and then rapidly heating the jig to return to the loose-fitted state. And how to. 請求項1〜7のいずれかに記載の部材の強度検査方法において、前記部材はセラミックスからなる硬質部材であり、前記治具はスチールからなることを特徴とする方法。In the strength test method of member according to claim 1, wherein the member is Ri rigid member der made of ceramics, said jig method characterized by comprising the steel. 請求項1〜8のいずれかに記載の部材の強度検査方法において、前記初期クリアランスはThe strength inspection method for a member according to any one of claims 1 to 8, wherein the initial clearance is 3030 ~ 100100 μμ mm であることを特徴とする方法。A method characterized in that 請求項1〜9のいずれかに記載の部材の強度検査方法において、前記部材及び/又は治具を加熱する手段として、電気炉、誘導加熱装置又は熱風ヒーターを使用し、前記部材及び/又は治具を冷却する手段として、電気冷却装置、水冷スプレー又は空冷ジェットを使用することを特徴とする方法。The strength inspection method for a member according to any one of claims 1 to 9, wherein an electric furnace, an induction heating device or a hot air heater is used as means for heating the member and / or jig, and the member and / or jig is heated. A method characterized in that an electric cooling device, a water-cooled spray or an air-cooled jet is used as means for cooling the tool. 請求項1〜Claims 1 to 10Ten のいずれかに記載の部材の強度検査方法において、前記部材が実際の作動時に受ける応力に、In the strength inspection method for a member according to any one of the above, the stress that the member receives during actual operation, (1) (1) 部材の材料強度のワイブル係数、Weibull coefficient of material strength of member, (2) (2) 不良品確率、及びDefective product probability, and (3) (3) 長時間の疲労による強度低下率から求められる安全係数を掛けた値を、前記強度検査応力とすることを特徴とする方法。A method wherein the strength inspection stress is a value obtained by multiplying a safety factor obtained from a rate of decrease in strength due to long-term fatigue. 請求項1〜Claims 1 to 10Ten のいずれかに記載の部材の強度検査方法において、前記部材の強度検査に必要な応力を前記最大応力より小さくすることを特徴とする方法。The member strength inspection method according to any one of the above, wherein a stress required for the strength inspection of the member is made smaller than the maximum stress. 硬質部材の応力又は歪みを測定する方法であって、(1) 前記硬質部材に応力又は歪みの測定手段を設け、(2) 前記硬質部材と異なる熱膨張率を有する材質からなる治具と前記硬質部材との遊嵌の初期クリアランスを定め、(3) 前記材質の治具及び前記硬質部材のいずれか一方を他方に遊嵌し、(4) 測定開始温度から所定の温度まで前記治具及び/又は前記硬質部材を加熱又は冷却することにより、前記硬質部材に作用荷重を発生させ、(5) 前記応力又は歪み測定手段を用いて、前記作用荷重から生じる応力又は歪みを測定し、次いで (6) 前記加熱後に前記治具又は前記硬質部材を急冷するか、前記冷却後に前記治具又は前記硬質部材を急加熱することにより遊嵌状態に戻すことを特徴とする方法。A method for measuring the stress or strain of a hard member, comprising: (1) providing the hard member with stress or strain measuring means; and (2) a jig made of a material having a coefficient of thermal expansion different from that of the hard member; Determining an initial clearance for loose fitting with the hard member; (3) loosely fitting either the jig of the material or the hard member to the other; and (4) the jig and the jig from the measurement start temperature to a predetermined temperature. / Or heating or cooling the hard member to generate an acting load on the hard member, and (5) using the stress or strain measuring means to measure the stress or strain resulting from the acting load , and then ( 6) The method wherein the jig or the hard member is rapidly cooled after the heating, or the jig or the hard member is returned to the loose-fitting state by rapidly heating after the cooling .
JP21204496A 1996-07-23 1996-07-23 Strength inspection method for members Expired - Fee Related JP3622022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21204496A JP3622022B2 (en) 1996-07-23 1996-07-23 Strength inspection method for members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21204496A JP3622022B2 (en) 1996-07-23 1996-07-23 Strength inspection method for members

Publications (2)

Publication Number Publication Date
JPH1038777A JPH1038777A (en) 1998-02-13
JP3622022B2 true JP3622022B2 (en) 2005-02-23

Family

ID=16615949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21204496A Expired - Fee Related JP3622022B2 (en) 1996-07-23 1996-07-23 Strength inspection method for members

Country Status (1)

Country Link
JP (1) JP3622022B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115243A (en) * 2012-12-12 2014-06-26 Ihi Corp Test piece for stress corrosion crack test, method of manufacturing the same, and stress corrosion crack test device
US9816603B2 (en) 2015-09-11 2017-11-14 Arvinmeritor Technology, Llc Axle assembly with interaxle differential lubrication

Also Published As

Publication number Publication date
JPH1038777A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
WO2016045024A1 (en) Method for measuring and determining fracture toughness of structural material in high-temperature environment
Oliveira et al. Stress intensity factors for axial cracks in hollow cylinders subjected to thermal shock
Wallace et al. Fretting fatigue crack nucleation in Ti–6Al–4V
JP3622022B2 (en) Strength inspection method for members
TW200925600A (en) Method for determining the thermal shock robustness and material strength of brittle failure materials
Su et al. A simplified residual stress model for predicting fatigue crack growth behavior at coldworked fastener holes
US20170219505A1 (en) Method for testing a ceramic component
Papirno et al. Fracture in axial compression tests of cylinders
Andrews et al. Small-specimen brittle-fracture toughness testing
JPH06222053A (en) Deterioration diagnostic method for ferrite based heat-resistant steel
JPH0674951A (en) Creep damage evaluating method for ferrite heat resistant steel
Lamon et al. Thermal stress failure of ceramics under repeated rapid heatings
Dragoni Fatigue testing of taper press fits bonded with anaerobic adhesives
JP3157974B2 (en) Estimation method of quenching thermal shock critical temperature difference
CN112557229B (en) Method for evaluating corrosion sensitivity of metal material to slow tensile stress
US20240077458A1 (en) Method for determining whether defects are present in the material of a ceramic component
JPS58146834A (en) Method for presuming condition of refractory material of furnace body
Jadaan et al. Methodology to predict delayed failure due to slow crack growth in ceramic tubular components using data from simple specimens
Sakon et al. Residual life assessment of pump casing considering thermal fatigue crack propagation
Giovanola et al. Using small cracked round bars to measure the fracture toughness of a pressure vessel steel weldment: A feasibility study
Widjaja et al. Residual surface stress by localized contact-creep
Masuda et al. Fatigue behavior of non-oxide ceramics at elevated temperature
Findley et al. Fatigue of Autofrettaged Thick Tubes: Closed and Open Ended; As-Received and Honed
JPH0690124B2 (en) High-temperature long-life strength reliability assurance test method for ceramic parts
JP3207038B2 (en) Estimation method of quenching thermal shock critical temperature difference

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees