JP3610393B2 - Extruder molding machine - Google Patents

Extruder molding machine Download PDF

Info

Publication number
JP3610393B2
JP3610393B2 JP19071897A JP19071897A JP3610393B2 JP 3610393 B2 JP3610393 B2 JP 3610393B2 JP 19071897 A JP19071897 A JP 19071897A JP 19071897 A JP19071897 A JP 19071897A JP 3610393 B2 JP3610393 B2 JP 3610393B2
Authority
JP
Japan
Prior art keywords
value
limiter
weight fluctuation
ratio
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19071897A
Other languages
Japanese (ja)
Other versions
JPH1120005A (en
Inventor
修一 小田嶋
貢 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RKC INSTRUMENT Inc
Original Assignee
RKC INSTRUMENT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RKC INSTRUMENT Inc filed Critical RKC INSTRUMENT Inc
Priority to JP19071897A priority Critical patent/JP3610393B2/en
Publication of JPH1120005A publication Critical patent/JPH1120005A/en
Application granted granted Critical
Publication of JP3610393B2 publication Critical patent/JP3610393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92085Velocity
    • B29C2948/92095Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92085Velocity
    • B29C2948/92104Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/9218Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92333Raw material handling or dosing, e.g. active hopper or feeding device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/9238Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/9239Screw or gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92828Raw material handling or dosing, e.g. active hopper or feeding device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92885Screw or gear

Description

【0001】
【発明の属する技術分野】
本発明は押出成形機からの押出し成形品の品質の均一化に寄与する吐出量計測装置の改良に関する。
【0002】
【従来の技術】
プラスチックパイプ等の長尺物やプラスチックシート等の積層物を押出成形する押出成形ラインは、例えば図12に示すように、押出成形機1に引取機3を連結させ、押出成形機1から押出した成形品5を引取機3で引き取る構成になっている。
押出成形機1は、主スクリュー7を内蔵したシリンダー9を成形機台11に乗せ、この成形機台11には主スクリュー7を回転駆動する押出用モータ13や、この押出用モータ13の回転数を検出する回転数検出センサ15を配置している。
【0003】
シリンダー9上には、プラスチック材料をシリンダー9内へ供給するホッパー17が配置されており、ホッパー17の上部にはホッパー17内へ補充するプラスチック材料を詰めた材料貯蔵部19が配置されている。
【0004】
ホッパー17は、計量釜又は計量ホッパーと呼ばれる材料供給部であり、図13に示すように、ホッパー自体の重量を測定する計量部21が接続されており、計量データが制御装置A(図12参照)へ出力されるようになっている。
ホッパー17内のプラスチック材料の残量が少なくなると、制御装置Aからの制御又は手動によって材料貯蔵部19(図12とは若干図示を変更した。)のシャッター19a等を開き、プラスチック材料がホッパー17内へ補充されるようになっている。
図12中の符号23および25は、シリンダー9に配置された温度センサや圧力センサである。
【0005】
そのような押出成形ラインでは、ホッパー17からシリンダー9へ供給されたプラスチック材料が加熱溶解されるとともに、主スクリュー7の回転駆動によってシリンダー9の先端ダイス(図示せず)から成形品5として押出され、引取用モータ27によって回転駆動された引取ローラ29によって引き取られて製品化される。
引取用モータ27の回転数は、センサ15と同様な回転数検出センサ31によって検出され、制御装置Aに出力されるようになっている。
【0006】
制御装置Aは、計量部21からの計量データ、回転数検出センサ15、31からの押出用モータ13や引取用モータ27の回転数信号を取込み、押出される成形品5の単位時間当たりの吐出量(体積)が均一になるようそれらモータ13、27の回転数を制御する。
【0007】
従来、そのような押出成形ラインにおいて、シリンダー9からの吐出量、すなわち押出される成形品5の体積を均一化して製品の品質を一定に保つために、例えば図14に示すように、ホッパー17内への材料投入後の測定期間(押出期間)と、この測定期間の始期と終期におけるホッパー17内のプラスチック材料の最大値および最小値から材料供給量(消費量)を測定し、この測定結果とダイスの押出断面積等との関係から、押出される成形品5の吐出量を演算し、これを所望の吐出量に近づけるよう押出用モータ13や引取用モータ27の押出速度や引取速度を制御し、吐出量を制御していた。
【0008】
【発明が解決しようとする課題】
しかしながら、押出成形ラインにおける上述した従来の材料供給量測定手法や吐出量制御手法には、以下のような不都合な点があった。
すなわち、ホッパー17内のプラスチック材料は、主スクリュー7の回転に伴って押出成形機1から押出されるプラスチック材料の減少分に応じて自重で落下してシリンダー9内に供給されていく。
【0009】
他方、主スクリュー7の回転中にシリンダー9の材料投入口9a付近を主スクリュー7の山部7aが定期的に通過し(図12参照)、主スクリュー7の山部7aがシリンダー9の材料投入口9a付近を通過する際に、主スクリュー7の山部7aが、ホッパー17を押し上げる状態となって測定重量が一時的に減少したようになり、測定重量の時間的変化が振動を伴うことになる。
そのため、計量部21で測定されるホッパー重量は、材料貯蔵部19から材料の補充がない場合、図14中の斜の直線のように変化せず、同図中の波形の破線のように振動を伴って減少していくから、短い区間測定で材料供給量を測定すると大きな誤差が生じ易く、比較的長い期間、例えば短くとも数分間程度で測定しなければならず、正確なホッパー重量を早く測定することが困難で、成形品5の品質の均一化や厚みの速やかな変更制御も困難であった。
【0010】
そこで、本発明者は、押出成形機1の動作、特に、シリンダー9からの吐出量と主スクリュー7の回転数について注意深く観察検討した結果、吐出量とスクリュー回転数がほぼ比例関係にあり、この関係を利用してより正確な吐出量の計測が可能となる点に着目して本発明を完成させた。
【0011】
本発明はそのような状況の下になされたもので、押出成形機から吐出される吐出量を正確かつ速やかに計測可能な吐出量計測装置を提供するものである。
【0012】
【課題を解決するための手段】
このような課題を解決するために本発明の吐出量計測装置に係る第1の構成は、押出成形機のスクリュー側へ材料を供給する材料供給部の重量を測定する計量部と、そのスクリューの回転数を測定する回転数測定部と、そのスクリューの基準回転数に対する基準重量変動値の比と、この比に等しいスクリューの回転数に対するその材料供給部の重量変動値の比との関係と、その基準回転数に対するその重量変動値から得られる基準上限リミッタの比と、この比に等しいスクリューの回転数に対するその重量変動値の上限リミッタの比との関係とから、この上限リミッタを求め、計測時のその重量変動値がその上限リミッタを越えないとき当該計測重量変動値をそのまま使用し、計測時の重量変動値がその上限リミッタを越えるとき、その上限リミッタを当該計測時の重量変動値として使用して吐出量を計測する計測制御部とを具備している。
【0013】
また、本発明の吐出量計測装置に係る第2の構成は、押出成形機のスクリュー側へ材料を供給する材料供給部の重量を測定する計量部と、そのスクリューの回転数を測定する回転数測定部と、そのスクリューの基準回転数に対する基準重量変動値の比と、この比に等しいそのスクリュー回転数に対するその材料供給部の重量変動値の比との関係と、その基準回転数に対するその重量変動値から得られる基準上限リミッタとの比と、この比に等しいスクリューの回転数変化に対する重量変動値の変化率リミッタの比との関係から、この変化率リミッタを求め、計測時の重量変動変化値がその変化率リミッタを越えないとき当該計測重量変動変化値をそのまま使用し、計測時の重量変動変化値がその変化率リミッタを越えるとき、前回計測時の重量変動変化値にその変化率リミッタを加えて当該計測時の重量変動変化値として使用して吐出量を計測する計測制御部とを具備している。
【0014】
そして、その第2の構成において本発明は、所定の最小リミッタを加えて上記変化率リミッタを算出するよう上記計測制御部を形成することが可能である。
【0015】
さらに、それら第1および第2の構成において、上記計測制御部は、そのスクリューの基準回転数に対する基準重量変動値の比と、この比に等しいそのスクリューの回転数に対するその材料供給部の重量変動値の比との関係と、その基準回転数に対するその重量変動値から得られる基準上限リミッタの比と、この比に等しいスクリューの回転数に対するその重量変動値の上限リミッタの比との関係とから、この上限リミッタを求め、この上限リミッタおよび実重量変動値を複数回数積算し、その実重量変動積算値が上限リミッタ積算値を越えたとき、その実重量変動積算値および上限リミッタ積算値からそれら基準回転数および基準上限リミッタを修正して吐出量を計測するよう形成可能である。
【0016】
【発明の実施の形態】
以下、本発明に係る実施の形態を図面を参照して説明する。
図1は本発明に係る吐出量計測装置の一形態について、これを用いた吐出量制御装置とともに示すブロック図である。なお、押出成形ラインの構成は上述した図12と同様であるので、これを参照する。
【0017】
図1において、計量部33は、図12の計量部21に対応するもので計測制御部35に接続されており、材料供給部としてのホッパー17を吊る等してその重量を測定して電気信号に変換し、計測制御部35へ出力するものである。
ホッパー17の重量は変化しないから、ホッパー17の重量を所定のタイミングで又は連続して測定することにより、測定データの変化がホッパー17から主スクリュー7側への材料の供給量(消費量)に対応することになる。
【0018】
回転数測定部37は、主スクリュー7の回転数を測定する回転数検出センサであって計測制御部35に接続されており、図12の回転数検出センサ15、31と同様にタコジェネレータやロータリーエンコーダから形成されている。
計測制御部35は、数秒とか数十秒毎といった所定のタイミングで計量部33からの重量データおよび回転数測定部37からの回転数データを取り込み、それら測定データから単位時間当たりの材料の吐出量を演算計測する機能を有している。
【0019】
すなわち、主スクリュー7の回転数と押出成形機1の吐出量(換言すればホッパー17の重量変動値)が比例関係にあるので、計測制御部35はそれら回転数と重量変動値から吐出量を推定する以下の3個の機能他を有している。
第1の機能は、上限リミッタを演算し、計測時のホッパー17の重量変動値がその上限リミッタを越えているとき、上限リミッタでホッパー17の重量変動値にフィルタをかけるものであり、上述した第1の構成の主要部に相当する。
【0020】
いま、押出成形機1を常用で運転する範囲で基準として一意的に決めたスクリュー回転数を基準回転数とし、ホッパ重量を定周期で計測したときの前回測定値と今回測定値の差を重量変動値(単位時間当たりの原料消費量であるからそのまま「吐出量」に換算可能な値)とし、押出成形機1の主スクリュー7を基準回転数で運転した時の重量変動値を基準重量変動値とし、基準重量変動値を経験則上から1.1倍した値を基準上限リミッタとし、更に、押出成形機1の任意のスクリュー回転数における重量変動値の上限値を上限リミッタとすれば、主スクリュー7の基準回転数とその基準重量変動値の間と、スクリュー回転数と重量変動値との間の関係、更に、基準回転数と基準上限リミッタとの間と、スクリュー回転数と上限リミッタとの間の関係は次のようになり、上限リミッタは次の式で求められる。
【0021】
基準回転数:基準重量変動値=スクリュー回転数:重量変動値
さらに、
基準回転数:基準上限リミッタ=スクリュー回転数:上限リミッタ
従って、
上限リミッタ=基準上限リミッタ×(スクリュー回転数/基準回転数)
【0022】
計測制御部35は、所定のタイミングで基準回転数、基準重量変動値、基準上限リミッタおよびスクリュー回転数から(実)重量変動値の上限リミッタを求め、計測時の重量変動値(今回重量変動値)が上限リミッタを越えているとき、上限リミッタを計測時の重量変動値とし、上限リミッタを越えていないときには計測時の重量変動値を用い、前回計測時のホッパー17の前回重量値から今回重量値を減算して今回重量値とする機能を有している。
なお、基準重量変動値から基準上限リミッタが自動的に求まるから、上限リミッタは基準重量変動値から求まると考えてもよい。
【0023】
そして、押出成形機1を常用運転する範囲において、主スクリュー7の回転数と実重量変動値との関係、基準回転数、基準重量変動値および基準上限リミッタの関係、更に、それらの関係から導き出される任意のスクリュー回転数と上限リミッタの関係を示すと、図2のようになる。
さらに、押出成形機1の運転経過に伴い、スクリュー回転数が変化していくときの上限リミッタ変化および実重量変動値変化を示すと、図3のようになる。
【0024】
この図3を参照すれば、第1の機能は、計測時の実重量変動値が演算上限リミッタを越えているとき、計測時の重量変動値を上限リミッタに置き換える(上限リミッタでフィルタをかける)ことになる。
計測制御部35の第2の機能は、変化率リミッタを演算し、計測時のホッパー17の重量変動変化値が変化率リミッタを越えているとき、その変化率リミッタで重量変動変化値にフィルタをかけるものであり、上述した第2の構成の主要部に相当する。
【0025】
ここで、ホッパ重量を定周期に計測したときと同時に測定したスクリュー回転数の前回回転数と今回回転数の差をスクリュー回転数変化とし、押出成形機1のスクリュー回転数変化における重量変動変化値の上限を変化率リミッタとし、前回サンプル時に記録された今回変化率リミッタを前回変化率リミッタとしたとき、次のようになる。
主スクリュー7の回転数とホッパー17の重量変動値が比例関係にあるので、基準回転数と基準重量変動値の間と、主スクリュー7の回転数変化と重量変動変化値の間の関係、更に、基準回転数と基準上限リミッタの間と、スクリュー7の回転数変化と変化率リミッタとの間の関係は次のようになり、変化率リミッタは次の式で求められる。
【0026】
基準回転数:基準重量変動値=スクリュー回転数変化:重量変動変化値
基準回転数:基準上限リミッタ=スクリュー回転数変化:変化率リミッタ
変化率リミッタ=基準上限リミッタ×(スクリュー回転数変化/基準回転数
【0027】
計測制御部35は、所定のタイミングで基準回転数、基準重量変動値、基準上限リミッタおよび主スクリュー7の回転数の変化から変化率リミッタを求め、計測時の重量変動変化値(今回重量変動変化値)が変化率リミッタを越えているとき、前回重量変動変化値に変化率リミッタを加えて計測時の重量変化値とし、変化率リミッタを越えていないとき計測時の重量変動変化を用いて吐出量を計測する一方、前回計測時のホッパー17の重量から今回の重量変化値を減算して今回重量値とする機能を有している。
なお、基準重量変動値から基準上限リミッタが自動的に求まるから、変化率リミッタも基準重量変動値から求まると考えてもよい。
【0028】
実際には、スクリュー回転数変化に対して重量変動変化値の応答が遅れるので、それを考慮したものにする必要がある。
そこで、例えば押出成形機1へのステップ入力に対して、初回サンプルで3分の2に応答し、次回サンプルで残りの3分の1(3分の2の2分の1)が応答する応答遅れのためのフィルタ処理を付加することが好ましい。
【0029】
さらに、押出成形機1はブレーカープレート目詰まり等により、スクリュー回転数が変化していないのに、吐出量が徐々に減少することがあるので、これに対応するため、最小限のあそび幅である最小リミッタを持たせる必要があるし、この最小リミッタは上記の応答遅れのためのフィルタ処理の部分に対しても、あそび幅として働いている。
そのため、それら2つの要件から、最終的に変化率リミッタを求める式は次のように設定すると良い。
【0030】

