JPH08148749A - Optical clock generator - Google Patents

Optical clock generator

Info

Publication number
JPH08148749A
JPH08148749A JP28069294A JP28069294A JPH08148749A JP H08148749 A JPH08148749 A JP H08148749A JP 28069294 A JP28069294 A JP 28069294A JP 28069294 A JP28069294 A JP 28069294A JP H08148749 A JPH08148749 A JP H08148749A
Authority
JP
Japan
Prior art keywords
semiconductor laser
optical
pulse train
mode
saturable absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28069294A
Other languages
Japanese (ja)
Other versions
JP2697640B2 (en
Inventor
Hiroyuki Yokoyama
弘之 横山
Takashi Yano
隆 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6280692A priority Critical patent/JP2697640B2/en
Publication of JPH08148749A publication Critical patent/JPH08148749A/en
Application granted granted Critical
Publication of JP2697640B2 publication Critical patent/JP2697640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means

Abstract

PURPOSE: To provide a small optical clock generator which easily stabilizes frequency at low cost by providing a semiconductor laser which has a saturable absorption area that couples at least a part of optical power from the semiconductor laser which generates periodic light pulse by the direct modulation of exciting current. CONSTITUTION: A semiconductor laser 1 is driven by direct current of direct current A2 and the high frequency or periodic pulse signal from a signal generator 3 through a bias tee 4, and an input light pulse train 5 that allows less fluctuation is generated. The manually provided light pulse train 5 is coupled with a mode-locking semiconductor laser 8 by a collimation lens 6 and a focus lens 7. Though passive mode-locking is allowed for the mode-locking semiconductor laser 8 by direct current supply and reverse bias application to a saturable absorption area 11 by a bias power source 12 by direct current source B10 for a gain area 9, fluctuation of mode-locking operation is suppressed by incidence of the input light pulse train 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信、光計測に有用
な超高速繰り返しの超短光パルス列を発生する光クロッ
ク発生器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical clock generator for generating ultra-short repetitive ultra-short optical pulse trains useful for optical communication and optical measurement.

【0002】[0002]

【従来の技術】近年、超高速の光通信、光情報処理の基
本技術として数十GHz以上の繰り返し周波数を有する
光パルス列の発生を可能にする技術の要求が高まってい
る。高速光パルスを発生させる光オシレータの1つとし
て、2セクションまたは3セクション構造によりモード
同期動作する半導体レーザが挙げられる。このデバイス
では、電極によって分離された1つのセクションに逆バ
イアスを印加して可飽和吸収領域として作用させること
により、受動モード同期とよばれる動作モードで周期的
なピコ秒光パルス列が生成される。
2. Description of the Related Art In recent years, there has been an increasing demand for a technique capable of generating an optical pulse train having a repetition frequency of several tens GHz or more as a basic technique for ultrahigh-speed optical communication and optical information processing. One of the optical oscillators that generate high-speed optical pulses is a semiconductor laser that operates in a mode-locked manner with a two-section or three-section structure. In this device, a reverse bias is applied to one section separated by an electrode to act as a saturable absorption region, so that a picosecond optical pulse train that is periodic in an operation mode called passive mode locking is generated.

【0003】通常、このような光パルス列ではパルスの
周期の揺らぎが大きいため、これを低減する目的で光パ
ルスの繰り返しと等しい周波数を有する安定化された電
気的高周波発生源からの出力を半導体レーザに加える方
法が取られる。この技術については、たとえばデリクソ
ン(D.J.Derickson)らによるジャーナル
オブカンタムエレクトロニクス(IEEE J.Qua
ntum Electron.)誌の第28巻10号の
p.2186からp.2202にわたって掲載された論
文の中に述べられている。図2は従来の光クロック発生
器であるハイブリッド型モード同期半導体レーザの構成
を示している。この構成ではモード同期半導体レーザ8
は、利得領域9への直流電源B10による直流電流の供
給と、可飽和吸収領域11へのバイアス電源12による
逆バイアスの印加で受動モード同期動作をし、さらに動
作の安定化のために、バイアスティー4を介し可飽和吸
収領域11に対して出力光パルス列14と繰り返し周波
数の等しい高周波信号を信号発生器3によって印加す
る。
Usually, in such an optical pulse train, the fluctuation of the pulse period is large, and therefore, in order to reduce the fluctuation, the output from the stabilized electric high frequency source having a frequency equal to the repetition of the optical pulse is emitted from the semiconductor laser. The method of adding to is taken. This technique is described, for example, in Journal of Quantum Electronics (IEEE J. Qua) by D. J. Derickson et al.
ntum Electron. ), Vol. 28, No. 10, p. 2186 to p. It is described in a paper published over 2202. FIG. 2 shows the configuration of a hybrid mode-locked semiconductor laser which is a conventional optical clock generator. In this configuration, the mode-locked semiconductor laser 8
Is a passive mode-locking operation by supplying a DC current from the DC power supply B10 to the gain region 9 and applying a reverse bias from the bias power supply 12 to the saturable absorption region 11, and further, in order to stabilize the operation, a bias is applied. A high frequency signal having the same repetition frequency as that of the output optical pulse train 14 is applied to the saturable absorption region 11 via the tee 4 by the signal generator 3.

【0004】[0004]

【発明が解決しようとする課題】光通信応用では、光パ
ルスの繰り返し周波数の精度や動作の安定性を極力安定
化することが必要である。上記のモード同期半導体レー
ザにおいては、受動モード同期という光学的な非線形現
象を高周波による変調によって安定化するのであるが、
この方法によっても光通信に要求される安定度を達成す
るのは容易でない。電気的変調による十分な安定化のた
めには30dBm程度の高周波を半導体レーザに入力し
なければならない。しかし、このような高出力の超高周
波を使用するにはきわめて特殊な機器や部品が必要とな
り、装置が大型かつ高価になるという問題が生じる。
In optical communication applications, it is necessary to stabilize the accuracy of the optical pulse repetition frequency and the stability of operation as much as possible. In the above mode-locked semiconductor laser, an optical nonlinear phenomenon called passive mode-locking is stabilized by high frequency modulation.
Even with this method, it is not easy to achieve the stability required for optical communication. A high frequency of about 30 dBm must be input to the semiconductor laser for sufficient stabilization by electrical modulation. However, in order to use such a high-power ultra-high frequency, extremely special equipment and parts are required, which causes a problem that the apparatus becomes large and expensive.

【0005】本発明の目的は、上述した従来の光クロッ
ク発生器の持つ欠点を除去した、小型かつ安価で周波数
の安定化がしやすい光クロック発生器を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical clock generator which is small in size, inexpensive, and whose frequency can be easily stabilized, in which the above-mentioned drawbacks of the conventional optical clock generator are eliminated.

【0006】[0006]

【課題を解決するための手段】本発明による光クロック
発生器は、励起電流の直接変調により周期的な光パルス
列を発生する第1の半導体レーザと、この半導体レーザ
からの光出力の少なくとも一部を結合させる手段と、可
飽和吸収領域を有する第2の半導体レーザを備えたこと
を特徴とする。また、定常的な連続光を発生する第1の
半導体レーザと、この半導体レーザからの光出力を強度
変調して周期的な光パルス列を発生させる手段と、この
光パルス列出力の少なくとも一部を結合させる手段と、
可飽和吸収領域を有する第2の半導体レーザを備えたこ
とを特徴とする。そして、第2の半導体レーザは可飽和
吸収作用によりセルフパルセーション動作または受動モ
ード同期動作をすることを特徴としている。
An optical clock generator according to the present invention comprises a first semiconductor laser for generating a periodic optical pulse train by direct modulation of an excitation current, and at least a part of an optical output from the semiconductor laser. And a second semiconductor laser having a saturable absorption region. In addition, a first semiconductor laser that generates steady continuous light, a unit that intensity-modulates an optical output from the semiconductor laser to generate a periodic optical pulse train, and at least a part of the optical pulse train output are combined. Means to make
A second semiconductor laser having a saturable absorption region is provided. The second semiconductor laser is characterized by performing a self-pulsation operation or a passive mode-locking operation by a saturable absorption effect.

【0007】[0007]

【作用】本発明では、安定化された周期的光パルス列の
注入を行いセルフパルセーション半導体レーザや受動モ
ード同期半導体レーザを注入同期動作によって安定化さ
せる。安定化した光パルス列は半導体レーザの励起電流
の直接変調、または連続発振する半導体レーザの出力を
光強度変調器によって強度変調することによって得られ
る。しかし、これらの光パルスは通常10ps以上の時
間幅を有するので、光マルチプレクスによって分離のよ
い数十GHzの繰り返し周波数の光パルス列を得るのは
困難である。そこで、このような光パルス列を10GH
z程度の周波数で生成させ、その光を可飽和吸収領域を
有する半導体レーザに注入することで時間幅が圧縮され
た光パルス列を得る。このとき、可飽和吸収領域を有す
る半導体レーザの動作パルス周波数は、注入する光パル
ス列の繰り返し周波数に一致するような設定を行う。光
注入される半導体レーザのうち特に受動モード同期半導
体レーザでは光パルスの共振器内の周回現象によりパル
ス圧縮が有効に生じる。また、光注入される半導体レー
ザからの光パルス周波数が注入光パルス列と同様に安定
化されるのは、注入光の中心光周波数および位相同期し
たサイドバンドへの周波数引き込み現象による。すなわ
ち、可飽和吸収作用を有する半導体レーザ内の光学的非
線形現象を電気的な変調によってではなく、外部からの
光入力による光学的な方法で効率的に安定化を図ること
ができる。
In the present invention, the stabilized periodic optical pulse train is injected to stabilize the self-pulsation semiconductor laser and the passive mode-locking semiconductor laser by the injection locking operation. The stabilized optical pulse train can be obtained by directly modulating the excitation current of the semiconductor laser or by intensity-modulating the output of the continuously oscillating semiconductor laser with an optical intensity modulator. However, since these optical pulses usually have a time width of 10 ps or more, it is difficult to obtain an optical pulse train having a repetitive frequency of several tens GHz that is easily separated by optical multiplexing. Therefore, such an optical pulse train is
By generating the light at a frequency of about z and injecting the light into a semiconductor laser having a saturable absorption region, an optical pulse train whose time width is compressed is obtained. At this time, the operating pulse frequency of the semiconductor laser having the saturable absorption region is set so as to match the repetition frequency of the optical pulse train to be injected. Among semiconductor lasers that are optically injected, particularly in passive mode-locked semiconductor lasers, pulse compression is effectively generated by the circulation phenomenon of the optical pulse in the resonator. The optical pulse frequency from the semiconductor laser that is optically injected is stabilized in the same manner as the injected optical pulse train due to the center optical frequency of the injected light and the frequency pull-in phenomenon to the sideband in phase synchronization. That is, the optical non-linear phenomenon in the semiconductor laser having a saturable absorption effect can be efficiently stabilized not by electrical modulation but by an optical method by external light input.

【0008】[0008]

【実施例】次に、本発明について図面を参照して実施例
を示す。図1は、本発明を適用した光クロック発生器の
構成の一実施例を模式的に表している。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 schematically shows an embodiment of the configuration of an optical clock generator to which the present invention is applied.

【0009】半導体レーザ1は、直流電流A2による直
流電流と信号発生器3からの高周波または周期的パルス
信号とによりバイアスティー4を介して駆動されること
で、揺らぎの少ない入力光パルス列5を生成する。この
入力光パルス列5はコリメーションレンズ6およびフォ
ーカスレンズ7によってモード同期半導体レーザ8に結
合させられる。また図示していないがコリメーションレ
ンズ6とフォーカスレンズ7の間にはアイソレータが配
置される。モード同期半導体レーザ8は、利得領域9へ
の直流電源B10による直流電流の供給と可飽和吸収領
域11へのバイアス電源12による逆バイアスの印加で
受動モード同期動作をするが、繰り返し周波数の等しい
入力光パルス列5の入射によりこれへの同期作用により
モード同期動作の揺らぎが抑制される。このようにし
て、揺らぎが少なくかつ時間幅の狭い安定な光同期出力
光パルス列13が得られる。
The semiconductor laser 1 is driven via the bias tee 4 by the direct current by the direct current A2 and the high frequency or periodic pulse signal from the signal generator 3 to generate the input optical pulse train 5 with less fluctuation. To do. The input light pulse train 5 is coupled to the mode-locked semiconductor laser 8 by the collimation lens 6 and the focus lens 7. Although not shown, an isolator is arranged between the collimation lens 6 and the focus lens 7. The mode-locked semiconductor laser 8 performs a passive mode-locking operation by supplying a direct current from the DC power supply B10 to the gain region 9 and applying a reverse bias to the saturable absorption region 11 by the bias power supply 12, but the input having the same repetition frequency. The incidence of the light pulse train 5 suppresses the fluctuation of the mode-locking operation due to the synchronizing action on the light train. In this way, a stable optical synchronous output optical pulse train 13 with little fluctuation and narrow time width can be obtained.

【0010】本実施例では、半導体レーザ1として全長
が約0.5mmのInGaAs/InGaAsP多重量子
井戸構造を有する分布帰還型レーザを用いた。信号発生
器3からの高周波周波数は10GHzとした。また、モ
ード同期半導体レーザ8は、全長が約4mmのInGaA
s/InGaAsP多重量子井戸構造を有する2電極の
劈開面反射型レーザを用いた。適切な条件でこれらの半
導体レーザを動作させることにより、半導体レーザ1か
ら時間幅約20psの入力光パルス列5が得られ、また
それを100mW程度モード同期半導体レーザ8に結合
させることでタイミング揺らぎが入力光パルス列5と同
程度に抑制された時間幅約5psの光同期出力光パルス
列13が得られた。
In this embodiment, as the semiconductor laser 1, a distributed feedback laser having an InGaAs / InGaAsP multiple quantum well structure with a total length of about 0.5 mm is used. The high frequency frequency from the signal generator 3 was 10 GHz. The mode-locked semiconductor laser 8 has a total length of about 4 mm and is made of InGaA.
A two-electrode cleaved surface reflection type laser having an s / InGaAsP multiple quantum well structure was used. By operating these semiconductor lasers under appropriate conditions, an input optical pulse train 5 with a time width of about 20 ps can be obtained from the semiconductor laser 1, and the timing fluctuation can be input by coupling it to the mode-locked semiconductor laser 8 of about 100 mW. An optical synchronous output optical pulse train 13 having a time width of about 5 ps, which was suppressed to the same level as the optical pulse train 5, was obtained.

【0011】なお、実施例では、InGaAs系多重量
子井戸構造を有する半導体レーザを実施例に記載した
が、原理的な見地から特定の材料系に限定されず、また
モード同期半導体レーザの共振器の反射鏡は劈開面によ
る代わりに分布帰還構造によって構成してもよいことは
明らかである。また、レンズの代わりにファイバーを用
いてもよい。さらに、上記の実施例では、可飽和吸収領
域を有する半導体レーザとして受動モード同期半導体レ
ーザを用いた場合を示したが、光パルスの時間幅が約1
0psでよい場合にはセルフパルセーション動作をする
半導体レーザを使用することができる。また、上記の実
施例では、安定化された入力光パルスの発生源として電
流の直接変調による半導体レーザの場合について述べた
が、入力光パルスを生成するためには連続動作の半導体
レーザからの光出力を光強度変調器によって強度変調し
てもよい。
In the embodiment, the semiconductor laser having the InGaAs multiple quantum well structure is described in the embodiment, but it is not limited to a specific material system from the viewpoint of principle, and the resonator of the mode-locked semiconductor laser is not limited. Obviously, the reflector may be constructed by a distributed feedback structure instead of the cleaved surface. Further, a fiber may be used instead of the lens. Further, in the above embodiment, the case where the passive mode-locked semiconductor laser is used as the semiconductor laser having the saturable absorption region is shown, but the time width of the optical pulse is about 1.
If 0 ps is sufficient, a semiconductor laser that performs a self-pulsation operation can be used. Further, in the above embodiment, the semiconductor laser by the direct modulation of the current is described as the source of the stabilized input optical pulse, but in order to generate the input optical pulse, the light from the continuously operating semiconductor laser is used. The output may be intensity modulated by a light intensity modulator.

【0012】[0012]

【発明の効果】以上、本発明によれば、電気的な制御系
への負担が軽い構成によって、今後の超高速光通信応用
上重要な十分に安定化されたピコ秒領域の光パルスを得
ることができる。
As described above, according to the present invention, a sufficiently stabilized optical pulse in the picosecond region, which is important for future ultrahigh-speed optical communication applications, can be obtained by the configuration in which the load on the electrical control system is light. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した光クロック発生器の実施例の
模式図である。
FIG. 1 is a schematic diagram of an embodiment of an optical clock generator to which the present invention is applied.

【図2】従来の光クロック発生器の構成を示す図であ
る。
FIG. 2 is a diagram showing a configuration of a conventional optical clock generator.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 直流電源A 3 信号発生器 4 バイアスティー 5 入力光パルス列 6 コリメーションレンズ 7 フォーカスレンズ 8 モード同期半導体レーザ 9 利得領域 10 直流電源B 11 可飽和吸収領域 12 バイアス電源B 13 光同期出力光パルス列 14 出力光パルス列 1 semiconductor laser 2 DC power supply A 3 signal generator 4 bias tee 5 input light pulse train 6 collimation lens 7 focus lens 8 mode-locking semiconductor laser 9 gain region 10 DC power supply B 11 saturable absorption region 12 bias power supply B 13 optical synchronization output light Pulse train 14 output optical pulse train

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】励起電流の直接変調により周期的な光パル
ス列を発生する第1の半導体レーザと、この半導体レー
ザからの光出力の少なくとも一部を結合させる手段と、
可飽和吸収領域を有する第2の半導体レーザを備えたこ
とを特徴とする光クロック発生器。
1. A first semiconductor laser for generating a periodic optical pulse train by direct modulation of an excitation current, and means for coupling at least a part of optical output from the semiconductor laser.
An optical clock generator comprising a second semiconductor laser having a saturable absorption region.
【請求項2】定常的な連続光を発生する第1の半導体レ
ーザと、この半導体レーザからの光出力を強度変調して
周期的な光パルス列を発生させる手段と、この光パルス
列出力の少なくとも一部を結合させる手段と、可飽和吸
収領域を有する第2の半導体レーザを備えたことを特徴
とする光クロック発生器。
2. A first semiconductor laser for generating a continuous continuous light, a means for intensity-modulating an optical output from the semiconductor laser to generate a periodic optical pulse train, and at least one of the optical pulse train outputs. An optical clock generator comprising means for coupling the parts and a second semiconductor laser having a saturable absorption region.
【請求項3】前記第2の半導体レーザは可飽和吸収作用
によりセルフパルセーション動作をすることを特徴とす
る請求項1および請求項2記載の光クロック発生器。
3. The optical clock generator according to claim 1, wherein the second semiconductor laser performs a self-pulsation operation by saturable absorption.
【請求項4】前記第2の半導体レーザは可飽和吸収作用
により受動モード同期動作をすることを特徴とする請求
項1および請求項2記載の光クロック発生器。
4. The optical clock generator according to claim 1 or 2, wherein said second semiconductor laser operates passively in a mode-locked manner by saturable absorption.
JP6280692A 1994-11-15 1994-11-15 Optical clock generator Expired - Lifetime JP2697640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6280692A JP2697640B2 (en) 1994-11-15 1994-11-15 Optical clock generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6280692A JP2697640B2 (en) 1994-11-15 1994-11-15 Optical clock generator

Publications (2)

Publication Number Publication Date
JPH08148749A true JPH08148749A (en) 1996-06-07
JP2697640B2 JP2697640B2 (en) 1998-01-14

Family

ID=17628620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6280692A Expired - Lifetime JP2697640B2 (en) 1994-11-15 1994-11-15 Optical clock generator

Country Status (1)

Country Link
JP (1) JP2697640B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023933A1 (en) * 1995-12-22 1997-07-03 Philips Electronics N.V. Optical unit for synchronizing clock signals
JPH1174598A (en) * 1997-08-27 1999-03-16 Oki Electric Ind Co Ltd High speed optical pulse generator
JPH11340954A (en) * 1998-05-28 1999-12-10 Nec Corp Optical clock extracting circuit
US6795479B2 (en) 2001-07-12 2004-09-21 Nec Corporation Generation of optical pulse train having high repetition rate using mode-locked laser
WO2005076422A1 (en) * 2004-02-04 2005-08-18 Nippon Telegraph And Telephone Corporation Mode-locked laser light source and multicarrier light source employing it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625679A (en) * 1985-07-02 1987-01-12 Nec Corp Composite semiconductor laser device
JPH05259581A (en) * 1992-03-16 1993-10-08 Nippon Telegr & Teleph Corp <Ntt> Wavelength converter
JPH06302901A (en) * 1993-04-12 1994-10-28 Nippon Telegr & Teleph Corp <Ntt> Optical pulse generation control element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625679A (en) * 1985-07-02 1987-01-12 Nec Corp Composite semiconductor laser device
JPH05259581A (en) * 1992-03-16 1993-10-08 Nippon Telegr & Teleph Corp <Ntt> Wavelength converter
JPH06302901A (en) * 1993-04-12 1994-10-28 Nippon Telegr & Teleph Corp <Ntt> Optical pulse generation control element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023933A1 (en) * 1995-12-22 1997-07-03 Philips Electronics N.V. Optical unit for synchronizing clock signals
JPH1174598A (en) * 1997-08-27 1999-03-16 Oki Electric Ind Co Ltd High speed optical pulse generator
JPH11340954A (en) * 1998-05-28 1999-12-10 Nec Corp Optical clock extracting circuit
US6795479B2 (en) 2001-07-12 2004-09-21 Nec Corporation Generation of optical pulse train having high repetition rate using mode-locked laser
WO2005076422A1 (en) * 2004-02-04 2005-08-18 Nippon Telegraph And Telephone Corporation Mode-locked laser light source and multicarrier light source employing it
US7386018B2 (en) 2004-02-04 2008-06-10 Nippon Telegraph And Telephone Corporation Mode-locked laser and optical multi-carrier source using same

Also Published As

Publication number Publication date
JP2697640B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JP2526806B2 (en) Semiconductor laser and its operating method
JPH06281896A (en) Light pulse generating device
JP4807514B2 (en) Optical clock extraction apparatus and method
Arahira et al. 480-GHz subharmonic synchronous mode locking in a short-cavity colliding-pulse mode-locked laser diode
JP2697640B2 (en) Optical clock generator
Lee et al. Pulse-amplitude equalization in a rational harmonic mode-locked semiconductor ring laser using optical feedback
US5598425A (en) High stability ultra-short sources of electromagnetic radiation
KR20020014173A (en) Ultra high speed multi wavelength laser apparatus using a sampled fiber grating
Wen et al. Optical signal generation at millimeter-wave repetition rates using semiconductor lasers with pulsed subharmonic optical injection
JP2604479B2 (en) Mode-locked laser device
Tomita et al. Novel method for generating multiple wavelengths by pulsed serrodyne modulation
Papakyriakopoulos et al. 10 GHz mode-locked ring laser with external optical modulation of a semiconductor optical amplifier
JP3239826B2 (en) Optical clock generator
JP3092757B2 (en) Optical pulse laser frequency division synchronization signal generator
JP3055735B2 (en) Passive mode-locked semiconductor laser device
JPH0745889A (en) Mode-locked ring laser
JPH06169124A (en) Short optical pulse generating device
JPH10242554A (en) Mode-locked light pulse generator circuit
JPH05160519A (en) Very short light pulse generating device
Englebert et al. Temporal Cavity Soliton in an Active Fiber Resonator
JPH11354868A (en) Light injected semiconductor laser device
Englebert et al. Phase-locked short pulses in a driven laser cavity
Mols et al. Performance of a MOPA laser system for photocathode research
JPH0621537A (en) Ring laser
JP2679583B2 (en) Semiconductor laser

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 16

EXPY Cancellation because of completion of term