JP3207038B2 - Estimation method of quenching thermal shock critical temperature difference - Google Patents

Estimation method of quenching thermal shock critical temperature difference

Info

Publication number
JP3207038B2
JP3207038B2 JP06235094A JP6235094A JP3207038B2 JP 3207038 B2 JP3207038 B2 JP 3207038B2 JP 06235094 A JP06235094 A JP 06235094A JP 6235094 A JP6235094 A JP 6235094A JP 3207038 B2 JP3207038 B2 JP 3207038B2
Authority
JP
Japan
Prior art keywords
crack
test
temperature difference
thermal shock
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06235094A
Other languages
Japanese (ja)
Other versions
JPH07270292A (en
Inventor
良博 竹下
弘志 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP06235094A priority Critical patent/JP3207038B2/en
Publication of JPH07270292A publication Critical patent/JPH07270292A/en
Application granted granted Critical
Publication of JP3207038B2 publication Critical patent/JP3207038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、セラミックスなどの脆
性材料の急冷熱衝撃による臨界温度差を推定する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a critical temperature difference due to quenching thermal shock of a brittle material such as ceramics.

【0002】[0002]

【従来技術】セラミックス等の構造材料は、各種の用途
に供する場合にその強度に応じて寸法設計することが重
要となる。そのためには、その材料の機械的および熱的
な特性を正確、且つ迅速に把握することが要求される。
2. Description of the Related Art When a structural material such as ceramics is used for various purposes, it is important to design a dimension according to its strength. For that purpose, it is necessary to accurately and quickly grasp the mechanical and thermal properties of the material.

【0003】このような部材設計に対して必要とされる
特性の1つに、急冷による熱衝撃に対する耐久性があ
る。この耐久性を表す指標として一般に用いられている
のが急冷熱衝撃臨界温度差ΔTcである。これはどの程
度の温度差の急冷にまで部材が耐えうるかを示すもので
ある。
One of the characteristics required for such a member design is durability against thermal shock due to rapid cooling. A quenching thermal shock critical temperature difference ΔTc is generally used as an index indicating the durability. This indicates to what degree of temperature difference the member can withstand rapid cooling.

【0004】この熱衝撃臨界温度差の測定方法として
は、JISR1615が知られている。このJISR1
615の方法は、予き裂を形成しない複数の試験片にそ
れぞれ異なる温度差で熱衝撃を加え、ばらつきのある測
定結果から統計的に△Tcの期待値を求めるものであ
る。
As a method for measuring the critical temperature difference between thermal shocks, JISR1615 is known. This JISR1
The method of 615 applies a thermal shock to each of a plurality of test pieces that do not form a pre-crack at different temperature differences, and statistically obtains an expected value of ΔTc from measurement results having variations.

【0005】[0005]

【発明が解決しようとする問題点】この方法では試験片
毎に測定結果がばらつくため、正確な熱衝撃臨界温度差
を得るには、多くの試験片が必要になる。通常、必要な
試験片本数は効率よく試験した場合でも30本以上であ
る。
In this method, since the measurement results vary from one test piece to another, a large number of test pieces are required to obtain an accurate thermal shock critical temperature difference. Usually, the required number of test pieces is 30 or more even when the test is performed efficiently.

【0006】また、得られた△Tcは試験片の破壊源サ
イズに依存するため、同じ材質であっても、製造方法や
表面の加工状態あるいは構造物の大きさ(有効体積)に
より変化する。従って、破壊源サイズが異なる場合に
は、その都度、測定しなくてはならなかった。
Further, since the obtained ΔTc depends on the size of the fracture source of the test piece, even if the same material is used, it varies depending on the manufacturing method, the processing state of the surface, or the size (effective volume) of the structure. Therefore, each time the fracture source size was different, it had to be measured.

【0007】[0007]

【問題点を解決するための手段】本発明者らは、予き裂
が熱衝撃により進展し始める臨界温度差ΔTciとその
予き裂長Ciとの間にΔTci=bCi-aの関係がある
ことに着目すると共に、1本の試験片に複数の予き裂を
形成することおよび予き裂から破壊するため△Tciの
ばらつきが小さくなることを利用し、少数の試験片から
前記関係式を求め、さらに予き裂を導入しない試験片の
破壊源サイズを等価亀裂長として求め、前記関係式に代
入することにより臨界温度差ΔTcを高い精度で推定で
きることを見出し、本発明に至った。
Means for Solving the Problems The present inventors have found that there is a relation of ΔTci = bCi− a between a critical temperature difference ΔTci at which a precrack starts to propagate due to thermal shock and the precrack length Ci. Using the fact that a plurality of pre-cracks are formed in one test piece and that the variation of ΔTci is small to break from the pre-crack, the above relational expression is obtained from a small number of test pieces. Further, they have found that the critical temperature difference ΔTc can be estimated with high accuracy by obtaining the fracture source size of a test piece into which no pre-crack is introduced as an equivalent crack length and substituting it into the relational expression.

【0008】即ち、本発明は長さの異なる予き裂を形成
した複数の試験片を、複数の温度差で試験し、予き裂長
さCiとその予き裂が進展を開始する温度差△Tciの
組み合わせ(Ci,△Tci)を2組以上測定し、前記
関係式に含まれる定数aとbを求める。さらに、破壊靭
性値、ワイブル係数および強度試験における有効体積ま
たは有効表面積および該急冷処理の有効体積または有効
表面積より、予き裂の無い試験片の破壊源サイズに当る
等価き裂長Coを推定し、該等価き裂長Coと前記関係
式から供試材が熱衝撃により破壊に至る臨界温度差△T
cを推定することを特徴とするものである。
That is, according to the present invention, a plurality of test specimens having pre-cracks having different lengths are tested at a plurality of temperature differences, and the pre-crack length Ci and the temperature difference at which the pre-cracks start to propagate are obtained. Two or more combinations of Tci (Ci, △ Tci) are measured, and constants a and b included in the relational expression are obtained. Further, from the fracture toughness value, the effective volume or effective surface area in the Weibull coefficient and the strength test and the effective volume or effective surface area of the quenching treatment, to estimate the equivalent crack length Co corresponding to the fracture source size of the specimen without pre-crack, From the equivalent crack length Co and the above relational expression, the critical temperature difference ΔT at which the test material is broken by thermal shock
c is estimated.

【0009】以下、本発明をより具体的に詳述する。Hereinafter, the present invention will be described in more detail.

【0010】本発明の方法によれば、まず、以下の急冷
熱衝撃試験により(Ci,△Tci)を測定する。ま
ず、測定対象となる材質からなる円柱状の試験片を複数
本準備する。そして、各試験片に対して長さの異なる予
き裂を導入する。予き裂は、例えば、図1の試験片の概
略図に示すように、円柱状の試験片1の周囲にヌープ硬
度測定用の圧子を用いて、複数箇所に予き裂2を導入す
る。また、予き裂長さは圧子の圧入荷重を変えることに
より変化させることができる。長さの異なる予き裂の導
入に際しては、1本の試験片に同じ長さの予き裂を導入
し、予き裂長さの異なる複数本の試験片を用意する。あ
るいは、試験片のサイズによっては1本の試験片におい
て異なる長さの予き裂を導入することもできる。
According to the method of the present invention, first, (Ci, ΔTci) is measured by the following quenching thermal shock test. First, a plurality of cylindrical test pieces made of a material to be measured are prepared. Then, pre-cracks having different lengths are introduced into each test piece. For example, as shown in the schematic diagram of the test piece in FIG. 1, the pre-crack is introduced at a plurality of locations using a Knoop hardness measuring indenter around a cylindrical test piece 1. The length of the pre-crack can be changed by changing the press-fit load of the indenter. When introducing precracks having different lengths, a precrack having the same length is introduced into one test piece, and a plurality of test pieces having different precrack lengths are prepared. Alternatively, different lengths of precracks can be introduced in one test piece depending on the size of the test piece.

【0011】そして、上記のようにして長さCiの予き
裂2が導入された試験片1を所定温度T1まで加熱した
後、これを温度T1よりも低い温度T2まで急冷する。
この急冷処理する方法としては、ヒータ等により加熱し
た試験片を、T2に設定された水やハンダなどの液中に
投下すればよい。なお、投下の際に試験片への空気の巻
き込みがないように試験片1の先端には円錐状のキャッ
プ3を接着することが望ましい。
After the test piece 1 into which the pre-crack 2 having the length Ci has been introduced as described above is heated to a predetermined temperature T1, it is rapidly cooled to a temperature T2 lower than the temperature T1.
As a method of performing the rapid cooling treatment, a test piece heated by a heater or the like may be dropped into a liquid such as water or solder set at T2. In addition, it is desirable to attach a conical cap 3 to the tip of the test piece 1 so that air does not get caught in the test piece at the time of dropping.