Figure 0003610393
【0031】
計測制御部35の第3の機能は、基準回転数や基準重量変動値を上述した上限リミッタおよび実重量変動値の積算値によって自動的に修正することにより、原料の変化、機械の磨耗等によってスクリュー回転数と吐出量の関係が変わっても正確に対応できるようにしたものであり、上述した第3の構成の主要部に相当する。
計測制御部35は、所定のタイミングで基準回転数、基準重量変動値および主スクリュー7の実回転数から上限リミッタおよび変化率リミッタを求める都度、実重量変動値と上限リミッタを複数回、例えば10回とか30回積算し、実重量積算値と上限フィルタ積算値とを比較し、実重量変動積算値が上限フィルタ積算値以上であれば、次式で基準重量変動値を更新する機能を有する。
【0032】
Figure 0003610393
【0033】
そして、計測制御部35は、実重量積算値が上限フィルタ積算値を未満であり、常に吐出量合格状態ならば、次式で基準上限リミッタと基準回転数を修正する機能を有している。
【0034】
基準回転=現在スクリュー回転数
基準上限リミッタ=(実重量積算値×1.1)/積算回数
【0035】
なお、吐出量合格状態とは吐出量の測定値が目標の吐出量の合格範囲内になっている状態をいい、本システムに内蔵された計測部の比較機能で判断する。
ところで、上述した計測制御部35は、図示はしないが、CPUと、このCPUの動作プログラムを格納したROMと、演算データ等を一次的に格納するRAMと、インターフェースであるI/Oとを有するマイクロコンピュータによって構成されている。
【0036】
次に、上述した本発明に係る吐出量計測装置の動作を図6〜図8のフローチャートを参照して説明する。
【0037】
図6において、プログラムがスタートすると、ステップ100でホッパー17の重量および主スクリュー7の回転数の計測時刻(計測タイミング)か否か判別され、NOの場合にはYESになるまでこれを繰返す。
なお、図6〜図8における回転数、重量値、変動値および変動変化値では、便宜上からそれら「数」や「値」の表示を省略した。
【0038】
ステップ100がYESになると、ステップ101でホッパー17の重量を計測して今回重量とし、主スクリュー7の回転数を計測して今回回転数として格納してステップ102に移り、ステップ102では前回重量値から今回重量値を減算して今回重量変動値を求めて格納し、ステップ103に移る。
ステップ103では、基準上限リミッタ、今回回転数および基準回転数から今回の上限リミッタを求め、続くステップ104にて今回重量変動値が上限リミッタを越えたか否か判別し、越えていない場合にはステップ104がNOとなってステップ105にて今回重量値を次回の演算用に前回重量値として置き換えて図7のステップ107に移る。
【0039】
ステップ104がYESの場合にはステップ106にて上限リミッタを今回重量変動値に置き換えて格納し、前回重量値から上限リミッタを減算して前回重量値として格納する。ここまでが第1の機能すなわち上限リミッタの演算とこれによるフィルタ処理である。
【0040】
次に、図7に示すように、ステップ107では今回重量変動値から前回重量変動値を減算して今回重量変動変化値とし、今回回転数から前回回転数を減算して今回回転変化値として格納する。
ステップ108にて基準上限リミッタ、今回回転変化値および基準回転数から変化率リミッタを演算し、ステップ109にて変化率リミッタ、前回変化率リミッタおよび最小リミッタから今回の変化率リミッタを演算してステップ110に移る。
【0041】
ステップ110では、今回重量変動変化値と今回変化リミッタを比較し、今回重量変動変化値の方が小さくてNOの場合にはステップ112へ移る。
今回重量変動変化の方が大きくてステップ110がYESの場合には、ステップ111で前回重量変動値に今回変化率リミッタを加算して今回重量変動値とし、前回重量値から今回重量変動値を減算して前回重量値として格納し、続くステップ112では今回重量変動値を前回重量変動値に置き換え、ステップ113で吐出量を演算する。
これらステップ107〜ステップ112が変化率リミッタの演算とこれによるフィルタ処理である。
【0042】
続くステップ114では、基準回転数および基準重量変動値を修正処理(フィルタ自動修正処理)して終了し、図6のステップ100へ戻る。この処理ステップは図8に示す通りである。
すなわち、ステップ115にて積算回数に1を加算して積算回数とし、続くステップ116にて実重量変動積算値に今回実重量変動を加算して重量変動加算値を求めるとともに、上限フィルタ積算値に今回上限フィルタを加算して上限フィルタ積算値を求め、ステップ117にて積算回数が所定回数に達したか否か判別する。ステップ116が実行される都度、実重量変動積算値および上限フィルタ積算値が更新されてゆく訳である。
【0043】
所定回数に達せずに、ステップ117がNOの場合には終了して図6のステップ100へ戻り、所定回数に達してステップ117がYESの場合にはステップ118で実重量変動積算値が上限フィルタ積算値以上か否か判別される。
実重量変動積算値が上限フィルタ積算値以上であってステップ118がYESの場合には、ステップ119で基準重量変動値、実重量変動積算値、上限フィルタ積算値および積算回数から基準重量変動値を求めてステップ122へ移り、実重量変動積算値が上限フィルタ積算値未満となってステップ118がNOの場合には、ステップ120で吐出量が合格か否か判別される。
【0044】
吐出量が不合格であってステップ120がNOの場合にはステップ122へ移り、吐出量が合格してステップ120がYESの場合には、ステップ121で実重量積算値に1.1を乗算するとともに積算値で割った値で基準上限リミッタに置き換える一方、今回スクリュー回転数を基準回転数に置き換え、基準回転数および基準上限リミッタを自動修正処理し、ステップ122に移る。
ステップ122では、積算回数、実重量変動積算値および上限フィルタを各々「0」にクリアーして終了し、図6のステップ100へ戻る。
【0045】
このように、本発明の押出成形機の吐出量計測装置では、従来の如きホッパー17の重量変動のみならず、主スクリュー7の回転数を計測して上限リミッタや変化率リミッタを演算し、これら上限リミッタおよび又は重量変化にフィルタをかける構成としたから、たとえホッパー17の重量値に振動が生じても、正確な吐出量を早く得られる。
【0046】
図9および図10は、上限リミッタ又は変化率リミッタによってフィルタをかけたときの重量変動を示す動作特性図であり、入力重量変動に対して演算重量変動の振動が抑えられていることが分る。
さらに、図11は上限リミッタおよび変化率リミッタの双方をかけたときの重量変動を示す特性図であり、図10に比べ偏りも抑えられていることが分る。
【0047】
また、上限リミッタおよび実重量変動値の積算値によってそれらを自動的に修正する構成としたから、スクリュー回転数と吐出量の関係が変わっても正確な吐出量を演算できる利点がある。
なお、その実重量変動積算値および上限リミッタ積算値からそれら基準回転数および基準上限リミッタを修正する手法は、上述した手法に限定されない。
【0048】
次に、本発明の応用例である吐出量制御装置を図1を参照して説明する。
この吐出量制御装置は、上述した計量部33、計測制御部35および回転数測定部37に、更に、速度指令部39および押出用モータ41や引取用モータ43を加えるとともに、計測制御部35の機能を拡大したものである。
すなわち、速度指令部39は、計測制御部35の演算に基づく回転数信号としての操作量により、図12の押出用モータ13や引取用モータ27と同様な押出用モータ41や引取用モータ43を回転駆動させる速度指令信号を出力するとともに、計測制御部35から次の回転数信号が出力されない限り、同じ速度指令信号を押出用モータ41や引取用モータ43へ継続して出力し続けるようなラッチ機能又はメモリー機能を有している。
【0049】
計測制御部35は、上述した吐出量演算機能によって得られた吐出量に基づき、設定された所望の吐出量との偏差から従来公知の移動平均法によって処理するとともに、PID定数によってPID演算処理して操作量を出力する機能を有し、速度指令部39に接続されている。
しかも、計測制御部35は、図4および図5に示すように、上述した演算によって得られた演算吐出量と設定された設定吐出量の偏差が所定の小範囲内にあるとき、すなわち安定運転時に、移動平均回数を例えば10回と多くするとともに応答速度の遅いPID定数(定数1)を用い、製品の切換え時のように偏差が所定の小範囲内を越えるとき、すなわち過渡時に、移動平均回数を例えば2回と少なくするとともに応答速度の早いPID定数(定数2)を切換え可能に形成されている。
【0050】
このような吐出量制御装置では、移動平均法処理回数およびPID演算の定数を偏差の大小によって切換えて演算処理して回転数信号を速度指令部39へ出力するから、製品切換え時のような偏差が大きい時では応答も早い制御ができる一方、安定運転時のような偏差が小さい時にも安定性の良好な制御が得られる。
ところで、移動平均法処理回数およびPID演算の定数を切換える偏差基準は、演算吐出量と設定吐出量の偏差が押出成形機1の最大定格吐出量の1〜5%程度以内であることが好ましい。
【0051】
なお、上述した計測制御部35は、上述した図6〜図8の処理によって演算された演算吐出量を用いて偏差を移動平均処理やPID演算処理する構成に限らず、従来公知の手法によって得られた材料消費量を用いて移動平均処理やPID演算処理する構成でも目的達成が可能である。
また、上述した吐出量制御装置では、必ずしも速度指令部39を設けなくとも本発明の目的達成が可能であり、速度指令部39を設けない構成では、計測制御部35から押出用モータ41や引取用モータ43側へ速度信号を出力するよう形成すれば良い。
【0052】
さらに、押出用モータ41や引取用モータ43の双方を制御する場合に限らず、少なくとも押出用モータ41を制御する構成も可能である。
さらにまた、吐出量制御装置では、材料のシリンダ9への供給量をほぼ正確かつ早く測定しても、主スクリュー7の回転によってシリンダ9から溶解プラスチック材料が押出されるまでには多少の時間的遅れがあるものの、いわゆるむだ時間を考慮して押出用モータ41や引取用モータ43を制御すれば良いから、吐出量をほぼ正確に制御可能である。
【0053】
なお、上述した各実施の形態では、1個の主スクリュー7を有する押出成形機1を用いて説明したが、本発明は複数のスクリューを用いた押出成形機において応用可能である。
そして、上述した計量部33、計測制御部35、速度指令部39等は図12中の制御装置A内に搭載されることは言うまでもない。
【0054】
【発明の効果】
以上説明したように本発明の吐出量計測装置に係る第1の構成は、押出成形機のスクリュー側へ材料を供給する材料供給部の重量を測定し、そのスクリューの回転数を測定し、そのスクリューの基準回転数に対する基準重量変動値の比と、この比に等しいスクリューの回転数に対する重量変動値の比との関係と、その基準回転数に対するその重量変動値から得られる基準上限リミッタの比と、この比に等しいスクリューの回転数に対するその重量変動値の上限リミッタの比との関係とから、この上限リミッタを求め、計測時の重量変動値が上限リミッタを越えないとき当該計測重量変動値をそのまま使用し、計測時の重量変動値がそれを越えるときその上限リミッタを当該計測時の重量変動値として使用し、材料供給部の重量変動にスクリューの回転数を考慮して吐出量を計測する構成としたから、材料供給部の測定重量が時間的に振動しても、正確かつ速やかな吐出量の計測が可能となる。
また、本発明の吐出量計測装置に係る第2の構成は、押出成形機のスクリュー側へ材料を供給する材料供給部の重量を測定し、そのスクリューの回転数を測定し、そのスクリューの基準回転数に対する基準重量変動値の比と、この比に等しいそのスクリュー回転数に対する重量変動値の比との関係と、その基準回転数に対するその重量変動値から得られる基準上限リミッタとの比と、この比に等しいスクリューの回転数変化に対する重量変動値の変化率リミッタの比との関係から、この変化率リミッタを求め、計測時の重量変動変化値がその変化率リミッタを越えないとき当該計測重量変動変化値をそのまま使用し、計測時の重量変動変化値がその変化率リミッタを越えるとき、前回計測時の重量変動変化値にその変化率リミッタを加えて当該計測時の重量変動変化値として使用して吐出量を計測する構成としたから、第1の構成と同様に、正確かつ速やかな吐出量の計測が可能となる。
そして、その第2の構成において、所定の最小リミッタを加えて変化率リミッタを算出するような構成では、回転数の変化がなくともある程度の幅を持たせて適切な吐出量の計測が可能となる利点がある。
さらに、それら第1および第2の構成において、上記スクリューの基準回転数に対する基準重量変動値の比と、そのスクリューの基準回転数に対する基準重量変動値の比と、この比に等しいそのスクリューの回転数に対する重量変動値の比との関係と、その基準回転数に対するその重量変動値から得られる基準上限リミッタの比と、この比に等しいスクリューの回転数に対するその重量変動値の上限リミッタの比との関係とから、この上限リミッタを求め、この上限リミッタおよび実重量変動値を複数回数積算し、その上限リミッタ積算値を実重量変動積算値が越えたとき、その実重量変動積算値および上限リミッタ積算値からそれら基準回転数および基準上限リミッタを修正して計測するよう構成すれば、原料の変化や機械の摩耗によって上記スクリュー回転数と吐出量の関係が変化しても、自動的にそれら基準重量や基準回転数が変更され、経時的に常に正確な吐出量計測が可能となる。
【図面の簡単な説明】
【図1】本発明に係る吐出量計測装置を含む吐出量制御装置の実施の形態を示すブロック図である。
【図2】図1の吐出量計測装置の動作を説明する図である。
【図3】図1の吐出量計測装置の動作を説明する図である。
【図4】図1の吐出量制御装置の動作を説明する図である。
【図5】図1の吐出量制御装置の動作を説明する図である。
【図6】図1の吐出量計測装置の動作を説明するフローチャートである。
【図7】図1の吐出量計測装置の動作を説明するフローチャートである。
【図8】図1の吐出量計測装置の動作を説明するフローチャートである。
【図9】図1の吐出量計測装置の動作特性図である。
【図10】図1の吐出量計測装置の動作特性図である。
【図11】図1の吐出量計測装置の動作特性図である。
【図12】押出成形ラインを説明する図である。
【図13】従来の材料供給構成を説明する図である。
【図14】従来の吐出量計測装置を説明する図である。
【符号の説明】
1 押出成形機
3 引取機
5 成形品
7 主スクリュー(スクリュー)
9 シリンダー
11 成形機台
13、41 押出用モータ
15、31 回転数検出センサ
17 ホッパー(材料供給部)
19 材料貯蔵部
19a シャッター
21、33 計量部
23 温度センサ
25 圧力センサ
27、43 引取用モータ
29 引取ローラ
35 計測制御部
37 回転数測定部
39 速度指令部
A 制御装置[0001]
BACKGROUND OF THE INVENTION
The present invention contributes to the uniformity of the quality of extruded products from an extruder.The present invention relates to an improvement of a discharge amount measuring apparatus.
[0002]
[Prior art]
An extrusion line for extruding a long product such as a plastic pipe or a laminate such as a plastic sheet is formed by connecting a take-up machine 3 to an extruder 1 and extruding from the extruder 1 as shown in FIG. The molded product 5 is taken up by the take-up machine 3.
The extrusion molding machine 1 places a cylinder 9 incorporating a main screw 7 on a molding machine base 11, and an extrusion motor 13 that rotationally drives the main screw 7 on the molding machine base 11 and the rotation speed of the extrusion motor 13. A rotation speed detection sensor 15 for detecting the above is disposed.
[0003]
A hopper 17 that supplies plastic material into the cylinder 9 is disposed on the cylinder 9, and a material storage portion 19 that is filled with a plastic material that is replenished into the hopper 17 is disposed above the hopper 17.
[0004]
The hopper 17 is a material supply unit called a weighing pot or a weighing hopper. As shown in FIG. 13, a weighing unit 21 for measuring the weight of the hopper itself is connected, and weighing data is transmitted to the control device A (see FIG. 12). ) Is output.
When the remaining amount of plastic material in the hopper 17 decreases, the shutter 19a of the material storage unit 19 (slightly changed from FIG. 12) is opened by the control from the control device A or manually, and the plastic material is transferred to the hopper 17. It is designed to be refilled inside.
Reference numerals 23 and 25 in FIG. 12 are a temperature sensor and a pressure sensor arranged in the cylinder 9.
[0005]
In such an extrusion molding line, the plastic material supplied from the hopper 17 to the cylinder 9 is heated and melted, and is extruded as a molded product 5 from a tip die (not shown) of the cylinder 9 by the rotational drive of the main screw 7. The product is taken up by a take-up roller 29 driven to rotate by a take-up motor 27 and commercialized.
The rotational speed of the take-up motor 27 is detected by a rotational speed detection sensor 31 similar to the sensor 15 and is output to the control device A.
[0006]
The control device A takes in the weighing data from the weighing unit 21 and the rotation number signals of the extrusion motor 13 and the take-off motor 27 from the rotation number detection sensors 15 and 31, and discharges the extruded product 5 per unit time. The rotational speeds of the motors 13 and 27 are controlled so that the amount (volume) is uniform.
[0007]
Conventionally, in such an extrusion molding line, in order to make the discharge amount from the cylinder 9, that is, the volume of the extruded product 5 to be uniform and keep the product quality constant, for example, as shown in FIG. The material supply amount (consumption) is measured from the measurement period (extrusion period) after the material is put into the inside, and the maximum and minimum values of the plastic material in the hopper 17 at the beginning and end of this measurement period. From the relationship between the extrusion cross-sectional area of the die and the die, the discharge amount of the extruded product 5 is calculated, and the extrusion speed and the take-off speed of the extrusion motor 13 and the take-off motor 27 are adjusted so as to approach the desired discharge amount. And controlled the discharge amount.
[0008]
[Problems to be solved by the invention]
However, the above-described conventional material supply amount measurement method and discharge amount control method in the extrusion molding line have the following disadvantages.
That is, the plastic material in the hopper 17 falls by its own weight according to the decrease in the plastic material extruded from the extruder 1 as the main screw 7 rotates, and is supplied into the cylinder 9.
[0009]
On the other hand, the crest 7a of the main screw 7 periodically passes near the material charging port 9a of the cylinder 9 during rotation of the main screw 7 (see FIG. 12), and the crest 7a of the main screw 7 inputs the material of the cylinder 9. When passing through the vicinity of the mouth 9a, the peak portion 7a of the main screw 7 pushes up the hopper 17, and the measured weight is temporarily reduced, and the temporal change of the measured weight is accompanied by vibration. Become.
Therefore, the hopper weight measured by the weighing unit 21 does not change as shown by the diagonal line in FIG. 14 when there is no material replenishment from the material storage unit 19, and vibrates as indicated by the broken line of the waveform in FIG. Therefore, if the material supply amount is measured in a short interval measurement, a large error is likely to occur, and it must be measured in a relatively long period, for example, a few minutes at the shortest. It was difficult to measure, and it was difficult to make the quality of the molded product 5 uniform and to quickly change the thickness.
[0010]
Therefore, as a result of careful observation and examination of the operation of the extrusion molding machine 1, particularly the discharge amount from the cylinder 9 and the rotation speed of the main screw 7, the discharge amount and the screw rotation speed are approximately proportional to each other. The present invention has been completed by paying attention to the fact that the discharge amount can be measured more accurately using the relationship.
[0011]
The present invention has been made under such circumstances, and provides a discharge amount measuring apparatus capable of accurately and promptly measuring the discharge amount discharged from an extrusion molding machine.
[0012]
[Means for Solving the Problems]
In order to solve such a problem, a first configuration according to the discharge amount measuring apparatus of the present invention includes a measuring unit that measures the weight of a material supply unit that supplies a material to the screw side of an extruder, and the screw The rotation speed measurement unit that measures the rotation speed and the ratio of the reference weight fluctuation value to the reference rotation speed of the screwAnd the ratio of the weight fluctuation value of the material supply unit to the rotation speed of the screw equal to this ratio, the ratio of the reference upper limiter obtained from the weight fluctuation value to the reference rotation speed, and the screw equal to this ratio From the relationship with the ratio of the upper limiter of the weight fluctuation value to the rotation speed ofThe upper limit limiter is obtained, and when the weight fluctuation value at the time of measurement does not exceed the upper limit limiter, the measured weight fluctuation value is used as it is, and when the weight fluctuation value at the time of measurement exceeds the upper limit limiter, the upper limit limiter is determined. And a measurement control unit that measures the discharge amount using the weight fluctuation value at the time of measurement.
[0013]
The second configuration according to the discharge amount measuring apparatus of the present invention is a metering unit that measures the weight of a material supply unit that supplies material to the screw side of the extruder, and a rotational speed that measures the rotational speed of the screw. The measurement part and the ratio of the reference weight fluctuation value to the reference rotation speed of the screw,The ratio of the weight fluctuation value of the material supply to the screw speed equal to this ratio, the ratio of the reference upper limiter obtained from the weight fluctuation value to the reference speed, and the screw equal to this ratio. From the relationship with the ratio of the change rate limiter of the weight fluctuation value with respect to the rotation speed change,When this change rate limiter is obtained and the weight fluctuation change value at the time of measurement does not exceed the change rate limiter, the measurement weight fluctuation change value is used as it is, and when the weight fluctuation change value at the time of measurement exceeds the change rate limiter, And a measurement control unit that adds the rate of change limiter to the weight fluctuation change value at the previous measurement and uses it as the weight fluctuation change value at the measurement to measure the discharge amount.
[0014]
In the second configuration, the present invention can form the measurement control unit so as to calculate the change rate limiter by adding a predetermined minimum limiter.
[0015]
Further, in the first and second configurations, the measurement control unit includes a ratio of a reference weight fluctuation value to a reference rotation speed of the screw, andThe ratio of the weight fluctuation value of the material supply unit to the rotation speed of the screw equal to this ratio, the ratio of the reference upper limiter obtained from the weight fluctuation value to the reference rotation speed, and the screw equal to this ratio From the relationship with the ratio of the upper limiter of the weight fluctuation value to the rotation speed ofObtain this upper limiter, integrate the upper limiter and actual weight fluctuation value multiple times, and when the actual weight fluctuation integration value exceeds the upper limiter integration value, the reference rotational speed is calculated from the actual weight fluctuation integration value and the upper limiter integration value. The reference upper limiter can be modified to measure the discharge amount.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of a discharge amount measuring apparatus according to the present invention together with a discharge amount control apparatus using the apparatus. In addition, since the structure of an extrusion molding line is the same as that of FIG. 12 mentioned above, this is referred.
[0017]
In FIG. 1, the weighing unit 33 corresponds to the weighing unit 21 in FIG. 12 and is connected to the measurement control unit 35. The weighing unit 33 measures the weight of the hopper 17 as a material supply unit and measures the electric signal. And output to the measurement control unit 35.
Since the weight of the hopper 17 does not change, by measuring the weight of the hopper 17 at a predetermined timing or continuously, the change in the measurement data becomes the supply amount (consumption amount) of the material from the hopper 17 to the main screw 7 side. Will respond.
[0018]
The rotational speed measurement unit 37 is a rotational speed detection sensor that measures the rotational speed of the main screw 7 and is connected to the measurement control unit 35. Similar to the rotational speed detection sensors 15 and 31 of FIG. It is formed from an encoder.
The measurement control unit 35 takes in the weight data from the weighing unit 33 and the rotation number data from the rotation number measurement unit 37 at a predetermined timing such as every few seconds or every several tens of seconds, and discharges the material per unit time from the measurement data. It has a function to calculate and measure.
[0019]
That is, since the rotational speed of the main screw 7 and the discharge amount of the extruder 1 (in other words, the weight fluctuation value of the hopper 17) are in a proportional relationship, the measurement control unit 35 determines the discharge amount from the rotation speed and the weight fluctuation value. It has the following three functions to be estimated.
The first function is to calculate the upper limit limiter, and when the weight fluctuation value of the hopper 17 at the time of measurement exceeds the upper limit limiter, the upper limit limiter filters the weight fluctuation value of the hopper 17. This corresponds to the main part of the first configuration.
[0020]
Now, the screw rotation number uniquely determined as a reference within the range in which the extruder 1 is normally operated is set as the reference rotation number, and the difference between the previous measurement value and the current measurement value when the hopper weight is measured at a constant cycle is weighted. The fluctuation value (the value that can be converted into the “discharge amount” as it is the raw material consumption per unit time) is used, and the weight fluctuation value when the main screw 7 of the extruder 1 is operated at the reference rotation speed is the reference weight fluctuation. Value, a value obtained by multiplying the reference weight fluctuation value by 1.1 from the rule of thumb as a reference upper limit limiter, and further, if the upper limit value of the weight fluctuation value at any screw speed of the extruder 1 is an upper limit limiter, The relationship between the reference rotation speed of the main screw 7 and its reference weight fluctuation value, the relationship between the screw rotation speed and the weight fluctuation value, between the reference rotation speed and the reference upper limit limiter, the screw rotation speed and the upper limit limiter With The relationship is as follows: the upper limit limiter is obtained by the following expression.
[0021]
Reference rotation speed: Reference weight fluctuation value = Screw rotation speed: Weight fluctuation value
further,
Reference speed: Reference upper limiter = Screw speed: Upper limiter
Therefore,
Upper limiter = reference upper limiter x (screw speed / reference speed)
[0022]
The measurement control unit 35 obtains the upper limiter of the (actual) weight fluctuation value from the reference rotation speed, the reference weight fluctuation value, the reference upper limit limiter and the screw rotation speed at a predetermined timing, and the weight fluctuation value at the time of measurement (current weight fluctuation value). ) Exceeds the upper limit limiter, the upper limit limiter is used as the weight fluctuation value at the time of measurement, and when it does not exceed the upper limit limiter, the weight fluctuation value at the time of measurement is used. It has the function of subtracting the value to obtain the current weight value.
Since the reference upper limit limiter is automatically obtained from the reference weight fluctuation value, it may be considered that the upper limit limiter is obtained from the reference weight fluctuation value.
[0023]
Then, in the range in which the extruder 1 is regularly operated, the relationship between the rotational speed of the main screw 7 and the actual weight fluctuation value, the relation between the reference rotational speed, the reference weight fluctuation value, and the reference upper limiter, and further derived from these relations. The relationship between the arbitrary screw rotation number and the upper limiter is shown in FIG.
Further, FIG. 3 shows an upper limit limiter change and an actual weight fluctuation value change when the screw rotation speed is changed with the operation of the extruder 1.
[0024]
Referring to FIG. 3, when the actual weight fluctuation value at the time of measurement exceeds the calculation upper limit limiter, the first function replaces the weight fluctuation value at the time of measurement with the upper limit limiter (filtering with the upper limit limiter). It will be.
The second function of the measurement control unit 35 calculates a rate of change limiter, and when the weight fluctuation change value of the hopper 17 at the time of measurement exceeds the rate of change limiter, the weight rate change value is filtered by the rate of change limiter. It corresponds to the main part of the second configuration described above.
[0025]
Here, the difference between the previous rotational speed and the current rotational speed of the screw rotational speed measured at the same time when the hopper weight is measured at a fixed period is defined as the screw rotational speed change, and the weight fluctuation change value in the screw rotational speed change of the extruder 1 When the change rate limiter is used as the upper limit and the current change rate limiter recorded at the previous sample is the previous change rate limiter, the following is obtained.
Since the rotation speed of the main screw 7 and the weight fluctuation value of the hopper 17 are in a proportional relationship, the relationship between the reference rotation speed and the reference weight fluctuation value, the relationship between the rotation speed change of the main screw 7 and the weight fluctuation change value, The relationship between the reference rotational speed and the reference upper limit limiter and between the rotational speed change of the screw 7 and the change rate limiter is as follows, and the change rate limiter is obtained by the following equation.
[0026]
Reference rotation speed: Reference weight fluctuation value = Screw rotation speed change: Weight fluctuation change value
Reference speed: Reference upper limit limiter = Screw speed change: Change rate limiter
Change rate limiter = reference upper limit limiter x (screw speed change /Reference speed)
[0027]
The measurement control unit 35 obtains a change rate limiter from changes in the reference rotation speed, the reference weight fluctuation value, the reference upper limit limiter, and the rotation speed of the main screw 7 at a predetermined timing, and the weight fluctuation change value at the time of measurement (current weight fluctuation change). Value) exceeds the change rate limiter, the change rate limiter is added to the previous weight fluctuation change value to obtain the weight change value at the time of measurement, and when the change rate limiter is not exceeded, discharge using the weight change change at the time of measurement. While measuring the amount, it has a function of subtracting the current weight change value from the weight of the hopper 17 at the previous measurement to obtain the current weight value.
Since the reference upper limit limiter is automatically obtained from the reference weight fluctuation value, it may be considered that the change rate limiter is also obtained from the reference weight fluctuation value.
[0028]
Actually, since the response of the weight fluctuation change value is delayed with respect to the screw rotation speed change, it is necessary to consider it.
Therefore, for example, in response to a step input to the extruder 1, a response that responds to two-thirds in the first sample and a remaining one-third (one-half of two-thirds) in the next sample responds. It is preferable to add a filtering process for delay.
[0029]
Furthermore, the extrusion machine 1 has a minimum play width in order to cope with this because the discharge amount may gradually decrease even though the screw rotation speed does not change due to clogging of the breaker plate or the like. It is necessary to provide a minimum limiter, and this minimum limiter also acts as a play width for the filter processing part for the response delay described above.
Therefore, the equation for finally obtaining the change rate limiter from these two requirements is preferably set as follows.
[0030]
Figure 0003610393
[0031]
The third function of the measurement control unit 35 is to automatically correct the reference rotational speed and the reference weight fluctuation value with the above-described upper limiter and the integrated value of the actual weight fluctuation value, thereby changing the raw material, machine wear, etc. Even if the relationship between the screw rotation speed and the discharge amount changes, it can be accurately handled, and corresponds to the main part of the third configuration described above.
Each time the measurement control unit 35 obtains the upper limit limiter and the change rate limiter from the reference rotation speed, the reference weight fluctuation value, and the actual rotation speed of the main screw 7 at a predetermined timing, the measurement controller 35 calculates the actual weight fluctuation value and the upper limit limiter a plurality of times, for example, 10 times. Or 30 times, the actual weight integrated value is compared with the upper limit filter integrated value, and if the actual weight variation integrated value is equal to or greater than the upper limit filter integrated value, the reference weight variation value is updated by the following equation.
[0032]
Figure 0003610393
[0033]
And the measurement control part 35 has a function which correct | amends a reference | standard upper limit limiter and a reference | standard rotation speed by following Formula, if an actual weight integrated value is less than an upper limit filter integrated value, and always discharge amount pass state.
[0034]
Reference rotation = current screw speed
Reference upper limiter = (actual weight integrated value × 1.1) / number of integrations
[0035]
The discharge amount acceptance state refers to a state where the measured value of the discharge amount is within the target discharge amount acceptance range, and is determined by the comparison function of the measurement unit built in the system.
By the way, although not shown, the measurement control unit 35 described above includes a CPU, a ROM that stores an operation program of the CPU, a RAM that temporarily stores operation data and the like, and an I / O that is an interface. It is composed of a microcomputer.
[0036]
Next, the operation of the above-described discharge amount measuring apparatus according to the present invention will be described with reference to the flowcharts of FIGS.
[0037]
In FIG. 6, when the program is started, it is determined in step 100 whether or not it is the measurement time (measurement timing) of the weight of the hopper 17 and the rotational speed of the main screw 7. If NO, this is repeated until YES.
In addition, in the rotation speed, the weight value, the fluctuation value, and the fluctuation change value in FIGS. 6 to 8, the display of “number” and “value” is omitted for convenience.
[0038]
When step 100 becomes YES, the weight of the hopper 17 is measured to be the current weight in step 101, the rotational speed of the main screw 7 is measured and stored as the current rotational speed, and the process proceeds to step 102. In step 102, the previous weight value is measured. From this, the current weight value is subtracted to obtain and store the current weight fluctuation value, and the routine goes to Step 103.
In step 103, a current upper limiter is obtained from the reference upper limiter, the current rotation speed, and the reference rotation speed, and in the following step 104, it is determined whether or not the current weight fluctuation value has exceeded the upper limit limiter. 104 becomes NO, and the current weight value is replaced with the previous weight value for the next calculation in step 105, and the process proceeds to step 107 in FIG.
[0039]
If YES in step 104, the upper limiter is replaced with the current weight fluctuation value in step 106 and stored, and the upper limiter is subtracted from the previous weight value and stored as the previous weight value. The processing up to here is the first function, that is, the calculation of the upper limiter and the filter processing by this.
[0040]
Next, as shown in FIG. 7, in step 107, the previous weight fluctuation value is subtracted from the current weight fluctuation value to obtain the current weight fluctuation change value, and the previous rotation speed is subtracted from the current rotation speed and stored as the current rotation change value. To do.
In step 108, the change rate limiter is calculated from the reference upper limit limiter, the current rotation change value and the reference rotation number, and in step 109, the current change rate limiter is calculated from the change rate limiter, the previous change rate limiter and the minimum limiter. Move to 110.
[0041]
In step 110, the current weight variation change value is compared with the current variation limiter. If the current weight variation change value is smaller and NO, the process proceeds to step 112.
If the current weight change is larger and step 110 is YES, the current change rate limiter is added to the previous weight change value in step 111 to obtain the current weight change value, and the current weight change value is subtracted from the previous weight value. In step 112, the current weight fluctuation value is replaced with the previous weight fluctuation value, and in step 113, the discharge amount is calculated.
These Step 107 to Step 112 are the calculation of the change rate limiter and the filter processing by this.
[0042]
In the following step 114, the reference rotation speed and the reference weight fluctuation value are corrected (filter automatic correction process) and the process is terminated, and the process returns to step 100 in FIG. This processing step is as shown in FIG.
That is, in step 115, 1 is added to the number of integrations to obtain the number of integrations, and in subsequent step 116, the actual weight fluctuation is added to the actual weight fluctuation integration value to obtain the weight fluctuation addition value, and the upper limit filter integration value is set. The upper limit filter is added this time to obtain an upper limit filter integrated value, and it is determined in step 117 whether or not the number of integration has reached a predetermined number. Each time step 116 is executed, the actual weight fluctuation integrated value and the upper limit filter integrated value are updated.
[0043]
If the predetermined number of times is not reached and step 117 is NO, the process ends and returns to step 100 in FIG. 6. If the predetermined number of times is reached and step 117 is YES, the actual weight fluctuation integrated value is converted to the upper limit filter in step 118. It is determined whether or not the integrated value is exceeded.
If the actual weight fluctuation integrated value is greater than or equal to the upper limit filter integrated value and step 118 is YES, in step 119, the reference weight fluctuation value is calculated from the reference weight fluctuation value, the actual weight fluctuation integrated value, the upper limit filter integrated value, and the number of integrations. If the actual weight fluctuation integrated value is less than the upper limit filter integrated value and step 118 is NO, it is determined in step 120 whether or not the discharge amount is acceptable.
[0044]
If the discharge amount is unacceptable and step 120 is NO, the process proceeds to step 122. If the discharge amount is acceptable and step 120 is YES, the actual weight integrated value is multiplied by 1.1 in step 121. At the same time, the value divided by the integrated value is replaced with a reference upper limit limiter, while the current screw rotation number is replaced with a reference rotation number, the reference rotation number and the reference upper limit limiter are automatically corrected, and the routine proceeds to step 122.
In step 122, the number of integration, the actual weight variation integrated value, and the upper limit filter are cleared to “0”, respectively, and the process ends, and the process returns to step 100 in FIG.
[0045]
As described above, the discharge amount measuring device for the extrusion molding machine according to the present invention calculates not only the conventional weight fluctuation of the hopper 17 but also the rotation speed of the main screw 7 to calculate the upper limit limiter and the change rate limiter. Since the upper limiter and / or the change in weight are filtered, an accurate discharge amount can be obtained quickly even if vibration occurs in the weight value of the hopper 17.
[0046]
FIG. 9 and FIG. 10 are operation characteristic diagrams showing weight fluctuations when filtered by the upper limiter or the change rate limiter, and it can be seen that the vibration of the calculated weight fluctuation is suppressed with respect to the input weight fluctuation. .
Further, FIG. 11 is a characteristic diagram showing the weight fluctuation when both the upper limiter and the change rate limiter are applied, and it can be seen that the bias is also suppressed compared to FIG.
[0047]
Further, since the upper limiter and the integrated value of the actual weight fluctuation value are automatically corrected, there is an advantage that an accurate discharge amount can be calculated even if the relationship between the screw speed and the discharge amount changes.
The method for correcting the reference rotational speed and the reference upper limiter from the actual weight fluctuation integrated value and the upper limiter integrated value is not limited to the method described above.
[0048]
Next, the present inventionIs an application example ofThe discharge amount control device will be described with reference to FIG.
This discharge amount control device further includes a speed command unit 39, an extrusion motor 41, and a take-up motor 43 in addition to the metering unit 33, the measurement control unit 35, and the rotation speed measurement unit 37 described above. It is an expanded function.
That is, the speed command unit 39 sets the push-out motor 41 and the take-off motor 43 similar to the push-out motor 13 and the take-up motor 27 in FIG. 12 according to the operation amount as the rotation speed signal based on the calculation of the measurement control unit 35. A latch that outputs a speed command signal for rotational driving and continues to output the same speed command signal to the extrusion motor 41 and the take-off motor 43 unless the measurement control unit 35 outputs the next rotation speed signal. Has a function or memory function.
[0049]
The measurement control unit 35 performs processing by a conventionally known moving average method based on the deviation from the set desired discharge amount based on the discharge amount obtained by the discharge amount calculation function described above, and performs PID calculation processing by a PID constant. The operation amount is output, and is connected to the speed command unit 39.
Moreover, as shown in FIGS. 4 and 5, the measurement control unit 35 operates when the deviation between the calculated discharge amount obtained by the above-described calculation and the set discharge amount that is set is within a predetermined small range, that is, stable operation. Sometimes the moving average number is increased to 10 times, for example, and a PID constant (constant 1) having a slow response speed is used, and when the deviation exceeds a predetermined small range as in product switching, that is, when moving, For example, the number of times is reduced to two times and the PID constant (constant 2) having a high response speed can be switched.
[0050]
In such a discharge amount control device,Since the number of moving average method processing and PID calculation constants are switched according to the magnitude of the deviation and processed, and the rotation speed signal is output to the speed command unit 39, when the deviation is large, such as during product switching, the control is quick in response. On the other hand, good stability control can be obtained even when the deviation is small as in stable operation.
By the way, it is preferable that the deviation criterion for switching the moving average method processing count and the PID calculation constant is that the deviation between the calculated discharge amount and the set discharge amount is within about 1 to 5% of the maximum rated discharge amount of the extruder 1.
[0051]
In addition,Mentioned aboveThe measurement control unit 35 is not limited to the configuration that performs the moving average process and the PID calculation process using the calculated discharge amount calculated by the processes of FIGS. 6 to 8 described above, and the material consumption obtained by a conventionally known method. The object can be achieved even with a configuration in which moving average processing or PID calculation processing is performed using the amount.
Also,Mentioned aboveIn the discharge amount control device, the object of the present invention can be achieved without necessarily providing the speed command unit 39. In the configuration without the speed command unit 39, the extrusion motor 41 and the take-out motor 43 side from the measurement control unit 35. It may be configured to output a speed signal.
[0052]
Further, the invention is not limited to controlling both the extrusion motor 41 and the take-off motor 43, and a configuration for controlling at least the extrusion motor 41 is also possible.
Furthermore, in the discharge amount control device, even if the amount of material supplied to the cylinder 9 is measured almost accurately and quickly, it takes some time until the molten plastic material is extruded from the cylinder 9 by the rotation of the main screw 7. Although there is a delay, it is only necessary to control the extrusion motor 41 and the take-up motor 43 in consideration of the so-called dead time, so that the discharge amount can be controlled almost accurately.
[0053]
In each of the above-described embodiments, the description has been given using the extruder 1 having one main screw 7. However, the present invention can be applied to an extruder using a plurality of screws.
And it cannot be overemphasized that the measurement part 33 mentioned above, the measurement control part 35, the speed instruction | command part 39, etc. are mounted in the control apparatus A in FIG.
[0054]
【The invention's effect】
As described above, the first configuration according to the discharge amount measuring apparatus of the present invention measures the weight of the material supply unit that supplies the material to the screw side of the extruder, measures the rotational speed of the screw, Ratio of reference weight fluctuation value to reference rotation speed of screwAnd the ratio of the weight fluctuation value to the screw speed equal to the ratio, the ratio of the reference upper limiter obtained from the weight fluctuation value to the reference speed, and the ratio of the screw speed to the screw speed equal to the ratio. From the relationship with the ratio of the upper limiter of the weight fluctuation value,Obtain this upper limiter, if the weight fluctuation value at the time of measurement does not exceed the upper limit limiter, use the measured weight fluctuation value as it is, and if the weight fluctuation value at the time of measurement exceeds it, the upper limiter is used as the weight fluctuation at the time of the measurement. The value is used and the discharge amount is measured taking into account the screw speed in consideration of the weight fluctuation of the material supply unit, so even if the measured weight of the material supply unit oscillates in time, accurate and prompt discharge The quantity can be measured.
Further, the second configuration according to the discharge amount measuring apparatus of the present invention measures the weight of the material supply unit that supplies the material to the screw side of the extruder, measures the number of rotations of the screw, and determines the reference of the screw. The ratio of the reference weight fluctuation value to the rotational speed,The relationship between the ratio of the weight fluctuation value to the screw speed equal to this ratio, the ratio of the reference upper limiter obtained from the weight fluctuation value to the reference speed, and the weight to the screw speed change equal to this ratio From the relationship with the ratio of change rate limiter of fluctuation value,When this change rate limiter is obtained and the weight fluctuation change value at the time of measurement does not exceed the change rate limiter, the measurement weight fluctuation change value is used as it is, and when the weight fluctuation change value at the time of measurement exceeds the change rate limiter, Since the change rate limiter is added to the weight fluctuation change value at the previous measurement and used as the weight fluctuation change value at the time of measurement, the discharge amount is measured. The discharge amount can be measured.
In the second configuration, in the configuration in which the change rate limiter is calculated by adding a predetermined minimum limiter, it is possible to measure an appropriate discharge amount with a certain range even if there is no change in the rotation speed. There are advantages.
Further, in the first and second configurations, the ratio of the reference weight fluctuation value to the reference rotation speed of the screw, and the ratio of the reference weight fluctuation value to the reference rotation speed of the screw,The ratio of the weight fluctuation value to the screw speed equal to this ratio, the ratio of the reference upper limiter obtained from the weight fluctuation value to the reference speed, and the ratio of the screw speed to the screw speed equal to this ratio. From the relationship with the ratio of the upper limiter of the weight fluctuation value,This upper limiter is obtained, and this upper limiter and actual weight fluctuation value are integrated several times. When the upper limiter integrated value exceeds the actual weight fluctuation integrated value, the reference rotation is calculated from the actual weight fluctuation integrated value and the upper limiter integrated value. If the number and the reference upper limiter are corrected and measured, even if the relationship between the screw rotation speed and the discharge amount changes due to changes in raw materials or machine wear, the reference weight and reference rotation speed are automatically adjusted. As a result, the discharge amount can be always accurately measured over time.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a discharge amount control device including a discharge amount measuring device according to the present invention.
FIG. 2 is a diagram for explaining the operation of the discharge amount measuring apparatus in FIG. 1;
FIG. 3 is a diagram for explaining the operation of the discharge amount measuring apparatus in FIG. 1;
4 is a diagram for explaining the operation of the discharge amount control device of FIG. 1; FIG.
FIG. 5 is a diagram for explaining the operation of the discharge amount control device of FIG. 1;
6 is a flowchart for explaining the operation of the discharge amount measuring apparatus in FIG. 1;
7 is a flowchart for explaining the operation of the discharge amount measuring apparatus in FIG. 1; FIG.
FIG. 8 is a flowchart for explaining the operation of the discharge amount measuring apparatus in FIG. 1;
FIG. 9 is an operation characteristic diagram of the discharge amount measuring apparatus of FIG. 1;
10 is an operational characteristic diagram of the discharge amount measuring apparatus in FIG. 1. FIG.
11 is an operation characteristic diagram of the discharge amount measuring apparatus of FIG. 1; FIG.
FIG. 12 is a diagram illustrating an extrusion line.
FIG. 13 is a diagram illustrating a conventional material supply configuration.
FIG. 14 is a diagram illustrating a conventional discharge amount measuring apparatus.
[Explanation of symbols]
1 Extruder
3 Picker
5 Molded products
7 Main screw
9 cylinders
11 Molding machine stand
13, 41 Extrusion motor
15, 31 Rotation speed detection sensor
17 Hopper (Material Supply Department)
19 Material storage
19a shutter
21, 33 Weighing section
23 Temperature sensor
25 Pressure sensor
27, 43 Take-up motor
29 Take-up roller
35 Measurement control unit
37 Rotational speed measurement unit
39 Speed command section
A Control device

Claims (4)

押出成形機のスクリュー側へ材料を供給する材料供給部の重量を測定する計量部と、
前記スクリューの回転数を測定する回転数測定部と、
前記スクリューの基準回転数に対する基準重量変動値の比と、この比に等しい前記スクリューの回転数に対する前記材料供給部の重量変動値の比との関係と、前記基準回転数に対する前記重量変動値から得られる基準上限リミッタの比と、この比に等しい前記スクリューの回転数に対する前記重量変動値の上限リミッタの比との関係とから、この上限リミッタを求め、計測時の前記重量変動値が前記上限リミッタを越えないとき当該計測重量変動値をそのまま使用し、計測時の前記重量変動値が前記上限リミッタを越えるとき、前記上限リミッタを当該計測時の重量変動値として使用して前記押出成形機の吐出量を計測する計測制御部と、
を具備することを特徴とする押出成形機の吐出量計測装置。
A weighing unit for measuring the weight of the material supply unit for supplying the material to the screw side of the extruder,
A rotational speed measurement unit for measuring the rotational speed of the screw;
From the relationship between the ratio of the reference weight fluctuation value to the reference rotation speed of the screw, the ratio of the weight fluctuation value of the material supply unit to the rotation speed of the screw equal to this ratio, and the weight fluctuation value to the reference rotation speed The upper limit limiter is obtained from the ratio of the obtained reference upper limit limiter and the ratio of the upper limit limiter of the weight fluctuation value to the number of rotations of the screw equal to the ratio, and the weight fluctuation value at the time of measurement is the upper limit limit value. When the weight fluctuation value does not exceed the limiter, the measured weight fluctuation value is used as it is. When the weight fluctuation value at the time of measurement exceeds the upper limit limiter, the upper limiter is used as the weight fluctuation value at the time of measurement. A measurement control unit for measuring the discharge amount;
A discharge amount measuring device for an extrusion molding machine, comprising:
押出成形機のスクリュー側へ材料を供給する材料供給部の重量を測定する計量部と、
前記スクリューの回転数を測定する回転数測定部と、
前記スクリューの基準回転数に対する基準重量変動値の比と、この比に等しい前記スクリュー回転数に対する前記材料供給部の重量変動値の比との関係と、前記基準回転数に対する前記重量変動値から得られる基準上限リミッタとの比と、この比に等しい前記スクリューの回転数変化に対する前記重量変動値の変化率リミッタの比との関係から、この変化率リミッタを求め、計測時の前記重量変動変化値が前記変化率リミッタを越えないとき、当該計測重量変動変化値をそのまま使用し、計測時の前記重量変動変化値が前記変化率リミッタを越えるとき、前回計測時の重量変動変化値に前記変化率リミッタを加えて当該計測時の重量変動変化値として使用して前記押出成形機の吐出量を計測する計測制御部と、
を具備することを特徴とする押出成形機の吐出量計測装置。
A weighing unit for measuring the weight of the material supply unit for supplying the material to the screw side of the extruder,
A rotational speed measurement unit for measuring the rotational speed of the screw;
The relationship between the ratio of the reference weight fluctuation value with respect to the reference rotation speed of the screw, the ratio of the weight fluctuation value of the material supply unit with respect to the screw rotation speed equal to this ratio, and the weight fluctuation value with respect to the reference rotation speed. The change rate limiter is obtained from the relationship between the ratio of the reference upper limit limiter and the ratio of the change rate limiter of the weight change value to the change in the rotation speed of the screw equal to the ratio, and the change in weight change value at the time of measurement is obtained. When the change does not exceed the change rate limiter, the measured weight fluctuation change value is used as it is, and when the weight fluctuation change value at the time of measurement exceeds the change rate limiter, the change rate is added to the weight change change value at the previous measurement. A measurement control unit for measuring a discharge amount of the extrusion molding machine by adding a limiter and using it as a weight fluctuation change value at the time of the measurement;
A discharge amount measuring device for an extrusion molding machine, comprising:
前記計測制御部は、所定の最小リミッタを加えて前記変化率リミッタを算出するものである請求項2記載の押出成形機の吐出量計測装置。The discharge amount measuring device for an extrusion molding machine according to claim 2, wherein the measurement control unit calculates the change rate limiter by adding a predetermined minimum limiter. 前記計測計測部は、前記スクリューの基準回転数に対する基準重量変動値の比と、この比に等しい前記スクリューの回転数に対する前記材料供給部の重量変動値の比との関係と、前記基準回転数に対する前記重量変動値から得られる基準上限リミッタの比と、この比に等しい前記スクリューの回転数に対する前記重量変動値の上限リミッタの比との関係とから、この上限リミッタを求め、この上限リミッタおよび実重量変動値を複数回数積算し、実重量変動積算値が上限リミッタ積算値を越えたとき、実重量変動積算値および上限リミッタ積算値から前記基準回転数および基準上限リミッタを修正して押出成形機の吐出量を計測するものである請求項1〜3のいずれか1項記載の押出成形機の吐出量計測装置。The measurement and measurement unit includes a ratio of a reference weight fluctuation value to a reference rotation speed of the screw, a ratio of a weight fluctuation value of the material supply unit to a screw rotation speed equal to the ratio, and the reference rotation speed. The upper limit limiter is obtained from the ratio of the reference upper limit limiter obtained from the weight fluctuation value to the ratio and the ratio of the upper limit limiter of the weight fluctuation value to the number of rotations of the screw equal to the ratio. When the actual weight fluctuation value is integrated multiple times, and the actual weight fluctuation integration value exceeds the upper limit limiter integration value, the reference speed and the reference upper limiter are corrected from the actual weight fluctuation integration value and the upper limiter integration value, and extrusion molding is performed. The discharge amount measuring device for an extrusion molding machine according to any one of claims 1 to 3, wherein the discharge amount of the machine is measured.
JP19071897A 1997-07-02 1997-07-02 Extruder molding machine Expired - Fee Related JP3610393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19071897A JP3610393B2 (en) 1997-07-02 1997-07-02 Extruder molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19071897A JP3610393B2 (en) 1997-07-02 1997-07-02 Extruder molding machine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004068516A Division JP3865249B2 (en) 2004-03-11 2004-03-11 Extruder discharge rate control device

Publications (2)

Publication Number Publication Date
JPH1120005A JPH1120005A (en) 1999-01-26
JP3610393B2 true JP3610393B2 (en) 2005-01-12

Family

ID=16262673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19071897A Expired - Fee Related JP3610393B2 (en) 1997-07-02 1997-07-02 Extruder molding machine

Country Status (1)

Country Link
JP (1) JP3610393B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001800A (en) * 2000-06-26 2002-01-08 Toshiba Mach Co Ltd Method for controlling weight type feeder of twin-screw extruder
CN103422178B (en) * 2012-05-16 2017-11-28 上海帝达机械设备有限公司 A kind of metering control system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2584685B2 (en) * 1990-05-12 1997-02-26 東洋電機株式会社 Monitoring device for multilayer extruder
JPH0569471A (en) * 1991-04-08 1993-03-23 Shimpo Ind Co Ltd Controlling device for output of extruder
JPH0596608A (en) * 1991-10-14 1993-04-20 Hitachi Zosen Sangyo Kk Molten resin feeding facility
JPH05212773A (en) * 1992-01-31 1993-08-24 Nishikawa Rubber Co Ltd Device for controlling emitting amount of extruder
JPH05245908A (en) * 1992-03-05 1993-09-24 Sekisui Chem Co Ltd Extruding quantity control method of extruder with gear pump and its apparatus
JPH08150654A (en) * 1994-11-28 1996-06-11 Sekisui Chem Co Ltd Extrusion amount operator in extrusion molding machine
JP3029184B2 (en) * 1994-11-30 2000-04-04 古河電気工業株式会社 Extruder output measuring device

Also Published As

Publication number Publication date
JPH1120005A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
US6332355B1 (en) Method of estimating a life of ball screw included in electric injection molding machine and life estimating system
JP3610393B2 (en) Extruder molding machine
JP3865249B2 (en) Extruder discharge rate control device
JPH1086217A (en) Film thickness control device in inflation molding process
JP3180311B2 (en) Apparatus for measuring the amount of material supplied to an extruder and an apparatus for controlling the discharge rate of the extruder using the same
JP4845684B2 (en) Control method of sheet forming apparatus
EP0380499B1 (en) A method for controlling some parameters in connection with manufacturing of plastic articles
JPH05318531A (en) Weighing method of injection molding machine
JP2584685B2 (en) Monitoring device for multilayer extruder
JPH09155953A (en) Method for controlling operation of extrusion molding machine
JP3717556B2 (en) Speed control device for striate coating line
JPH02137911A (en) Dimensional control device for molded material in inflation molding line
JP4554103B2 (en) Apparatus and method for controlling intermittent operation of heavy feeder
JP3183792B2 (en) Material measuring device for extruder
JPH05245908A (en) Extruding quantity control method of extruder with gear pump and its apparatus
JPH0566851B2 (en)
JPH071558A (en) Extrusion control of strip like rubber material
JPS5946775B2 (en) Extruder control method
JPH08150654A (en) Extrusion amount operator in extrusion molding machine
JPS6158286B2 (en)
JPH07285164A (en) Calculation of extrusion amount of extruder for thermoplastic resin
JPH1080948A (en) Film thickness control device for inflation molding process
JPH1080947A (en) Film thickness control device for inflation molding process
JPH07156252A (en) Control device of extrusion molding machine
JPS5857930A (en) Temperature controlling unit of injection molding machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees