JPH08150655A - Extrusion amount measuring device in extruder - Google Patents

Extrusion amount measuring device in extruder

Info

Publication number
JPH08150655A
JPH08150655A JP6297544A JP29754494A JPH08150655A JP H08150655 A JPH08150655 A JP H08150655A JP 6297544 A JP6297544 A JP 6297544A JP 29754494 A JP29754494 A JP 29754494A JP H08150655 A JPH08150655 A JP H08150655A
Authority
JP
Japan
Prior art keywords
cylinder
extrusion
detecting
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6297544A
Other languages
Japanese (ja)
Other versions
JP3029184B2 (en
Inventor
Yaku Yana
躍 梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6297544A priority Critical patent/JP3029184B2/en
Publication of JPH08150655A publication Critical patent/JPH08150655A/en
Application granted granted Critical
Publication of JP3029184B2 publication Critical patent/JP3029184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92019Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/9218Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92333Raw material handling or dosing, e.g. active hopper or feeding device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/9238Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/924Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/92409Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92676Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92828Raw material handling or dosing, e.g. active hopper or feeding device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE: To measure the accurate extrusion amt. in a die head part by measuring a static extrusion amt. and a dynamic extrusion amt. CONSTITUTION: In an extruder 10 wherein the polymeric material charged in a hopper 11 is melted to be extruded to a die head part 15 through a cylinder 12, a static extrusion amt. is calculated from the material flow rate detected by a weighting sensor 20 by an operation part 26. The material temp., the cylinder temp. the number of rotations of a screw, the change quantities of resin pressure in the cylinder and the die head detected by heat sensors 21, 22, a rotation sensor 24 and pressure sensors 23, 25 are set to variables and a dynamic extrusion amt. is calculated on the basis of an auto-regressive exogenous model by an operation part 27 and an actual extrusion amt. is calculated from the static and dynamic extrusion amts. by an operation part 28.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子材料を溶融して
ダイに押し出す押出機に関し、特に樹脂材料の押出量を
測定する押出機の押出量測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extruder that melts a polymer material and extrudes it into a die, and more particularly to an extrusion rate measuring device for an extruder that measures the extrusion rate of a resin material.

【0002】[0002]

【従来の技術】従来、この種の押出量測定では、例えば
特開平3−261539号公報や特開平5−32991
6号公報に記載されているように、ホッパの材料重量か
ら平均押出量を算出し、さらに作成されたフイルムの寸
法(幅、厚み)、引き取り速度及び材料の密度に基づい
て目標押出量を算出して、平均押出量を目標押出量に合
わせるものがあった。
2. Description of the Related Art Conventionally, in this type of extrusion amount measurement, for example, JP-A-3-261539 and JP-A-5-32991.
As described in Japanese Patent Publication No. 6, the average extrusion rate is calculated from the material weight of the hopper, and the target extrusion rate is calculated based on the dimensions (width, thickness) of the created film, the take-up speed and the density of the material. In some cases, the average extrusion rate was adjusted to the target extrusion rate.

【0003】また、押出量を安定化するために、ダイヘ
ッド部にギヤポンプを設けてその吐出量から押出量を逆
算するものもあった。
In addition, in order to stabilize the extrusion rate, there has been a method in which a gear pump is provided in the die head section and the extrusion rate is calculated backward from the discharge rate.

【0004】[0004]

【発明が解決しようとする課題】実際の押出量Fは、図
3に示すように、通常押出量の静的な動きを示す定常状
As shown in FIG. 3, the actual extrusion amount F is a steady state which shows a static movement of the normal extrusion amount.

【0005】[0005]

【外1】 [Outside 1]

【0006】押出量の動きを示す動的押出量ΔFとの合
成からなっているが、上記公報の押出量測定では、静的
押出量しか算出できず、動的押出量を算出することがで
きないという問題点があった。また、上記押出量測定で
は、ホッパ側の材料重量を検出しているので、ホッパ側
に流量変化が生じても、その変化がダイヘッド部に至る
まで少なくとも数分かかる。このような無駄時間の存在
により、ホッパ側で測定した押出量は、その時点でのダ
イヘッド部側の押出量の瞬間値ではないので、押出量制
御に正確性を欠くという問題点があった。さらに、作成
されたフイルムの寸法を検出するために、押出量の測定
に長い時間がかかり、短いスパンでの計測が困難である
とともに、無駄になる材料が多くなり、フイルムの作成
コストが高くなるという問題点もあった。
It is composed of a dynamic extrusion amount ΔF which shows the movement of the extrusion amount, but in the extrusion amount measurement of the above publication, only the static extrusion amount can be calculated, and the dynamic extrusion amount cannot be calculated. There was a problem. Further, in the above extrusion rate measurement, since the material weight on the hopper side is detected, even if the flow rate changes on the hopper side, it takes at least several minutes until the change reaches the die head portion. Due to the existence of such dead time, the extrusion amount measured on the hopper side is not the instantaneous value of the extrusion amount on the die head side at that time, so that there is a problem that the extrusion amount control lacks accuracy. Furthermore, because the size of the created film is detected, it takes a long time to measure the extrusion rate, and it is difficult to measure in a short span, and more material is wasted, which increases the cost of creating the film. There was also a problem.

【0007】また、ギヤポンプを設けた押出量測定で
は、ポンプ内に昇温現象がよく現れるので、溶融した材
料が熱分解又は他の変異現象(例えば、発泡剤入りの材
料の場合には、発砲現象等)が生じる恐れがあり、製品
化できないという問題点があった。本発明は、上記問題
点に鑑みなされたもので、静的押出量及び動的押出量を
測定して、ダイヘッドにおける正確な押出量を測定でき
る押出機の押出量測定装置を提供することを目的とす
る。
Further, in the extrusion rate measurement provided with a gear pump, a temperature rising phenomenon often appears in the pump, so that the molten material is pyrolyzed or another mutation phenomenon (for example, in the case of a material containing a foaming agent, a foaming phenomenon occurs). However, there is a problem in that it cannot be commercialized. The present invention has been made in view of the above problems, and an object thereof is to provide an extrusion rate measuring device of an extruder capable of measuring a static extrusion rate and a dynamic extrusion rate and measuring an accurate extrusion rate in a die head. And

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1では、ホッパに投入された高分子材料を溶
融してシリンダを介してダイヘッドに押し出す押出機に
おいて、前記ホッパに投入される高分子材料の投入量を
検出する計量センサからなる投入量検出手段と、前記材
料の温度を検出する熱センサからなる第1の温度検出手
段と、前記シリンダの温度を検出する熱センサからなる
第2の温度検出手段と、前記シリンダ内に設けられたス
クリュの回転数を検出する回転センサからなる回転数検
出手段と、前記シリンダ内の高分子材料の圧力を検出す
る圧力センサからなる第1の圧力検出手段と、前記ダイ
ヘッド内の高分子材料の圧力を検出する圧力センサから
なる第2の圧力検出手段と、前記検出された投入量に基
づいて平均押出量を算出する演算部からなる第1の算出
手段と、前記検出された材料温度、シリンダ温度、スク
リュ回転数、シリンダ内及びダイヘッド内の高分子材料
圧力の変化量に基づいて微小時間押出量を算出する演算
部からなる第2の算出手段と、前記算出された平均押出
量及び微小時間押出量に基づいて押出機の押出量を算出
する演算部からなる第3の算出手段とを備えた押出機の
押出量測定装置が提供される。
In order to achieve the above-mentioned object, according to a first aspect of the present invention, in an extruder in which a polymer material charged in a hopper is melted and extruded to a die head through a cylinder, the material is charged into the hopper. A charge amount detecting means including a weighing sensor for detecting the charge amount of the polymer material, a first temperature detecting means including a heat sensor for detecting the temperature of the material, and a heat sensor for detecting the temperature of the cylinder. A first temperature detection means for detecting the rotation speed of a screw provided in the cylinder, a rotation speed detection means for detecting the rotation speed of a screw provided in the cylinder, and a pressure sensor for detecting the pressure of the polymer material in the cylinder. A second pressure detecting means including a pressure detecting means and a pressure sensor for detecting the pressure of the polymer material in the die head, and an average extrusion amount based on the detected charging amount. A minute calculation amount is calculated on the basis of the first calculation means including a calculation unit for outputting, the detected material temperature, the cylinder temperature, the screw rotation speed, and the change amount of the polymer material pressure in the cylinder and the die head. An extruder provided with a second calculation unit including a calculation unit and a third calculation unit including a calculation unit that calculates an extrusion rate of the extruder based on the calculated average extrusion rate and minute time extrusion rate. An extrusion rate measuring device is provided.

【0009】請求項2では、ホッパに投入された高分子
材料を溶融してシリンダを介してダイヘッドに押し出す
押出機において、前記材料の温度を検出する熱センサか
らなる第1の温度検出手段と、前記シリンダの温度を検
出する熱センサからなる第2の温度検出手段と、前記シ
リンダ内に設けられたスクリュの回転数を検出する回転
センサからなる回転数検出手段と、前記シリンダ内の高
分子材料の圧力を検出する圧力センサからなる第1の圧
力検出手段と、前記ダイヘッド内の高分子材料の圧力を
検出する圧力センサからなる第2の圧力検出手段と、前
記検出されたスクリュ回転数に基づいて平均押出量を算
出する演算部からなる第1の算出手段と、前記検出され
た材料温度、シリンダ温度、スクリュ回転数、シリンダ
内及びダイヘッド内の高分子材料圧力の変化量に基づい
て微小時間押出量を算出する演算部からなる第2の算出
手段と、前記算出された平均押出量及び微小時間押出量
に基づいて押出機の実際の押出量を算出する演算部から
なる第3の算出手段とを備える。
According to a second aspect of the present invention, in an extruder in which a polymer material charged in a hopper is melted and extruded through a cylinder to a die head, first temperature detecting means including a heat sensor for detecting the temperature of the material, Second temperature detecting means including a heat sensor for detecting the temperature of the cylinder, rotation speed detecting means including a rotation sensor for detecting the rotation speed of a screw provided in the cylinder, and a polymer material in the cylinder. Based on the detected screw rotation speed, and a first pressure detection means including a pressure sensor for detecting the pressure of No. 1, a second pressure detection means including a pressure sensor for detecting the pressure of the polymer material in the die head, Calculating means for calculating an average extrusion rate by means of a first calculating means, the detected material temperature, cylinder temperature, screw rotation speed, in-cylinder and die head Second calculating means including an arithmetic unit for calculating the minute time extrusion amount based on the change amount of the polymeric material pressure, and the actual extrusion of the extruder based on the calculated average extrusion amount and minute time extrusion amount. And a third calculation unit including a calculation unit that calculates the amount.

【0010】請求項3では、第2の算出手段は、押出機
の特徴を考慮した各事象の変化量を変数として、自己回
帰外生モデルに基づいて微小時間押出量を算出する。
In the third aspect, the second calculating means calculates the minute time extrusion rate based on the autoregressive exogenous model using the variation of each event in consideration of the characteristics of the extruder as a variable.

【0011】[0011]

【作用】検出された材料投入量より静的押出量を算出す
るとともに、検出された材料温度、シリンダ温度、スク
リュ回転数、シリンダ内及びダイヘッド内の高分子材料
圧力の変化量より動的押出量を算出し、静的押出量及び
動的押出量とから実際の押出量を求める。
[Function] The static extrusion rate is calculated from the detected material input rate, and the dynamic extrusion rate is calculated from the detected changes in material temperature, cylinder temperature, screw rotation speed, and polymer material pressure in the cylinder and die head. Is calculated, and the actual extrusion rate is obtained from the static extrusion rate and the dynamic extrusion rate.

【0012】請求項2では、材料投入量の代わりに、検
出されたスクリュ回転数より静的押出量を算出するとと
もに、検出された材料温度、シリンダ温度、スクリュ回
転数、シリンダ内及びダイヘッド内の高分子材料圧力の
変化量より動的押出量を算出し、静的押出量及び動的押
出量とから実際の押出量を求める。請求項3では、材料
温度、シリンダ温度、スクリュ回転数、シリンダ内及び
ダイヘッド内の高分子材料圧力の変化を変数として、自
己回帰外生モデルにより動的押出量を推定する。
According to a second aspect of the present invention, the static extrusion rate is calculated from the detected screw rotation rate instead of the material input rate, and the detected material temperature, cylinder temperature, screw rotation rate, in-cylinder and in die head. The dynamic extrusion rate is calculated from the change in the pressure of the polymer material, and the actual extrusion rate is calculated from the static extrusion rate and the dynamic extrusion rate. According to the third aspect, the dynamic extrusion rate is estimated by the autoregressive exogenous model with the variables of the material temperature, the cylinder temperature, the screw rotation number, and the pressure of the polymer material in the cylinder and the die head as variables.

【0013】[0013]

【実施例】本発明に係る押出機の押出量測定装置の実施
例を図1乃至図2の図面に基づいて説明する。なお、本
願の発明者は、本発明を創作するにあたり、ホッパ内の
高分子材料、例えばポリエチレン材料の温度と、シリン
ダの温度と、シリンダ内の設けられたスクリュの回転数
と、シリンダ内の樹脂(シリンダ内で高分子材料が溶融
したもの)圧力と、上記シリンダの出口に設けられたダ
イヘッド内の樹脂圧力(以下、「押出圧力」という。)
等の事象が押出量に影響を与えることを検知した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an extrusion rate measuring device for an extruder according to the present invention will be described with reference to the drawings of FIGS. The inventors of the present application, in creating the present invention, the temperature of the polymer material in the hopper, for example, the polyethylene material, the temperature of the cylinder, the rotation speed of the screw provided in the cylinder, the resin in the cylinder Pressure (melting polymer material in the cylinder) and resin pressure in the die head provided at the outlet of the cylinder (hereinafter referred to as "extrusion pressure").
It was detected that such events affect the extrusion rate.

【0014】そこで、本発明では、上記高分子材料の流
量から静的押出量を算出するとともに、上記材料温度、
シリンダ温度、スクリュ回転数、シリンダ内及びダイヘ
ッド内の樹脂圧力から動的押出量を算出し、かつ上記静
的押出量と動的押出量とから実際の押出量を求めるもの
とする。図1は、本発明に係る押出量測定装置の構成を
示すブロック図である。図において、押出機10のホッ
パ11には、ロードセル等の計量センサ20を配設して
高分子材料の流量を計測するとともに、熱電対等の熱セ
ンサ21を配設して材料
Therefore, in the present invention, the static extrusion rate is calculated from the flow rate of the polymer material, and the material temperature,
The dynamic extrusion rate is calculated from the cylinder temperature, the screw rotation speed, the resin pressure in the cylinder and the die head, and the actual extrusion rate is calculated from the static extrusion rate and the dynamic extrusion rate. FIG. 1 is a block diagram showing the configuration of an extrusion rate measuring device according to the present invention. In the figure, a hopper 11 of the extruder 10 is provided with a metering sensor 20 such as a load cell to measure the flow rate of a polymer material, and a heat sensor 21 such as a thermocouple is provided to provide a material.

【0015】[0015]

【外2】 [Outside 2]

【0016】1は、ΔF演算部27と接続されており、
計測した材料温度TmのデータをΔF演算部27に出力
している。シリンダ12には、熱電対等の熱センサ22
を配設してシリンダ温度を計測するとともに、圧力セン
サ23を配設してシリンダ12内の樹脂圧力を計測す
る。また、シリンダ12内のスクリュ13を回転駆動さ
せるスクリュモータ14には、回転センサ24を配設し
てスクリュ13の回転数を計測する。熱センサ22、圧
力センサ23及び回転センサ24は、ΔF演算部27と
それぞれ接続されており、計測したシリンダ温度Tc、
樹脂圧力Pc及びスクリュ回転数Nの各データをΔF演
算部27に出力している。
1 is connected to the ΔF calculation unit 27,
Data of the measured material temperature Tm is output to the ΔF calculation unit 27. The cylinder 12 has a thermal sensor 22 such as a thermocouple.
Is provided to measure the cylinder temperature, and the pressure sensor 23 is provided to measure the resin pressure in the cylinder 12. Further, a rotation sensor 24 is provided in a screw motor 14 that rotationally drives the screw 13 in the cylinder 12, and the number of rotations of the screw 13 is measured. The heat sensor 22, the pressure sensor 23, and the rotation sensor 24 are connected to the ΔF calculation unit 27, respectively, and measure the measured cylinder temperature Tc,
Each data of the resin pressure Pc and the screw rotation speed N is output to the ΔF calculation unit 27.

【0017】シリンダ温度の計測では、図1のように、
シリンダ12内のスクリュ13が樹脂の流れ方向に対し
て径を徐々に大きくさせるテーパ形状で構成されている
場合には、押出機10のコンプレッションゾーンの始ま
る位置、すなわちスクリュ13のテーパがかかり始める
位置で、材料が本格的に融け始めてメルト状になるの
で、この位置での温度変化が押出量に大きく影響を与え
ることを実験によって検知した。そこで、本実施例で
は、熱センサ22をスクリュ13のテーパ部が始める位
置に配設するものとする。
In measuring the cylinder temperature, as shown in FIG.
When the screw 13 in the cylinder 12 is formed in a tapered shape whose diameter gradually increases in the resin flow direction, the compression zone of the extruder 10 starts, that is, the screw 13 begins to taper. Then, it was detected by experiment that the temperature change at this position had a great influence on the extrusion rate, because the material began to melt in a full-scale and became a melt. Therefore, in this embodiment, the thermal sensor 22 is arranged at a position where the taper portion of the screw 13 starts.

【0018】また、シリンダ12内の樹脂圧力の計測で
は、図1のように、スクリュ13がテーパ形状で構成さ
れている場合には、押出機のメータリングゾーンの始ま
る位置、すなわちスクリュ13のテーパ部が終わって、
フラットな部分が始まる位置で樹脂の流れが安定するの
で、この位置での圧力変化が押出量に大きく影響を与え
ることを実験によって検知した。そこで、本実施例で
は、圧力センサ23をスクリュ13のテーパ部が終わる
位置に配設するものとする。
Further, in measuring the resin pressure in the cylinder 12, when the screw 13 is formed in a tapered shape as shown in FIG. 1, the starting position of the metering zone of the extruder, that is, the taper of the screw 13 is measured. The part is over,
Since the resin flow is stable at the position where the flat part starts, it was detected by experiment that the pressure change at this position has a large effect on the extrusion rate. Therefore, in this embodiment, the pressure sensor 23 is arranged at the position where the taper portion of the screw 13 ends.

【0019】なお、シリンダ温度及び樹脂圧力は、上述
したごとくスクリュの形状の影響を受けるので、上記ス
クリュの形状に応じて、実験等で最適配設位置を検知す
ることが望ましい。また、シリンダ12出口のダイヘッ
ド部15には、圧力センサ25を配設してダイヘッド部
15内の押出圧力を計測する。圧力センサ25は、ΔF
演算部27と接続されており、計測した押出圧力Pdの
データをΔF演算部27に出力している。
Since the cylinder temperature and the resin pressure are affected by the shape of the screw as described above, it is desirable to detect the optimum arrangement position by experiments or the like according to the shape of the screw. Further, a pressure sensor 25 is provided in the die head portion 15 at the outlet of the cylinder 12 to measure the extrusion pressure in the die head portion 15. The pressure sensor 25 is ΔF
It is connected to the calculation unit 27 and outputs the measured data of the extrusion pressure Pd to the ΔF calculation unit 27.

【0020】[0020]

【外3】 [Outside 3]

【0021】センサ20から出力される流量データFH
を所定数取り込み、以下の式(1)
Flow rate data FH output from the sensor 20
The following formula (1)

【0022】[0022]

【数1】 [Equation 1]

【0023】[0023]

【外4】 [Outside 4]

【0024】なわち静的押出量としてF演算部28に出
力している。ΔF演算部27は、熱センサ21,22、
圧力センサ23、回転センサ24及び圧力センサ25か
ら出力される5つの変数(材料温度Tm、シリンダ温度
Tc、樹脂圧力Pc、スクリュ回転数N及び押出圧力P
d)の時系列データを取り込み、これら時系列データを
利用して自己回帰外生(以下、「ARX」という。)モ
デルを、以下の式(2)
That is, it is output to the F calculation unit 28 as a static extrusion amount. The ΔF calculation unit 27 includes the thermal sensors 21, 22 and
Five variables output from the pressure sensor 23, the rotation sensor 24, and the pressure sensor 25 (material temperature Tm, cylinder temperature Tc, resin pressure Pc, screw rotation speed N, and extrusion pressure P).
The time series data of d) is taken in, and the autoregressive exogenous (hereinafter referred to as “ARX”) model is calculated using these time series data by the following formula (2).

【0025】[0025]

【数2】 [Equation 2]

【0026】[0026]

【外5】 [Outside 5]

【0027】28は、CPUで構成することが可能であ
る。次に、パラメータa1,b1,c1,d1,e1,f1を
以下に示す5入力1出力1次系で推定する。まず、 ΔF(i)=a1ΔF(i-1)+b1ΔTc(i-1)+c1ΔTm(i-
1)+d1ΔPc(i-1)+e1ΔPd(i-1)+f1ΔN(i-1)+V
(i) とし、
28 can be constituted by a CPU. Next, the parameters a1, b1, c1, d1, e1, and f1 are estimated by the following 5-input 1-output primary system. First, ΔF (i) = a1ΔF (i-1) + b1ΔTc (i-1) + c1ΔTm (i-
1) + d1ΔPc (i-1) + e1ΔPd (i-1) + f1ΔN (i-1) + V
(i)

【0028】[0028]

【数3】 (Equation 3)

【0029】となる。ここで、## EQU1 ## here,

【0030】[0030]

【数4】 [Equation 4]

【0031】とすると、式(3)は、Then, the equation (3) becomes

【0032】[0032]

【数5】 (Equation 5)

【0033】となり、推定値は、And the estimated value is

【0034】[0034]

【数6】 (Equation 6)

【0035】となる。誤差Vは、[0035] The error V is

【0036】[0036]

【数7】 (Equation 7)

【0037】となり、これにVの転置VTを掛けると、When this is multiplied by the transpose V T of V,

【0038】[0038]

【数8】 (Equation 8)

【0039】となる。このVTVを最小にすることで誤
差を最小にすることができる。そこで、各パラメータa
1,b1,c1,d1,e1,f1に対する偏微分を行う。な
お、上記偏微分は、各パラメータとも同様なので、ここ
では代表してa1とf1の場合を示す。
It becomes The error can be minimized by minimizing the V T V. Therefore, each parameter a
Partial differentiation is performed on 1, b1, c1, d1, e1, and f1. Since the above partial differentiation is the same for each parameter, the case of a1 and f1 is shown here as a representative.

【0040】[0040]

【数9】 [Equation 9]

【0041】となる。式(4)を展開すると、It becomes Expanding equation (4),

【0042】[0042]

【数10】 [Equation 10]

【0043】−(y−a1z1−b1z2−c1z3−d1z4
−e1z5−f1z6)Tz1+(y−a1z1−b1z2−c1
z3−d1z4−e1z5−f1z6)T(−z1)=0 となり、従って上記式は、 (y−a1z1−b1z2−c1z3−d1z4−e1z5−f1z6)Tz1=0 …(6) となる。同様に、パラメータb1,c1,d1,e1,f1
に対する偏微分では、 (y−a1z1−b1z2−c1z3−d1z4−e1z5−f1z6)Tz2=0 …(7) (y−a1z1−b1z2−c1z3−d1z4−e1z5−f1z6)Tz3=0 …(8) (y−a1z1−b1z2−c1z3−d1z4−e1z5−f1z6)Tz4=0 …(9) (y−a1z1−b1z2−c1z3−d1z4−e1z5−f1z6)Tz5=0 …(10) (y−a1z1−b1z2−c1z3−d1z4−e1z5−f1z6)Tz6=0 …(11) となる。次に、これら式(6)〜(11)を合成する
と、
-(Y-a1z1-b1z2-c1z3-d1z4
-E1z5-f1z6) T z1 + ( y-a1z1-b1z2-c1
z3-d1z4-e1z5-f1z6) T (-z1) = 0, and therefore the above formula becomes (y-a1z1-b1z2-c1z3-d1z4-e1z5-f1z6) T z1 = 0 (6). Similarly, the parameters b1, c1, d1, e1, f1
The partial differential with respect to, (y-a1z1-b1z2- c1z3-d1z4-e1z5-f1z6) T z2 = 0 ... (7) (y-a1z1-b1z2-c1z3-d1z4-e1z5-f1z6) T z3 = 0 ... (8 ) (y-a1z1-b1z2- c1z3-d1z4-e1z5-f1z6) T z4 = 0 ... (9) (y-a1z1-b1z2-c1z3-d1z4-e1z5-f1z6) T z5 = 0 ... (10) (y- a1z1-b1z2-c1z3-d1z4- e1z5-f1z6) T z6 = 0 ... it is (11). Next, when these expressions (6) to (11) are combined,

【0044】[0044]

【数11】 [Equation 11]

【0045】となる。ここで、[z1…z6]=zとして
転置を行うと、上記式(12)は、
It becomes Here, when transposition is performed with [z1 ... z6] = z, the above equation (12) becomes

【0046】[0046]

【数12】 (Equation 12)

【0047】となる。ここで、z,yは実験データであ
るので、パラメータa1,b1,c1,d1,e1,f1を計
算することができる。また、式(2)で示した1次以上
のパラメータ(ai,bi,ci,di,ei,fi、ただし
i>1)についても同様の方法で計算することができ
る。なお、上記パラメータの推定は、ARXモデルにお
いて、一般的に公知なものである。
It becomes Here, since z and y are experimental data, the parameters a1, b1, c1, d1, e1 and f1 can be calculated. Also, the first-order and higher-order parameters (ai, bi, ci, di, ei, fi, where i> 1) shown in the equation (2) can be calculated by the same method. The estimation of the above parameters is generally known in the ARX model.

【0048】[0048]

【外6】 [Outside 6]

【0049】次に、図1に示した押出量測定装置の動作
を図2のフローチャートに基づいて説明する。まず、A
RXモデルのパラメータと次数を設定し、静的押出量の
サンプリング時間及び動的押出量のサンプリング時間を
設定する(ステップ101)。なお、通常、静的押出量
のサンプリング時間は、動的押出量のサンプリング時間
より長いので、倍数に設定する。
Next, the operation of the extrusion rate measuring device shown in FIG. 1 will be described with reference to the flow chart of FIG. First, A
The parameters and order of the RX model are set, and the sampling time of the static extrusion rate and the sampling time of the dynamic extrusion rate are set (step 101). Since the sampling time of the static extrusion rate is usually longer than the sampling time of the dynamic extrusion rate, it is set to a multiple.

【0050】次に、上記パラメータを設定し直すかどう
か判断する(ステップ102)。ここでは、例えば材質
の異なる材料の押出量を測定する場合等は、材質に応じ
てパラメータを新たに設定し直した方が押出量の測定精
度が高くなるためである。ここで、上記パラメータを設
定し直す場合には、ステップ101に戻って再設定を
Next, it is judged whether or not the above parameters are reset (step 102). This is because, for example, in the case of measuring the extrusion amount of materials having different materials, the accuracy of extrusion amount measurement becomes higher if parameters are newly set according to the materials. Here, when resetting the above parameters, the process returns to step 101 and is reset.

【0051】[0051]

【外7】 [Outside 7]

【0052】F演算部27は、各データのサンプリング
を開始し、上記設定したサンプリング時間に達したかど
うか判断する(ステップ103)。そして、設定したサ
ンプリング時間に達するたびに、各センサ20〜25か
The F calculator 27 starts sampling each data and determines whether or not the set sampling time has been reached (step 103). Then, each time the set sampling time is reached, each sensor 20-25

【0053】[0053]

【外8】 [Outside 8]

【0054】プリング時間に達していない場合には、F
演算部28は、ΔF演算部27から入力する動的押出量
ΔFから実際の押出量Fを算出する。また、上記押出量
の測定動作は、例えばオペレータからの終了の指示がな
されるまで繰り返し行われる。従って、本実施例では、
押出量の平均値である静的押出量と微小時間毎の動的押
出量とからダイヘッド部での押出量を算出するので、実
際の押出量を正確に測定することができる。
If the pulling time has not been reached, F
The calculation unit 28 calculates the actual extrusion amount F from the dynamic extrusion amount ΔF input from the ΔF calculation unit 27. In addition, the above-described operation of measuring the extrusion amount is repeatedly performed until, for example, the operator gives an instruction to finish. Therefore, in this embodiment,
Since the extrusion amount at the die head part is calculated from the static extrusion amount which is the average value of the extrusion amount and the dynamic extrusion amount for every minute time, the actual extrusion amount can be accurately measured.

【0055】また、本実施例では、押出量に影響を与え
る複数の変数の時系列データを利用して、押出量を測定
しているので、押出量の変化を随時測定でき、測定に伴
う無駄時間を削減することができる。さらに、本実施例
では、ARXモデルを利用して押出量を求めるので、各
変数の過去の状態(1ステップ前だけでなく、数ステッ
プ前までの過去の状態)と押出量との因果関係を検知す
ることができる。
Further, in the present embodiment, since the extrusion amount is measured by using the time series data of a plurality of variables that affect the extrusion amount, the change in the extrusion amount can be measured at any time, and the measurement wastes. You can save time. Further, in this embodiment, since the extrusion amount is obtained using the ARX model, the causal relationship between the past state of each variable (the past state not only one step before but several steps before) and the extrusion amount is shown. Can be detected.

【0056】なお、本実施例では、材料の流量から静的
押出量を算出したが、本発明はこれに限らず、例えばス
クリュ回転数Nからも静的押出量を算出することができ
る。この場合には、以下の式
In this embodiment, the static extrusion rate is calculated from the flow rate of the material, but the present invention is not limited to this, and the static extrusion rate can be calculated from the screw rotation speed N, for example. In this case, the expression

【0057】[0057]

【数13】 (Equation 13)

【0058】から静的押出量を算出することが可能とな
る。
From this, the static extrusion rate can be calculated.

【0059】[0059]

【発明の効果】以上説明したように、請求項1では、ホ
ッパに投入された高分子材料を溶融してシリンダを介し
てダイヘッドに押し出す押出機において、前記ホッパに
投入される高分子材料の投入量を検出する投入量検出手
段と、前記材料の温度を検出する第1の温度検出手段
と、前記シリンダの温度を検出する第2の温度検出手段
と、前記シリンダ内に設けられたスクリュの回転数を検
出する回転数検出手段と、前記シリンダ内の高分子材料
の圧力を検出する第1の圧力検出手段と、前記ダイヘッ
ド内の高分子材料の圧力を検出する第2の圧力検出手段
と、前記検出された投入量に基づいて平均押出量を算出
する第1の算出手段と、前記検出された材料温度、シリ
ンダ温度、スクリュ回転数、シリンダ内及びダイヘッド
内の高分子材料圧力の変化量に基づいて微小時間押出量
を算出する第2の算出手段と、前記算出された平均押出
量及び微小時間押出量に基づいて押出機の押出量を算出
する第3の算出手段とを備えたので、静的押出量及び動
的押出量を測定して、ダイヘッドにおける正確な押出量
を測定できる。
As described above, according to the first aspect of the present invention, in the extruder in which the polymer material charged into the hopper is melted and extruded through the cylinder to the die head, the polymer material charged into the hopper is charged. Charge amount detecting means for detecting the amount, first temperature detecting means for detecting the temperature of the material, second temperature detecting means for detecting the temperature of the cylinder, and rotation of a screw provided in the cylinder. A rotation speed detecting means for detecting the number, a first pressure detecting means for detecting the pressure of the polymer material in the cylinder, and a second pressure detecting means for detecting the pressure of the polymer material in the die head. First calculating means for calculating an average extrusion amount based on the detected input amount, and the detected material temperature, cylinder temperature, screw rotation speed, polymer material pressure in the cylinder and die head It is provided with a second calculating means for calculating a minute time extrusion amount based on the change amount, and a third calculating means for calculating an extrusion amount of the extruder based on the calculated average extrusion amount and minute time extrusion amount. Therefore, the static extrusion rate and the dynamic extrusion rate can be measured to measure the accurate extrusion rate at the die head.

【0060】請求項2では、ホッパに投入された高分子
材料を溶融してシリンダを介してダイヘッドに押し出す
押出機において、前記材料の温度を検出する第1の温度
検出手段と、前記シリンダの温度を検出する第2の温度
検出手段と、前記シリンダ内に設けられたスクリュの回
転数を検出する回転数検出手段と、前記シリンダ内の高
分子材料の圧力を検出する第1の圧力検出手段と、前記
ダイヘッド内の高分子材料の圧力を検出する第2の圧力
検出手段と、前記検出されたスクリュ回転数に基づいて
平均押出量を算出する第1の算出手段と、前記検出され
た材料温度、シリンダ温度、スクリュ回転数、シリンダ
内及びダイヘッド内の高分子材料圧力の変化量に基づい
て微小時間押出量を算出する第2の算出手段と、前記算
出された平均押出量及び微小時間押出量に基づいて押出
機の実際の押出量を算出する第3の算出手段とを備え、
材料投入量の代わりに、検出されたスクリュ回転数より
静的押出量を算出するので、この場合もダイヘッドにお
ける正確な押出量を測定できる。
According to a second aspect of the present invention, in an extruder in which a polymer material charged in a hopper is melted and extruded through a cylinder to a die head, first temperature detecting means for detecting the temperature of the material, and temperature of the cylinder. Temperature detecting means for detecting the rotation speed, rotation speed detecting means for detecting the rotation speed of the screw provided in the cylinder, and first pressure detecting means for detecting the pressure of the polymer material in the cylinder. Second pressure detecting means for detecting the pressure of the polymer material in the die head, first calculating means for calculating an average extrusion rate based on the detected screw rotation speed, and the detected material temperature , Second temperature calculation means for calculating the minute time extrusion amount based on the amount of change in the polymer temperature in the cylinder, the screw rotation speed, the cylinder, and the die head, and the calculated average extrusion. And a third calculation means for calculating the actual extrusion rate of the extruder based on the minute time extrusion rate,
Since the static extrusion rate is calculated from the detected screw rotation number instead of the material input rate, the accurate extrusion rate in the die head can be measured in this case as well.

【0061】請求項3では、第2の算出手段は、押出機
の特徴を考慮した各事象の変化量を変数として、自己回
帰外生モデルに基づいて微小時間押出量を算出するの
で、押出量の変化を随時測定することができる。
In the third aspect, the second calculating means calculates the minute time extrusion rate based on the autoregressive exogenous model using the variation of each event considering the characteristics of the extruder as a variable. Can be measured at any time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る押出量測定装置の構成を示すブロ
ック図である。
FIG. 1 is a block diagram showing a configuration of an extrusion rate measuring device according to the present invention.

【図2】図1に示した押出量測定装置の動作を説明する
ためのフローチャートである。
FIG. 2 is a flowchart for explaining the operation of the extrusion rate measuring device shown in FIG.

【図3】実際の押出量の経時的変化を示す図である。FIG. 3 is a diagram showing changes over time in the actual extrusion rate.

【符号の説明】[Explanation of symbols]

10 押出機 11 ホッパ 12 シリンダ 13 スクリュ 14 スクリュモータ 15 ダイヘッド部 20 計量センサ 21,22 熱センサ 23,25 圧力センサ 24 回転センサ 26〜28 演算部 10 Extruder 11 Hopper 12 Cylinder 13 Screw 14 Screw Motor 15 Die Head Part 20 Weighing Sensor 21,22 Thermal Sensor 23,25 Pressure Sensor 24 Rotation Sensor 26-28 Calculation Unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ホッパに投入された高分子材料を溶融し
てシリンダを介してダイヘッドに押し出す押出機におい
て、 前記ホッパに投入される高分子材料の投入量を検出する
投入量検出手段と、 前記材料の温度を検出する第1の温度検出手段と、 前記シリンダの温度を検出する第2の温度検出手段と、 前記シリンダ内に設けられたスクリュの回転数を検出す
る回転数検出手段と、 前記シリンダ内の高分子材料の圧力を検出する第1の圧
力検出手段と、 前記ダイヘッド内の高分子材料の圧力を検出する第2の
圧力検出手段と、 前記検出された投入量に基づいて平均押出量を算出する
第1の算出手段と、 前記検出された材料温度、シリンダ温度、スクリュ回転
数、シリンダ内及びダイヘッド内の高分子材料圧力の変
化量に基づいて微小時間押出量を算出する第2の算出手
段と、 前記算出された平均押出量及び微小時間押出量に基づい
て押出機の実際の押出量を算出する第3の算出手段とを
備えたことを特徴とする押出機の押出量測定装置。
1. An extruder for melting a polymeric material loaded into a hopper and pushing it out to a die head through a cylinder, and a loading amount detecting means for detecting a loading amount of the polymeric material loaded into the hopper, First temperature detecting means for detecting the temperature of the material; second temperature detecting means for detecting the temperature of the cylinder; rotational speed detecting means for detecting the rotational speed of a screw provided in the cylinder; First pressure detecting means for detecting the pressure of the polymeric material in the cylinder, second pressure detecting means for detecting the pressure of the polymeric material in the die head, and average extrusion based on the detected charging amount. A first calculation means for calculating the amount, and a minute time extrusion based on the detected material temperature, cylinder temperature, screw rotation speed, and the amount of change in the polymer material pressure in the cylinder and die head. Extrusion, comprising: a second calculating means for calculating the actual extrusion rate of the extruder on the basis of the calculated average extrusion rate and minute time extrusion rate. Extruder output measuring device.
【請求項2】 ホッパに投入された高分子材料を溶融し
てシリンダを介してダイヘッドに押し出す押出機におい
て、 前記材料の温度を検出する第1の温度検出手段と、 前記シリンダの温度を検出する第2の温度検出手段と、 前記シリンダ内に設けられたスクリュの回転数を検出す
る回転数検出手段と、 前記シリンダ内の高分子材料の圧力を検出する第1の圧
力検出手段と、 前記ダイヘッド内の高分子材料の圧力を検出する第2の
圧力検出手段と、 前記検出されたスクリュ回転数に基づいて平均押出量を
算出する第1の算出手段と、 前記検出された材料温度、シリンダ温度、スクリュ回転
数、シリンダ内及びダイヘッド内の高分子材料圧力の変
化量に基づいて微小時間押出量を算出する第2の算出手
段と、 前記算出された平均押出量及び微小時間押出量に基づい
て押出機の実際の押出量を算出する第3の算出手段とを
備えたことを特徴とする押出機の押出量測定装置。
2. An extruder in which a polymer material charged in a hopper is melted and extruded through a cylinder to a die head, and a first temperature detecting means for detecting a temperature of the material and a temperature of the cylinder are detected. Second temperature detection means, rotation speed detection means for detecting the rotation speed of a screw provided in the cylinder, first pressure detection means for detecting the pressure of the polymer material in the cylinder, and the die head Second pressure detecting means for detecting the pressure of the polymer material in the inside, first calculating means for calculating an average extrusion rate based on the detected screw rotation speed, the detected material temperature, cylinder temperature A second calculation means for calculating a minute time extrusion amount based on the amount of change in the screw rotation speed, the pressure of the polymer material in the cylinder and the die head, and the calculated average extrusion amount and the minute amount. Extrusion rate measuring apparatus of an extruder, characterized in that a third calculation means for calculating the actual extrusion rate of the extruder based on the time the extrusion rate.
【請求項3】 前記第2の算出手段は、押出機の特徴を
考慮した各事象の変化量を変数として、自己回帰外生モ
デルに基づいて微小時間押出量を算出することを特徴と
する請求項1又は2に記載の押出機の押出量測定装置。
3. The second calculating means calculates the minute time extrusion rate based on an autoregressive exogenous model, with the variation of each event considering the characteristics of the extruder as a variable. Item 3. An extrusion rate measuring device for an extruder according to Item 1 or 2.
JP6297544A 1994-11-30 1994-11-30 Extruder output measuring device Expired - Lifetime JP3029184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6297544A JP3029184B2 (en) 1994-11-30 1994-11-30 Extruder output measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6297544A JP3029184B2 (en) 1994-11-30 1994-11-30 Extruder output measuring device

Publications (2)

Publication Number Publication Date
JPH08150655A true JPH08150655A (en) 1996-06-11
JP3029184B2 JP3029184B2 (en) 2000-04-04

Family

ID=17847917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6297544A Expired - Lifetime JP3029184B2 (en) 1994-11-30 1994-11-30 Extruder output measuring device

Country Status (1)

Country Link
JP (1) JP3029184B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1120005A (en) * 1997-07-02 1999-01-26 Rika Kogyo Kk Discharge amount measuring apparatus and discharge amount controller for extrusion molding machine
JPH11254542A (en) * 1998-03-11 1999-09-21 Sanyo Electric Co Ltd Monitoring system for stereo lithographic apparatus
JP2004195990A (en) * 2004-03-11 2004-07-15 Rkc Instrument Inc Discharge rate controlling apparatus for extruder
JP2011016254A (en) * 2009-07-07 2011-01-27 Bridgestone Corp Extrusion molding apparatus
WO2013082795A1 (en) * 2011-12-07 2013-06-13 浙江大学 Dynamic micro-channel plastic extrusion molding device and method
KR102117941B1 (en) * 2019-11-20 2020-06-02 (주)이에스알산업 Apparatus and method for manufacturing molded product using mixed molding materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1120005A (en) * 1997-07-02 1999-01-26 Rika Kogyo Kk Discharge amount measuring apparatus and discharge amount controller for extrusion molding machine
JPH11254542A (en) * 1998-03-11 1999-09-21 Sanyo Electric Co Ltd Monitoring system for stereo lithographic apparatus
JP2004195990A (en) * 2004-03-11 2004-07-15 Rkc Instrument Inc Discharge rate controlling apparatus for extruder
JP2011016254A (en) * 2009-07-07 2011-01-27 Bridgestone Corp Extrusion molding apparatus
WO2013082795A1 (en) * 2011-12-07 2013-06-13 浙江大学 Dynamic micro-channel plastic extrusion molding device and method
US9586356B2 (en) 2011-12-07 2017-03-07 Zhejiang University Device and method for dynamic extrusion molding of plastic article having variable micro-channel
KR102117941B1 (en) * 2019-11-20 2020-06-02 (주)이에스알산업 Apparatus and method for manufacturing molded product using mixed molding materials

Also Published As

Publication number Publication date
JP3029184B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
US3841147A (en) Method and apparatus for determining the inherent viscosity of a liquid
JPH0625700B2 (en) Electronic thermometer
CN109347405A (en) A kind of evaluation method and estimating system of motor rotor temperature
WO2007007607A1 (en) Electronic clinical thermometer, and control method and control program for electronic clinical thermometer
JPH08150655A (en) Extrusion amount measuring device in extruder
WO2017211071A1 (en) Temperature prediction method and apparatus thereof
Stevenson A simplified method for analyzing mold filling dynamics Part I: Theory
JP3021135B2 (en) Film thickness control device
EP1391286B1 (en) Method, apparatus, and medium for forming molding condition and molding machine
CN118034197A (en) Factory operation data abnormity early warning method, early warning equipment and storage medium
JP3321759B2 (en) Plastic molding machine
JP2520446B2 (en) Adjusting the base clearance
US7758328B2 (en) Injection molding machine having function for monitoring screw rotating torques
JP4440420B2 (en) Flow measurement method and apparatus, and electronic flow meter
JP3192909B2 (en) Extrusion amount calculator for extrusion machine
JP3439308B2 (en) Prediction method of pressure loss in mold cavity and injection molding machine using it
US10901441B2 (en) Controller for providing resistance value controlling power usage in a temperature controller
JPS63225987A (en) System for displaying remaining quantity time of tape
JPH0258092B2 (en)
JP2536321B2 (en) Extrusion control device of extruder
JPH0933622A (en) Battery residual-capacity meter
JP3610393B2 (en) Extruder molding machine
JPS6399922A (en) Method of measuring resin quantity for extrusion molding machine
JP3236407B2 (en) Flow measurement method for highly viscous fluid
JP2662197B2 (en) Thickness control device