JPH08147782A - Magneto-optical recording medium and tis production - Google Patents

Magneto-optical recording medium and tis production

Info

Publication number
JPH08147782A
JPH08147782A JP28332694A JP28332694A JPH08147782A JP H08147782 A JPH08147782 A JP H08147782A JP 28332694 A JP28332694 A JP 28332694A JP 28332694 A JP28332694 A JP 28332694A JP H08147782 A JPH08147782 A JP H08147782A
Authority
JP
Japan
Prior art keywords
magneto
optical recording
dielectric layer
magnetic field
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28332694A
Other languages
Japanese (ja)
Inventor
Hirokazu Takada
宏和 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical NKK Corp
Priority to JP28332694A priority Critical patent/JPH08147782A/en
Publication of JPH08147782A publication Critical patent/JPH08147782A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a magneto-optical recording medium capable of diminishing a bias magnetic field required in the conventional light modulated recording, capable of reducing the size of a bias magnet and the consumption of electric power and well adaptable even to a levitated head used in a magnetic field modulated overwriting system. CONSTITUTION: When a transparent dielectric layer is interposed between a magneto-optical recording layer and a transparent substrate to obtain a magneto-optical recording medium, its dielectric layer is composed of Si, Al and N and the number of Si atoms x, with the sum of Si and Al atoms (ratio) taken to be 1, is regulated to be in the range 0.4<x<0.7. The dielectric layer is formed by sputtering under >4.0 to <16.0mTorr pressure of sputtering gas. The center line average surface roughness Ra of the recording layer side of the dielectric layer is <=0.3nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は集光したレーザー光を用
いて垂直磁化膜に情報の記録、再生、消去を行う光磁気
記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium for recording, reproducing and erasing information on a perpendicular magnetization film by using a focused laser beam.

【0002】[0002]

【従来の技術】レーザー光を用いて基板上に設けられた
垂直磁化膜に記録を行う、いわゆる光磁気記録方式は書
き換えが可能な高密度、大容量の記録を行う方法として
従来より広く利用されている。光磁気記録方式は記録膜
に所定の磁界を印加しながら収束したレーザー光により
微小部分を加熱し、記録膜の磁化の方向を変化させるこ
とによって情報の記録を行う。また、記録を行った部分
に直線偏光を入射すると磁化の方向によって偏光方向が
回転する、いわゆるカー効果またはファラデー効果を利
用して情報の読み出しを行う。
2. Description of the Related Art The so-called magneto-optical recording method for recording on a perpendicularly magnetized film provided on a substrate by using a laser beam has been widely used as a method for recording rewritable high density and large capacity. ing. In the magneto-optical recording method, a minute portion is heated by a converged laser beam while applying a predetermined magnetic field to the recording film to change the magnetization direction of the recording film to record information. Further, when linearly polarized light is incident on the recorded portion, the polarization direction rotates depending on the magnetization direction, so-called Kerr effect or Faraday effect is used to read information.

【0003】上述のような光磁気記録媒体に用いられる
記録膜としては、膜面に垂直な方向に磁化容易軸をを有
し、結晶粒界によるノイズがなく、比較的大きなカー回
転角を有し、保磁力が大きく、かつ大面積の基板に成膜
が容易なことから、一般に希土類−遷移金属の非晶質合
金が用いられている。
A recording film used in the above-described magneto-optical recording medium has an easy axis of magnetization in a direction perpendicular to the film surface, has no noise due to crystal grain boundaries, and has a relatively large Kerr rotation angle. However, an amorphous alloy of a rare earth-transition metal is generally used because it has a large coercive force and is easy to form a film on a substrate having a large area.

【0004】従来の光磁気記録媒体は新しいデータを書
き込む場所に古いデータが存在する場合には、一旦古い
データを消去した後に新しいデータを書き込む必要があ
ったが、近年になって、データの記録時間を短縮するた
めに、消去過程を経ずに古い信号の上に新しい信号を直
接重ね書きする、オーバーライト方式の実現が望まれて
いる。このオーバーライト方式の一つとして、レーザー
光を一定のパワーで連続照射しつつ、磁界を記録信号で
変調して記録する磁界変調記録方式が提案されている。
In the conventional magneto-optical recording medium, when old data exists at a place where new data is written, it is necessary to erase the old data and then write the new data. In order to shorten the time, it is desired to realize an overwrite method in which a new signal is directly overwritten on an old signal without undergoing an erasing process. As one of the overwrite methods, a magnetic field modulation recording method has been proposed in which a magnetic field is modulated by a recording signal and recorded while continuously irradiating a laser beam with a constant power.

【0005】[0005]

【発明が解決しようとする課題】上記の磁界変調記録方
式に用いる磁界発生磁石としては一般に磁気ディスクで
用いられているような浮上磁気ヘッドが用いられる。し
かし、高速で磁界を反転させるため、ヘッドのインダク
タンスに制約があり、結果として発生できる磁界は従来
の光磁気ディスクに用いられている記録磁界よりも小さ
なものとなる。これに対して、従来の記録媒体は、記録
に必要な磁界が高すぎるため、この磁界変調記録を行う
ためには磁界に対する感度を向上させる必要があった。
As the magnetic field generating magnet used in the above magnetic field modulation recording method, a floating magnetic head generally used in magnetic disks is used. However, since the magnetic field is inverted at a high speed, the inductance of the head is limited, and the resulting magnetic field is smaller than the recording magnetic field used in the conventional magneto-optical disk. On the other hand, in the conventional recording medium, since the magnetic field required for recording is too high, it is necessary to improve the sensitivity to the magnetic field in order to perform this magnetic field modulation recording.

【0006】従来より、光磁気記録媒体の記録磁界感度
を向上させる方法としては、希土類−遷移金属層(光磁
気記録層)と基板との間にある誘電体層(多くは窒化珪
素膜が用いられている)の光磁気記録層側の表面のスパ
ッタエッチングを行う方法や、誘電体層成膜時のスパッ
タガス圧を低くする方法が知られているが、これらの方
法では工程が煩雑になったり、記録特性であるCN比が
低くなるという問題があった。
Conventionally, as a method of improving the recording magnetic field sensitivity of a magneto-optical recording medium, a dielectric layer (mostly a silicon nitride film is used between a rare earth-transition metal layer (magneto-optical recording layer) and a substrate is used. Known method) and a method of lowering the sputtering gas pressure at the time of forming the dielectric layer are known, but these methods make the process complicated. There is also a problem that the CN ratio, which is a recording characteristic, becomes low.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記の課題
を解決すべく鋭意検討を重ねた結果、本発明を完成する
に至った。即ち、本発明は、光磁気記録層と透明基板と
の間に透明誘電体層が設けられた光磁気記録媒体及びそ
の製造方法であって、該透明誘電体層がSi、Alおよ
びNとからなり、SiとAlの原子数(比率)の和を1
とした場合、Siの原子数xが、0.4<x<0.7の
範囲にあり、この透明誘電体層の光磁気記録層側の中心
線表面粗さ(Ra)が0.3nm以下であることを特徴
とする光磁気記録媒体に関するものであり、更に該透明
誘電体層を形成する際のスパッタガス圧p(mtor
r)が、4.0<p<16.0の範囲でスパッタ成膜す
ることを特徴とする上記光磁気記録媒体の製造方法を提
供するものである。
The present inventor has completed the present invention as a result of extensive studies to solve the above problems. That is, the present invention relates to a magneto-optical recording medium having a transparent dielectric layer provided between a magneto-optical recording layer and a transparent substrate, and a method for manufacturing the same, wherein the transparent dielectric layer comprises Si, Al and N. And the sum of the number of atoms (ratio) of Si and Al is 1
, The number x of Si atoms is in the range of 0.4 <x <0.7, and the center line surface roughness (Ra) of the transparent dielectric layer on the magneto-optical recording layer side is 0.3 nm or less. And a sputtering gas pressure p (mtor) when the transparent dielectric layer is formed.
r) provides a method for manufacturing the above-mentioned magneto-optical recording medium, characterized in that the film formation is performed by sputtering in the range of 4.0 <p <16.0.

【0008】本発明の誘電体層を用いた最も一般的な光
磁気記録膜としては、基板側より、誘電体層/光磁気記
録層/誘電体層/反射層の構成を有するものが挙げられ
る。ここで用いられる光磁気記録層としては、TbFe
Co、DyFeCo、GdDyFeCo、NdDyFe
Co、TbFe、TbCo、NdDyTbFeCo等の
希土類−遷移金属非晶質合金、およびこれらに耐酸化性
向上の目的でTi、Cr等の金属を添加した合金が挙げ
られる。また、本発明はPt/Co、Au/Co等の繰
り返し積層膜よりなる記録膜にも応用できる。
The most general magneto-optical recording film using the dielectric layer of the present invention is one having a structure of dielectric layer / magneto-optical recording layer / dielectric layer / reflection layer from the substrate side. . The magneto-optical recording layer used here is TbFe
Co, DyFeCo, GdDyFeCo, NdDyFe
Examples thereof include rare earth-transition metal amorphous alloys such as Co, TbFe, TbCo, and NdDyTbFeCo, and alloys in which metals such as Ti and Cr are added to these for the purpose of improving oxidation resistance. Further, the present invention can be applied to a recording film composed of a repeated laminated film such as Pt / Co and Au / Co.

【0009】このSi、AlおよびNからなる誘電体層
については光磁気記録層の保護性能の観点から特公平3
−70297号公報に述べられているが、本発明者はこ
の誘電体層を特定の条件で成膜することにより、磁界に
対する感度が高くかつCN比の高い光磁気記録媒体が得
られることを見いだした。
The dielectric layer made of Si, Al and N is disclosed in Japanese Patent Publication No.
As described in Japanese Patent Publication No. 70297, the present inventor has found that a magneto-optical recording medium having high sensitivity to a magnetic field and high CN ratio can be obtained by forming this dielectric layer under specific conditions. It was

【0010】このSiAlN誘電体層はSiとAlの合
金ターゲットを用い、N2 ガス雰囲気下で反応性スパッ
タ法により成膜するのが最も簡易で好ましい方法であ
る。この際のスパッタガスの全圧が16.0mtorr
未満であると、表面の凹凸が少なく滑らかな薄膜が形成
される。光磁気記録層の下地となる誘電体層の表面がな
めらかであるとその上に積層された光磁気記録層におけ
る磁壁移動が容易になり、その結果として光磁気記録媒
体の磁界に対する感度が向上するものと考えられる。原
子間力顕微鏡(AFM)を用いて誘電体層の表面を測定
したところ、以上の方法により中心線表面粗さ(Ra)
が0.3nm未満になると磁界感度の高い光磁気記録膜
が得られることが分かった。
The simplest and preferred method is to form this SiAlN dielectric layer by a reactive sputtering method using an alloy target of Si and Al in an N 2 gas atmosphere. The total pressure of the sputtering gas at this time is 16.0 mtorr.
When it is less than the above range, a smooth thin film with less surface irregularities is formed. If the surface of the dielectric layer underlying the magneto-optical recording layer is smooth, the domain wall movement in the magneto-optical recording layer laminated thereon becomes easy, and as a result, the sensitivity of the magneto-optical recording medium to the magnetic field is improved. It is considered to be a thing. When the surface of the dielectric layer was measured using an atomic force microscope (AFM), the center line surface roughness (Ra) was measured by the above method.
It was found that a magneto-optical recording film having a high magnetic field sensitivity can be obtained when is less than 0.3 nm.

【0011】一方、従来より誘電体層として多く用いら
れていSiNは上記のような低いスパッタガス圧で成膜
すると誘電体層に起因するノイズが増加することによ
り、CN比が低下するのに対し、SiAlN誘電体層は
その組成がSiとAlの原子数(比率)の和を1とした
場合、Siの原子数が0.4<x<0.7の範囲であれ
ば、上記のような比較的低いスパッタガス圧で成膜を行
っても誘電体層由来のノイズが小さく結果としてCN比
の高い光磁気記録媒体が得られる。しかし、この場合で
あってもスパッタガス圧が4.0mtorr以下になる
とSiAlNであっても誘電体層由来のノイズが増加す
るため、本発明においてスパッタガス圧p(mtor
r)は、4.0<p<16.0の範囲が好ましい。
On the other hand, SiN, which has been often used as a dielectric layer, has a low CN ratio due to an increase in noise caused by the dielectric layer when the film is formed at a low sputtering gas pressure as described above. If the composition of the SiAlN dielectric layer is the sum of the atomic numbers (ratio) of Si and Al being 1, and the number of Si atoms is in the range of 0.4 <x <0.7, Even if film formation is performed with a relatively low sputter gas pressure, noise originating from the dielectric layer is small, and as a result, a magneto-optical recording medium having a high CN ratio can be obtained. However, even in this case, if the sputter gas pressure is 4.0 mtorr or less, noise derived from the dielectric layer increases even with SiAlN. Therefore, in the present invention, the sputter gas pressure p (mtor
r) is preferably in the range of 4.0 <p <16.0.

【0012】なお、以上においては光磁気記録膜が、基
板側より、誘電体層/光磁気記録層/誘電体層/反射層
の4層からなる場合について述べたが、本発明は基板と
光磁気記録層との間に誘電体層を有する構成であればい
ずれの場合も効果を有し、例えば、光磁気記録層を厚く
した上で基板側より、誘電体層/光磁気記録層/誘電体
層の3層とした構成や、また光磁気記録層が組成の異な
る複数の層よりなる場合にも適用できることは言うまで
もない。
In the above, the case where the magneto-optical recording film is composed of four layers of dielectric layer / magneto-optical recording layer / dielectric layer / reflection layer from the substrate side has been described. Any structure is effective as long as it has a dielectric layer between it and the magnetic recording layer. For example, after increasing the thickness of the magneto-optical recording layer, the dielectric layer / magneto-optical recording layer / dielectric It is needless to say that the present invention can be applied to a structure having three body layers and a case where the magneto-optical recording layer is composed of a plurality of layers having different compositions.

【0013】[0013]

【実施例】以下、本発明の詳細を実施例を用いて説明す
る。 (実施例1)本記録膜は以下の手順で作製した。案内溝
が設けられた直径86mmのプラスチック基板をマグネ
トロンスパッタ装置内の回転式基板ホルダーに取り付
け、記録膜の各層を順次積層した。まず第一の誘電体層
として100nmの厚さのSiAlNをRFスパッタ法
で製膜した。このSiAlNはSi0.5 Al0.5 をター
ゲットとし、スパッタガスにN2 を混入したArガスを
用い、反応性スパッタ法にて製膜した。次に磁性体層は
TbFeCoターゲットを用い、Arをスパッタガスと
し、DC法にて成膜を行った。
EXAMPLES The details of the present invention will be described below with reference to examples. (Example 1) This recording film was produced by the following procedure. A 86 mm diameter plastic substrate provided with a guide groove was attached to a rotary substrate holder in a magnetron sputtering apparatus, and recording layers were sequentially laminated. First, as a first dielectric layer, SiAlN having a thickness of 100 nm was formed by RF sputtering. This SiAlN was formed into a film by the reactive sputtering method using Si 0.5 Al 0.5 as a target and Ar gas in which N 2 was mixed in the sputtering gas. Next, the magnetic layer was formed by a DC method using a TbFeCo target and Ar as a sputtering gas.

【0014】次に、最初と同様の方法で第二の誘電体層
として厚さ30nmのSiAlN膜を、最後にDCスパ
ッタ法にて厚さ70nmのAlTi膜を積層した。この
ようにして成膜を行う際に、第一のSiAlN誘電体層
の成膜時のスパッタガスの全圧を2mtorrから20
mtorrまで変化させた。以上のようにして基板上に
スパッタ成膜された記録膜を保護する目的で、記録膜上
にUV硬化樹脂のスピンコーティングを行った。磁界感
度およびCN比の測定はディスク全体を一旦消去した
後、以下の方法で行った。記録は830nmの半導体レ
ーザーを用い、回転数2400rpm、レーザー光の変
調周波数3.9MHz、記録パルス幅60nsec、記
録パワー7.0mWの条件で、バイアス磁界を変化させ
ながら行った。図1に一例として第一の誘電体層のスパ
ッタ時のガス圧が5.0mtorrの場合の記録バイア
ス磁界に対するCN比の変化を示した。
Next, a SiAlN film having a thickness of 30 nm was laminated as a second dielectric layer by the same method as the first method, and finally an AlTi film having a thickness of 70 nm was laminated by the DC sputtering method. When the film is formed in this manner, the total pressure of the sputtering gas at the time of forming the first SiAlN dielectric layer is set from 2 mtorr to 20
It was changed to mtorr. For the purpose of protecting the recording film sputter-deposited on the substrate as described above, spin-coating of a UV curable resin was performed on the recording film. The magnetic field sensitivity and the CN ratio were measured by the following method after the entire disk was once erased. Recording was performed using a semiconductor laser of 830 nm under the conditions of a rotation speed of 2400 rpm, a laser light modulation frequency of 3.9 MHz, a recording pulse width of 60 nsec, and a recording power of 7.0 mW while changing the bias magnetic field. As an example, FIG. 1 shows the change in the CN ratio with respect to the recording bias magnetic field when the gas pressure during sputtering of the first dielectric layer is 5.0 mtorr.

【0015】図の横軸の負方向は消去側、正方向は記録
側にバイアス磁界を印加していることを示す。このよう
な光変調記録においては、記録開始磁界(図1のAの磁
界)、飽和磁界(図1のBの磁界)が共に0に近いもの
が磁界感度が高いと言え、磁界変調記録においても高い
磁界感度を示す。
The negative direction on the horizontal axis of the drawing indicates that the bias magnetic field is applied to the erasing side, and the positive direction to the recording side. In such optical modulation recording, it can be said that the magnetic field sensitivity is high when the recording start magnetic field (the magnetic field of A in FIG. 1) and the saturation magnetic field (the magnetic field of B in FIG. 1) are both close to 0, and also in the magnetic field modulation recording. Shows high magnetic field sensitivity.

【0016】図2に第一の誘電体層成膜時のスパッタガ
ス圧と記録開始磁界およびCN比との関係を示す。図よ
り、スパッタガス圧が16.0mtorr未満で記録開
始磁界が−200Oe以上の高い磁界感度が得られる
が、4.0mtorr未満になるとCN比が低下してく
ることが分かる。以上の結果よりスパッタガス圧pが、
4.0<p<16.0の範囲でCN比と磁界感度が共に
高い光磁気記録媒体が得られることが分かる。
FIG. 2 shows the relationship between the sputtering gas pressure at the time of forming the first dielectric layer, the recording start magnetic field and the CN ratio. From the figure, it can be seen that when the sputtering gas pressure is less than 16.0 mtorr, a high magnetic field sensitivity of the recording start magnetic field of -200 Oe or more can be obtained, but when it is less than 4.0 mtorr, the CN ratio decreases. From the above results, the sputtering gas pressure p is
It can be seen that a magneto-optical recording medium having a high CN ratio and high magnetic field sensitivity can be obtained in the range of 4.0 <p <16.0.

【0017】また、このとき作製した第一の誘電体層と
全く同じ誘電体膜をシリコンウエハ上に成膜し、原子間
力顕微鏡(AFM)を用いて表面の粗さの測定を行っ
た。この結果として得られた成膜時のスパッタガス圧と
表面粗さとの関係を図3に示す。図3より、高い磁界感
度が得られるスパッタガス圧の範囲での中心線表面粗さ
(Ra)は、0.3nm以下となっていることが分か
る。
The same dielectric film as the first dielectric layer produced at this time was formed on a silicon wafer, and the surface roughness was measured using an atomic force microscope (AFM). FIG. 3 shows the relationship between the sputtering gas pressure during film formation and the surface roughness obtained as a result of this. From FIG. 3, it can be seen that the center line surface roughness (Ra) in the range of the sputtering gas pressure at which high magnetic field sensitivity is obtained is 0.3 nm or less.

【0018】(比較例)実施例1と同様のプラスチック
基板に同様のスパッタ装置を用いて記録膜の製膜を行っ
た。本比較例においては、実施例1のSi0.5 Al0.5
ターゲットの代わりにSiターゲットを用いて第一、第
二の誘電体層の成膜を行った。また、実施例1と同様に
第一の誘電体層を成膜する際のスパッタガス圧を1.0
mtorrから10mtorrまで変化させた。このよ
うにして作製した光磁気記録媒体について実施例1と同
様の条件で記録特性の測定を行った。図4にこれらの光
磁気記録媒体の第一の誘電体層成膜時のスパッタガス圧
と記録開始磁界およびCN比との関係を示す。
(Comparative Example) A recording film was formed on the same plastic substrate as in Example 1 by using the same sputtering apparatus. In this comparative example, Si 0.5 Al 0.5 of Example 1 is used.
The first and second dielectric layers were formed using a Si target instead of the target. Further, as in Example 1, the sputtering gas pressure when forming the first dielectric layer was set to 1.0.
It was changed from mtorr to 10 mtorr. The recording characteristics of the thus-produced magneto-optical recording medium were measured under the same conditions as in Example 1. FIG. 4 shows the relationship between the sputtering gas pressure at the time of forming the first dielectric layer of these magneto-optical recording media, the recording start magnetic field, and the CN ratio.

【0019】図よりスパッタガス圧が3mtorr以下
で記録開始磁界が−200Oe以上となり、高い磁界感
度が得られるものの、CN比は、高いスパッタガス圧で
成膜した光磁気記録媒体と比べ、かなり低くなっている
ことが分かる。
As shown in the figure, when the sputter gas pressure is 3 mtorr or less, the recording start magnetic field is -200 Oe or more, and high magnetic field sensitivity can be obtained, but the CN ratio is considerably lower than that of the magneto-optical recording medium formed at a high sputter gas pressure. You can see that

【0020】(実施例2)実施例1と同様の手順で光磁
気記録媒体の作製を行ったが、第一および第二の誘電体
層成膜時のAl−Siターゲットを組成の異なる数種類
のターゲットに替えて成膜を行った。このときのスパッ
タガス圧は5mtorr一定とした。このようにして作
製した光磁気記録媒体について実施例1と同様の条件で
記録特性の測定を行った。図5にこれらの光磁気記録媒
体の誘電体層中のAlとSiの組成比に対する記録開始
磁界との関係を示す。
(Example 2) A magneto-optical recording medium was manufactured in the same procedure as in Example 1, but Al-Si targets at the time of film formation of the first and second dielectric layers were changed to several types. Film formation was performed in place of the target. The sputtering gas pressure at this time was fixed at 5 mtorr. The recording characteristics of the thus-produced magneto-optical recording medium were measured under the same conditions as in Example 1. FIG. 5 shows the relationship between the recording start magnetic field and the composition ratio of Al and Si in the dielectric layers of these magneto-optical recording media.

【0021】図5より、誘電体層中のSiとAlの原子
数(比率)の和を1とした場合、Siの原子数xが、
0.4<x<0.7の範囲で磁界感度の高い光磁気記録
媒体が得られることが分かる。
From FIG. 5, when the sum of the atomic numbers (ratio) of Si and Al in the dielectric layer is 1, the atomic number x of Si is
It can be seen that a magneto-optical recording medium with high magnetic field sensitivity can be obtained in the range of 0.4 <x <0.7.

【0022】[0022]

【発明の効果】本発明による誘電体層を用いることによ
り、記録、消去の際の印加磁界に対する磁界感度が改善
できる。このため、従来の光変調記録において必要なバ
イアス磁界を低減でき、バイアス磁石の小型化、低消費
電力化ができるばかりでなく、磁界変調オーバーライト
方式に用いられる浮上ヘッドにも充分対応できる光磁気
記録媒体が得られる。
By using the dielectric layer according to the present invention, the magnetic field sensitivity to the applied magnetic field during recording and erasing can be improved. Therefore, not only the bias magnetic field required in the conventional optical modulation recording can be reduced, the bias magnet can be downsized and the power consumption can be reduced, but also the flying magnetic head used in the magnetic field modulation overwrite method can be sufficiently supported. A recording medium is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1において、一例と
して、第一の誘電体層成膜時スパッタガス圧を5.0m
torrとした場合の記録磁界に対するCN比の変化を
示すグラフである。
FIG. 1 shows an example of the first embodiment of the present invention in which the sputtering gas pressure during film formation of the first dielectric layer is 5.0 m.
7 is a graph showing changes in the CN ratio with respect to the recording magnetic field when the value is torr.

【図2】 本発明の実施例1において、第一の
誘電体層成膜時のスパッタガス圧に対する磁界感度の指
標としての記録開始磁界およびCN比の変化を示すグラ
フである。
FIG. 2 is a graph showing changes in a recording start magnetic field and a CN ratio as an index of magnetic field sensitivity with respect to a sputtering gas pressure during film formation of a first dielectric layer in Example 1 of the present invention.

【図3】本発明の実施例1において、SiAlN誘電体
層成膜時のスパッタガス圧に対するAMFで測定した表
面粗さの関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the surface roughness measured by AMF and the sputtering gas pressure when depositing a SiAlN dielectric layer in Example 1 of the present invention.

【図4】本発明の比較例において、SiN誘電体層成膜
時のスパッタガス圧の変化に対する磁界感度の関係を示
すグラフである。
FIG. 4 is a graph showing the relationship of magnetic field sensitivity to changes in sputtering gas pressure during SiN dielectric layer formation in a comparative example of the present invention.

【図5】本発明の実施例2において、SiAlN誘電体
層におけるSiとAlの原子数比に対する磁界感度の関
係を示すグラフである。
FIG. 5 is a graph showing the relationship between the atomic ratio of Si and Al in the SiAlN dielectric layer and the magnetic field sensitivity in Example 2 of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光磁気記録層と透明基板との間に設けら
れた透明誘電体層がSi、AlおよびNとからなり、且
つSiとAlの原子数(比率)の和を1とした場合、S
iの原子数xが、0.4<x<0.7の範囲にあり、且
つ該透明誘電体層の光磁気記録層側の中心線表面粗さ
(Ra)が0.3nm以下であることを特徴とする光磁
気記録媒体。
1. A transparent dielectric layer provided between a magneto-optical recording layer and a transparent substrate is made of Si, Al and N, and the sum of the atomic numbers (ratio) of Si and Al is 1. , S
The number x of atoms of i is in the range of 0.4 <x <0.7, and the center line surface roughness (Ra) of the transparent dielectric layer on the magneto-optical recording layer side is 0.3 nm or less. A magneto-optical recording medium characterized by:
【請求項2】 光磁気記録媒体の製造方法であって、光
磁気記録層と透明基板との間に設けられ、その組成がS
i、AlおよびNとからなり、且つSiとAlの原子数
(比率)の和を1とした場合、Siの原子数xが、0.
4<x<0.7の範囲である透明誘電体層をスパッタ成
膜する際のスパッタガス圧p(mtorr)が、4.0
<p<16.0の範囲であることを特徴とする光磁気記
録媒体の製造方法。
2. A method of manufacturing a magneto-optical recording medium, which is provided between a magneto-optical recording layer and a transparent substrate and has a composition of S.
i, Al and N, and when the sum of the atomic numbers (ratio) of Si and Al is 1, the atomic number x of Si is 0.
The sputtering gas pressure p (mtorr) when forming the transparent dielectric layer in the range of 4 <x <0.7 by sputtering is 4.0.
A method for manufacturing a magneto-optical recording medium, characterized in that <p <16.0.
JP28332694A 1994-11-17 1994-11-17 Magneto-optical recording medium and tis production Pending JPH08147782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28332694A JPH08147782A (en) 1994-11-17 1994-11-17 Magneto-optical recording medium and tis production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28332694A JPH08147782A (en) 1994-11-17 1994-11-17 Magneto-optical recording medium and tis production

Publications (1)

Publication Number Publication Date
JPH08147782A true JPH08147782A (en) 1996-06-07

Family

ID=17664029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28332694A Pending JPH08147782A (en) 1994-11-17 1994-11-17 Magneto-optical recording medium and tis production

Country Status (1)

Country Link
JP (1) JPH08147782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096486A2 (en) * 1999-10-29 2001-05-02 Sony Corporation Magneto-optical recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096486A2 (en) * 1999-10-29 2001-05-02 Sony Corporation Magneto-optical recording medium
EP1096486A3 (en) * 1999-10-29 2002-06-12 Sony Corporation Magneto-optical recording medium
US6638597B1 (en) 1999-10-29 2003-10-28 Sony Corporation Magneto-optical recording medium

Similar Documents

Publication Publication Date Title
CA1213670A (en) Multi-layer amorphous optical recording medium
US6177175B1 (en) Magneto-optical medium utilizing domain wall displacement
CA1217859A (en) Amorphous magneto optical recording medium
JP3477384B2 (en) Magneto-optical recording medium
EP0530913B1 (en) Magneto-optical recording medium
US5587974A (en) Magneto-optical recording medium having two magnetic layers with perpendicular magnetic anisotropy, and information recording method having the same
JPH08147782A (en) Magneto-optical recording medium and tis production
KR100225108B1 (en) Optic-magneto recording medium
JPH0350343B2 (en)
EP0305666A1 (en) Amorphous magneto optical recording medium
JP2647958B2 (en) Magneto-optical recording medium
JP2604361B2 (en) Magneto-optical recording medium
JPH0677347B2 (en) Information recording medium
JP2830385B2 (en) Method for manufacturing magneto-optical recording medium
JPH0644624A (en) Magneto-optical recording medium
KR970010942B1 (en) Optical recording medium
JPS60246606A (en) Amorphous magneto-optical layer
JP3306762B2 (en) Magneto-optical recording medium
JP3090213B2 (en) Direct rewritable magneto-optical recording method and magneto-optical recording medium
JPH08315435A (en) Magneto-optical recording medium
JPH05303777A (en) Magnetic optical recording medium and its production
JPH0554452A (en) Magneto-optical recording medium
JPH04281239A (en) Magneto-optical recording medium
JPH0478039A (en) Magneto-optical recording medium
JPH10162441A (en) Magneto-optical recording medium