【0012】上記試験により(Ci,△Tci)を求め
るには次のような方法がある。1つの方法は、ある温度
差△Tで予き裂長さC1,C2,・・・・Cnの試験片
を同時に急冷処理し、き裂が進展した予き裂を把握す
る。通常、予き裂の長さが小さいほど、き裂の進展がな
いことから、長さの異なる予き裂において亀裂の進展が
観察された予き裂のうち、予き裂の長さの最も短い予き
裂とそのときの温度差を(Ci,△Tci)とする。同
様の試験を△Tを変えて行い、複数の(Ci,△Tc
i)を得る。
There are the following methods for obtaining (Ci, △ Tci) by the above test. One method is to simultaneously quench test specimens having pre-crack lengths C1, C2,... Cn at a certain temperature difference ΔT, and grasp the pre-crack in which the crack has propagated. In general, the smaller the length of the pre-crack is, the less the crack propagates.Therefore, among the pre-cracks in which crack growth was observed in pre-cracks of different lengths, Let the short pre-crack and the temperature difference at that time be (Ci, △ Tci). A similar test was performed by changing ΔT, and a plurality of (Ci, ΔTc
Obtain i).

【0013】もう1つの方法は、あるCiに対してΔT
を徐々に大きくしていきΔTciを求める方法である。
まず、C1の予き裂が導入された試験片を1本だけ用い
て、予き裂が進展しない程度の小さい温度差で試験し、
試験片1に導入した予き裂を観察し、き裂の進展が無い
事を調べる。次に温度差を少し大きくして、予き裂進展
の有無を調査し、予き裂の進展が確認された場合には、
このときの温度差を△T1cとし、予き裂が進展してい
ない場合にはさらに△Tを大きくする。このような試験
を繰り返し行い△T1cを求める。同様に予き裂長さC
2,C3,・・・,Cnの試験片についても、それぞ
れ、△TC2,△TC3,・・・・△TCnを求める。
Another method is to use ΔT for a given Ci.
Is gradually increased to obtain ΔTci.
First, using only one specimen into which a pre-crack of C1 was introduced, a test was performed with a small temperature difference such that the pre-crack did not propagate.
The pre-crack introduced into the test piece 1 is observed, and it is checked that no crack has propagated. Next, increase the temperature difference a little and investigate the presence of pre-crack propagation.If the pre-crack propagation is confirmed,
The temperature difference at this time is ΔT1c, and ΔT is further increased when the pre-crack has not developed. Such a test is repeated to obtain ΔT1c. Similarly, pre-crack length C
, TC3,..., TCn are also determined for the test pieces of 2, C3,.

【0014】一方、予き裂長Ciと温度差ΔTciとは
次の数1の関係で表される。
On the other hand, the pre-crack length Ci and the temperature difference ΔTci are expressed by the following equation (1).

【0015】[0015]

【数1】 (Equation 1)

【0016】そこで、上記急冷熱衝撃試験で得た(C
i,△Tci)より、最小2乗法等で上記数1中の定数
aおよびbを決定する。
The quenching thermal shock test (C)
i, △ Tci), the constants a and b in Equation 1 are determined by the least square method or the like.

【0017】ここで、(Ci,△Tci)が1組しか判
っていない場合でも、破壊力学より導かれるa=1/2
を用いれば、ΔTcが推定できる。ただし、一般には物
性値に温度依存性があるため、a=1/2を用いる場合
正確な推定は難しい。
Here, even when only one set of (Ci, △ Tci) is known, a = 1 / derived from fracture mechanics
Is used, ΔTc can be estimated. However, since a physical property value generally has temperature dependency, it is difficult to accurately estimate when a = 1/2 is used.

【0018】次に、測定対象となる材質の等価き裂長さ
を以下の方法に従い求める。まず、熱衝撃試験の有効体
積VE を求める。有効体積VE は、試験片の形状、大き
さ、熱的特性値等により異なるが、数値計算により求め
ることができるほか近似式で与えられる場合もある。
Next, the equivalent crack length of the material to be measured is determined according to the following method. First, the effective volume VE of the thermal shock test is determined. The effective volume VE varies depending on the shape, size, thermal characteristic value and the like of the test piece, but can be obtained by numerical calculation or may be given by an approximate expression.

【0019】次に、同じ材質の試験片で強度試験を行
い、強度σp 、ワイブル係数m、および強度試験の有効
体積Vp を求める。
Next, a strength test is performed using test pieces of the same material, and a strength σ p , a Weibull coefficient m, and an effective volume V p for the strength test are determined.

【0020】熱衝撃における試験片の平均強度σtsを次
の数2を用いて算出する。
The average strength σ ts of the test piece under thermal shock is calculated using the following equation (2).

【0021】[0021]

【数2】 (Equation 2)

【0022】次に、予き裂のない試験片の自然欠陥を半
楕円亀裂と仮定した場合の等価亀裂長Coを下記数3に
基づき算出する。
Next, the equivalent crack length Co, assuming that the natural defect of the specimen without a pre-crack is a semi-elliptical crack, is calculated based on the following equation (3).

【0023】[0023]

【数3】 (Equation 3)

【0024】ここで、KICは、CSF法等で求めた破壊
靱性値であり、Yは亀裂の形状係数で、等価き裂長が小
さく(100μm以下)、き裂の深さがき裂長さの0.
8倍の半楕円形とした場合にはY=1.28である。
Here, K IC is the fracture toughness value obtained by the CSF method or the like, Y is the shape factor of the crack, the equivalent crack length is small (100 μm or less), and the depth of the crack is 0% of the crack length. .
In the case of an eight-fold semi-elliptical shape, Y = 1.28.

【0025】そして、上記のようにして求めた等価亀裂
長Coを、前記数1のCiに代入することにより測定対
象材質の臨界温度差△Tcを推定することができる。
Then, the critical temperature difference ΔTc of the material to be measured can be estimated by substituting the equivalent crack length Co obtained as described above into Ci in the above equation (1).

【0026】[0026]

【作用】従来よりJIS規格などでは、強度のばらつき
が臨界温度差のばらつきに直接関与するなどの理由から
試験本数を多くする必要があったが、本発明によれば、
試験片に導入した予き裂の進展する臨界温度差を測定す
るためばらつきが小さく、また、1本の試験片に複数の
予き裂を導入することができるため熱衝撃試験に供する
試験片本数が少なくなる。また、き裂長さと臨界温度差
の関係を知ることができるので、等価き裂長さが変化し
た場合にも熱衝撃臨界温度差の推定ができる。
According to the JIS standard, it has been necessary to increase the number of test pieces because the strength variation directly affects the variation in the critical temperature difference.
Since the critical temperature difference at which the pre-crack introduced into the test piece propagates is measured, the variation is small, and since multiple pre-cracks can be introduced into one test piece, the number of test pieces to be subjected to the thermal shock test Is reduced. Also, since the relationship between the crack length and the critical temperature difference can be known, the thermal shock critical temperature difference can be estimated even when the equivalent crack length changes.

【0027】[0027]

【実施例】【Example】

実施例1 測定対象試験片として窒化珪素質焼結体を用いて試験を
行った。試験では、図1に示すように直径8mm、長さ
70mmの円柱状試験片を6本準備した。その6本の試
験片にヌープ硬度測定用圧子により荷重5kgf、20
kgf、50kgfで、各2本づつ予き裂を導入した。
予き裂は、1本の試験片中に同一荷重で8箇所に導入し
た。予き裂導入後、熱処理により残留応力の除去を行っ
た。導入後の平均予き裂長さを測定したところ、5kg
f荷重予き裂試験片が125μm、20kgf荷重予き
裂試験片が284μm、50kgf荷重予き裂試験片が
506μmであった。
Example 1 A test was performed using a silicon nitride sintered body as a test specimen to be measured. In the test, as shown in FIG. 1, six cylindrical test pieces having a diameter of 8 mm and a length of 70 mm were prepared. A load of 5 kgf, 20 was applied to the six test pieces by a Knoop hardness measuring indenter.
Pre-cracks were introduced at 2 kgf and 50 kgf, respectively.
Pre-cracks were introduced at eight locations with the same load in one test piece. After the introduction of the pre-crack, the residual stress was removed by heat treatment. When the average pre-crack length after introduction was measured, it was 5 kg.
The f-load pre-crack test piece was 125 μm, the 20 kgf pre-crack test piece was 284 μm, and the 50 kgf pre-crack test piece was 506 μm.

【0028】次に、上記6本の試験片に図1に示すよう
なキャップを接着して、き裂長さの異なる3本の試験片
を大気中で850℃に加熱した後、200℃の溶融ハン
ダ中に投下して急冷した。急冷処理後の試験片を室温ま
で放冷した後、試験後の亀裂長さを測定した。その結
果、5kgf荷重予き裂試験片では、平均予き裂長が1
25μmから136μmに進展しており、20kgf荷
重予き裂試験片、50kgf荷重予き裂試験片では亀裂
が試験片全体にまでわたっており、測定限界を越えてい
た。この結果から、約125μmの予き裂では温度差6
50℃が臨界温度差となることがわかった。
Next, a cap as shown in FIG. 1 was adhered to the above six test pieces, and three test pieces having different crack lengths were heated to 850 ° C. in the air, and then melted at 200 ° C. Dropped into solder and quenched. After the quenched test piece was allowed to cool to room temperature, the crack length after the test was measured. As a result, in the 5 kgf load pre-crack test piece, the average pre-crack length was 1
The cracks extended from 25 μm to 136 μm, and the cracks extended to the entire test piece in the 20 kgf load pre-crack test piece and the 50 kgf load pre-crack test piece, exceeding the measurement limit. From this result, it was found that the temperature difference was
It turned out that 50 degreeC becomes a critical temperature difference.

【0029】同様に、600℃に加熱した残り3本の試
験片を同時に急冷処理したところ、5kgf荷重予き裂
試験片と20kgf荷重予き裂試験片では、き裂の進展
が観測されず、50kgf予き裂試験片では平均き裂長
さが506μmより517μmに進展していた。したが
って、506μmの予き裂では臨界温度差が400℃で
あることがわかった。この結果より、(C1 ,ΔT1c
)=(125,650)、(C2 ,ΔT2c)=(50
6,400)が得られた。この値より前述した数1のa
及びbを求めると、a=0.347、b=3471.7
となる。ただし、Ciの単位はμmとして計算した。
Similarly, when the remaining three test pieces heated to 600 ° C. were simultaneously quenched, no crack growth was observed in the 5 kgf load pre-crack test piece and the 20 kgf load pre-crack test piece. In the 50 kgf pre-cracked test piece, the average crack length had grown from 506 μm to 517 μm. Therefore, it was found that the critical temperature difference was 400 ° C. for the 506 μm pre-crack. From this result, (C 1 , ΔT 1 c
) = (125,650), (C 2 , ΔT 2 c) = (50
6,400). From this value, a
And b, a = 0.347 and b = 3471.7.
Becomes However, the unit of Ci was calculated as μm.

【0030】一方、測定対象の窒化珪素質焼結体のJI
SR1601に基づく4点曲げ強度を測定したところ、
802.0MPaであり、CSF試験による破壊靱性
(KIc)が7.2MPa・m1/2 、4点曲げ強度試験に
よるワイブル係数が22.0であったことから、次のよ
うにして等価亀裂長Coを求めた。
On the other hand, the JI of the silicon nitride sintered body to be measured is
When the four-point bending strength based on SR1601 was measured,
802.0 MPa, the fracture toughness (KIc) by the CSF test was 7.2 MPa · m 1/2 , and the Weibull coefficient by the four-point bending strength test was 22.0. Co was determined.

【0031】まず、熱衝撃試験における有効体積VE
下記数4により求めた。なお、数4は直径8mmの円柱
試験片に対する近似式である。
Firstly, the effective volume V E in the thermal shock test was determined by the following equation (4). Equation 4 is an approximate expression for a cylindrical test piece having a diameter of 8 mm.

【0032】[0032]

【数4】 (Equation 4)

【0033】上記数4中、mはワイブル係数、Voは試
験片の実体積、Biはビオ係数であり、このBiは次の
数5により求められる。
In the above formula 4, m is the Weibull coefficient, Vo is the actual volume of the test piece, Bi is the bio coefficient, and Bi is obtained by the following formula 5.

【0034】[0034]

【数5】 (Equation 5)

【0035】上記数5中、Lは試験片の代表長さ、λは
試験片の熱伝導率、hは冷却媒体の熱伝達率である。
In the above equation 5, L is the representative length of the test piece, λ is the thermal conductivity of the test piece, and h is the heat transfer coefficient of the cooling medium.

【0036】冷却媒体に溶融ハンダを用いた場合、熱伝
達率h=128000W/km2 である。代表長さLは
円柱の半径L=4×10-3m、試験片の熱伝導率λ=1
8.2W/m・kより数5からBi=28.1、実体積
Vo=π42 ×50mm3 の値から、数1に基づき有効
体積VE を算出した結果、VE =54.05mm3 であ
った。ただし、実体積は、熱応力が負荷される部分の体
積とした。
When molten solder is used as the cooling medium, the heat transfer coefficient h is 128000 W / km 2 . The representative length L is the radius of the cylinder L = 4 × 10 −3 m, and the thermal conductivity of the test piece λ = 1
From the value of 8.2 W / m · k, Bi = 28.1 from the expression 5 and the actual volume Vo = π4 2 × 50 mm 3 , the effective volume VE was calculated based on the expression 1, and as a result, VE = 54.05 mm 3. Was. However, the actual volume was the volume of a portion to which thermal stress was applied.

【0037】一方、強度試験の有効体積Vpは、4点曲
げ試験の場合、次の数6から求められる。
On the other hand, the effective volume Vp of the strength test can be obtained from the following equation 6 in the case of the four-point bending test.

【0038】[0038]

【数6】 (Equation 6)

【0039】上記数6中、Lは4点曲げ試験における下
部の支点間距離、wは試験片の幅、tは厚み、lは上部
より応力を付与する時の応力付与点間の距離である。
In the above equation 6, L is the distance between the lower fulcrums in the four-point bending test, w is the width of the test piece, t is the thickness, and l is the distance between the stress applying points when applying stress from the upper part. .

【0040】本実施例では試験片の形状がl=10m
m、L=30mm、w=4mm、t=3mmであること
からVp =2.84mm3 である。熱衝撃試験片の平均
強度は、前記数2よりσts=701MPaとなる。以上
の結果から、等価亀裂長さCoを前記数3に基づき計算
した結果、64μmであった。
In this embodiment, the shape of the test piece is l = 10 m
Since m, L = 30 mm, w = 4 mm, and t = 3 mm, Vp = 2.84 mm 3 . The average strength of the thermal shock test piece is σ ts = 701 MPa from the above equation (2). From the above results, the equivalent crack length Co was calculated based on the above Equation 3, and as a result, was 64 μm.

【0041】上記の算出で得られた等価亀裂半長Co=
64μmより、数1を用いてΔTcを推定した結果、臨
界温度差ΔTc=820℃を得た。上記の推定方法の精
度について、同一の窒化珪素質焼結体を用いて、JIS
R1615に基づき臨界温度差を求めたところ、800
℃であり、本発明による推定が高い精度を有しているこ
とが判明した。
The equivalent crack half-length Co obtained by the above calculation is Co =
As a result of estimating ΔTc from 64 μm using Equation 1, a critical temperature difference ΔTc = 820 ° C. was obtained. Regarding the accuracy of the above estimation method, using the same silicon nitride sintered body, JIS
When the critical temperature difference was determined based on R1615, it was 800
° C, and the estimation according to the present invention was found to have high accuracy.

【0042】実施例2 実施例1と同じ形状、材質の測定対象試験片を5本準備
した。その5本の試験片にヌープ硬度測定用圧子により
荷重5kgf、10kgf、20kgf、30kgf、
50kgfで予き裂を導入した。予き裂の数および位置
は実施例1と同じである。試験はまず、5kgf荷重試
験片をΔT=580℃、600℃、620℃、640℃
の順で繰り返し急冷処理し、その都度、予き裂長さを観
察した結果、き裂が進展を開始する温度差の平均が65
5℃であることがわかった。同様に、10kgf、20
kgf、30kgf、50kgf荷重試験片をそれぞ
れ、430℃、470℃、560℃、620℃から10
℃または20℃おきに急冷処理し、き裂が進展する最低
の温度差の平均を求めたところ表1の様になった。
Example 2 Five test pieces to be measured having the same shape and material as in Example 1 were prepared. A load of 5 kgf, 10 kgf, 20 kgf, 30 kgf, and 5 kgf was applied to the five test pieces by a Knoop hardness measuring indenter.
A pre-crack was introduced at 50 kgf. The number and position of the pre-cracks are the same as in the first embodiment. In the test, first, a 5 kgf load test piece was subjected to ΔT = 580 ° C., 600 ° C., 620 ° C., 640 ° C.
The quenching treatment was repeatedly performed in the order of, and as a result of observing the length of the pre-crack each time, the average temperature difference at which the crack began to propagate was 65
It was found to be 5 ° C. Similarly, 10kgf, 20
kgf, 30 kgf, and 50 kgf load test pieces were respectively measured at 430 ° C, 470 ° C, 560 ° C, and 620 ° C.
Table 1 shows the average of the lowest temperature differences at which the cracks propagated.

【0043】[0043]

【表1】 [Table 1]

【0044】このCiとΔTciの関係を両対数グラフ
上にプロットすると図2の様に直線関係があることが分
かる。最小2乗法により前記数1中のa及びbを求めた
結果、a=0.351、b=3555.3が得られた。
ただし、予き裂長さの単位はμmとした。実施例1で求
めたCoを使い供試材のΔTcを推定するとΔTc=8
26℃となる。これは実測値(ΔTc=800℃)とよ
く一致することが分かる。
When the relationship between Ci and ΔTci is plotted on a log-log graph, it can be seen that there is a linear relationship as shown in FIG. As a result of obtaining a and b in Equation 1 by the least square method, a = 0.351 and b = 3555.3 were obtained.
However, the unit of the pre-crack length was μm. Estimating ΔTc of the test material using Co obtained in Example 1, ΔTc = 8
26 ° C. It can be seen that this is in good agreement with the measured value (ΔTc = 800 ° C.).

【0045】さらに、上記関係式を得ることにより、等
価き裂長さCoが変化した場合でも、簡単な強度試験の
結果だけから容易にΔTcを推定できる。
Further, by obtaining the above relational expression, even when the equivalent crack length Co changes, ΔTc can be easily estimated only from the result of a simple strength test.

【0046】[0046]

【発明の効果】以上詳述したように、本発明の推定方法
によれば、試験片に形成された小さな予き裂における挙
動を観察するため、熱衝撃試験に供する試験片本数が少
なく、また、予き裂から破壊するため測定値のばらつき
が小さく臨界温度差を高い精度で予測できる。さらに、
き裂長さと臨界温度差の関係を知ることができるので、
等価き裂長さが変化した場合にも急冷熱衝撃における臨
界温度差の推定を行うことができる。
As described in detail above, according to the estimation method of the present invention, the behavior of small pre-cracks formed on the test specimen is observed, so that the number of test specimens subjected to the thermal shock test is small. Since it breaks from a pre-crack, the dispersion of measured values is small and the critical temperature difference can be predicted with high accuracy. further,
Since you can know the relationship between the crack length and the critical temperature difference,
Even when the equivalent crack length changes, the critical temperature difference in the quenching thermal shock can be estimated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において用いられる試験片の概略図であ
る。
FIG. 1 is a schematic view of a test piece used in the present invention.

【図2】予き裂長さCiと臨界温度差(ΔTci)との
関係を示した図である。
FIG. 2 is a diagram showing a relationship between a pre-crack length Ci and a critical temperature difference (ΔTci).

【符号の説明】[Explanation of symbols]

1 試験片 2 予き裂 1 Test piece 2 Pre-crack

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 3/00 - 3/62 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 3/00-3/62 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】長さの異なる予き裂を形成した複数の試験
片を複数の温度差ΔTで急冷処理したとき、前記予き裂
の長さCiとその予き裂が進展する最低の温度差△Tc
iの組み合わせ(Ci,△Tci)を2組以上測定して
CiとΔTciの関係式を得るとともに、強度、破壊靭
性値、ワイブル係数、強度試験における有効体積または
有効表面積、前記急冷処理時の試験片の有効体積または
有効表面積から等価き裂長を推定し、該等価き裂長と前
記関係式から熱衝撃により材料が破壊に至る臨界温度差
を推定することを特徴とする急冷熱衝撃臨界温度差の推
定方法。
When a plurality of test specimens having pre-cracks having different lengths are quenched at a plurality of temperature differences ΔT, the length of the pre-cracks Ci and the lowest temperature at which the pre-cracks propagate. Difference △ Tc
The relational expression between Ci and ΔTci is obtained by measuring two or more combinations (Ci, △ Tci) of i, and the strength, fracture toughness, Weibull coefficient, effective volume or effective surface area in the strength test, and the test during the quenching treatment Estimate the equivalent crack length from the effective volume or effective surface area of the piece, the critical temperature difference of quenching thermal shock characterized by estimating the critical temperature difference that causes the material to break by thermal shock from the equivalent crack length and the relational expression Estimation method.
JP06235094A 1994-03-31 1994-03-31 Estimation method of quenching thermal shock critical temperature difference Expired - Fee Related JP3207038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06235094A JP3207038B2 (en) 1994-03-31 1994-03-31 Estimation method of quenching thermal shock critical temperature difference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06235094A JP3207038B2 (en) 1994-03-31 1994-03-31 Estimation method of quenching thermal shock critical temperature difference

Publications (2)

Publication Number Publication Date
JPH07270292A JPH07270292A (en) 1995-10-20
JP3207038B2 true JP3207038B2 (en) 2001-09-10

Family

ID=13197592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06235094A Expired - Fee Related JP3207038B2 (en) 1994-03-31 1994-03-31 Estimation method of quenching thermal shock critical temperature difference

Country Status (1)

Country Link
JP (1) JP3207038B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104454A (en) * 1995-11-22 2000-08-15 Hitachi, Ltd Liquid crystal display

Also Published As

Publication number Publication date
JPH07270292A (en) 1995-10-20

Similar Documents

Publication Publication Date Title
Scherrer et al. Fracture toughness (KIc) of a dental porcelain determined by fractographic analysis
Hamidouche et al. Thermal shock behaviour of mullite ceramic
Nie et al. Effect of loading rate and surface conditions on the flexural strength of borosilicate glass
Li et al. Real-time damage evaluation method for multiaxial thermo-mechanical fatigue under variable amplitude loading
Anunmana et al. Residual stress in glass: Indentation crack and fractography approaches
Boccaccini et al. Reliability of the chevron-notch technique for fracture toughness determination in glass
JP3207038B2 (en) Estimation method of quenching thermal shock critical temperature difference
JP3220342B2 (en) Prediction method of quenching thermal shock fatigue life
Bisrat et al. Residual stress measurement by Hertzian indentation
Boccaccini et al. Service life prediction for refractory materials
Lapovok et al. Damage mechanics for the fracture prediction of metal forming tools
TW200925600A (en) Method for determining the thermal shock robustness and material strength of brittle failure materials
Tandon et al. Indentation crack initiation and propagation in tempered glass
JP3157974B2 (en) Estimation method of quenching thermal shock critical temperature difference
Davoodi et al. An experimental and numerical analysis of the heat transfer problem in SHPB at elevated temperatures
Sglavo et al. Crack decorating technique for fracture-toughness measurement in alumina
Kren Determination of the critical stress intensity factor of glass under conditions of elastic contact by the dynamic indentation method.
Rogers et al. Contact thermal shock test of ceramics
Yoshimoto et al. An improved method for the determination of the maximum thermal stress induced during a quench test
Quinn et al. Comparison of methods to determine the fracture toughness of three glass‐ceramics at elevated temperatures
Ohira et al. Strength Distributions of a Quench‐Strengthened Aluminosilicate Ceramic
Wang et al. Variation in the indentation toughness of silicon nitride
Zhang et al. Characteristics of crack patterns controlling the retained strength of ceramics after thermal shock
Saâdaoui et al. Crack growth resistance under thermal shock loading of alumina
Osterstock et al. Quantification of quenching stresses and heat transfer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees