JPH0814761A - Tilting device for vacuum induction melting furnace by non-contact power feeding - Google Patents

Tilting device for vacuum induction melting furnace by non-contact power feeding

Info

Publication number
JPH0814761A
JPH0814761A JP6168638A JP16863894A JPH0814761A JP H0814761 A JPH0814761 A JP H0814761A JP 6168638 A JP6168638 A JP 6168638A JP 16863894 A JP16863894 A JP 16863894A JP H0814761 A JPH0814761 A JP H0814761A
Authority
JP
Japan
Prior art keywords
core
vacuum
melting furnace
contact power
vacuum container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6168638A
Other languages
Japanese (ja)
Other versions
JP3815626B2 (en
Inventor
Atsushi Okuno
敦 奥野
Masanori Tsuda
正徳 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP16863894A priority Critical patent/JP3815626B2/en
Publication of JPH0814761A publication Critical patent/JPH0814761A/en
Application granted granted Critical
Publication of JP3815626B2 publication Critical patent/JP3815626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To prevent the contamination of a molten metal with the gas generated by the exposure to a high temperature and a high degree of vacuum inside a vacuum container of the insulating covering material of a flexible insulating cable which is adaptable to the tilting conditions of a furnace body in pouring the molten metal into a casting mold or the lowering of the purity of a metal or alloy melted by reducing the degree of vacuum inside the vacuum container. CONSTITUTION:A non-contact power feeder 16 of pot type fitted with a pair of a primary core 16a and a secondary core 16b is provided in a vacuum container 20, connecting conductors 17 and 18 are provided to electrically connect an external electric source 19 and an induction heating coil 13 via the non- contact electric feeder 16, a water cooled copper pipe or bus bar is used in the portions of the connecting conductors 17 and 18 disposed in the vacuum container 20 and the furnace body 11 of an induction melting furnace 10, the secondary core 16b and the connecting conductor 18 are secured by non- conductive support members.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高純度の金属あるいは
合金を溶解する真空誘導溶解装置の真空容器内に配置さ
れる真空誘導溶解炉の炉体傾動装置に関し、具体的には
誘導加熱コイルと外部電源とを電気的に接続する真空誘
導溶解炉の炉体傾動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace body tilting device of a vacuum induction melting furnace arranged in a vacuum vessel of a vacuum induction melting device for melting a high-purity metal or alloy, and more specifically to an induction heating coil. The present invention relates to a furnace tilting device of a vacuum induction melting furnace, which electrically connects a vacuum induction melting furnace with an external power source.

【0002】[0002]

【従来の技術】図7は従来技術による真空誘導溶解装置
の主要部を示す概略断面図である。図7を参照して従来
の真空誘導溶解装置による溶解法を説明すると、真空容
器80または真空室(チャンバ−とも呼ばれる)内の真
空誘導溶解炉70に炉体71を配置し、この炉体71の
外周に設けた誘導加熱コイル73に真空容器80の外部
に設けた外部電源79から給電して、所定の減圧下で金
属あるいは合金の被溶解材料を溶解し、溶解が完了する
と炉体71に設けた図示しない傾動装置の傾動軸が1点
鎖線Yを中心軸として矢示R1で示すように回動して炉
体71を傾斜させて、この炉体71内部の溶湯mを鋳物
の鋳型またはインゴットモ−ルド75内に注入し鋳込ん
でいる。このように溶湯mを鋳込むため炉体71を傾動
させる必要があることから、外部電源79から誘導加熱
コイル73に高電流を給電する接続導体77としては、
炉体71の傾動に順応して変形できる可撓性(フレキシ
ビリティ−)を有するとともに、外部に対して絶縁性を
保持することと、飛散する溶解中の金属や溶湯からケ−
ブルを保護することの可能な耐熱性を有する絶縁被覆材
を用いた可撓性ケ−ブルを使用している。
2. Description of the Related Art FIG. 7 is a schematic sectional view showing the main part of a vacuum induction melting apparatus according to the prior art. A conventional melting method using a vacuum induction melting apparatus will be described with reference to FIG. 7. A furnace body 71 is arranged in a vacuum induction melting furnace 70 in a vacuum container 80 or a vacuum chamber (also referred to as a chamber). The induction heating coil 73 provided on the outer periphery of the furnace is supplied with power from an external power source 79 provided outside the vacuum container 80 to melt the material to be melted of metal or alloy under a predetermined reduced pressure, and when melting is completed, the furnace body 71 is heated. The tilting shaft of the tilting device (not shown) is rotated about the one-dot chain line Y as a central axis as indicated by arrow R1 to tilt the furnace body 71, and the molten metal m inside the furnace body 71 is cast into a casting mold or It is poured and cast in the ingot mold 75. Since it is necessary to tilt the furnace body 71 in order to cast the molten metal m in this way, the connection conductor 77 for supplying a high current from the external power source 79 to the induction heating coil 73 is
The furnace body 71 has flexibility so that it can be deformed in conformity with the tilting of the furnace body 71, and it has an insulating property with respect to the outside.
A flexible cable using an insulating coating material having heat resistance capable of protecting the cable is used.

【0003】真空誘導溶解装置の真空誘導溶解炉に使用
される耐熱性を有する可撓性ケ−ブルの絶縁被覆層用の
絶縁材料としては、JIS C 4003によれば、例
えば許容最高温度155℃に対しては、マイカ、石綿、
ガラス繊維などをシリコ−ン、アルキド樹脂で複合した
もの、ポリエステルイミドなどが推奨され、許容最高温
度180℃に対しては、マイカ、石綿、ガラス繊維など
を、けい素樹脂で複合したもの、耐熱ポリエステル、ポ
リイミド、ポリアミドイミドなどが推奨され、それぞれ
真空誘導溶解炉に使用されている。一方、真空誘導溶解
炉としては、炉体が耐火材料で構築されたホットウォ−
ル型のものと、炉体が水冷されるコ−ルドウォ−ル型の
ものがある。図8はコ−ルドウォ−ル溶解炉の一例を示
す主要部の断面図である。同図において、コ−ルドウォ
−ル溶解炉90では、銅など熱伝導率が大きな金属製の
炉体81の側壁81aと底壁81bの内部には冷却水の
通路82a(入口側)、82b(出口側)とが設けら
れ、側壁81aの外周側に誘導加熱コイル83が螺旋状
に巻回され、炉体81は溶湯mの温度上昇あるいは炉体
81自身の誘導加熱による温度上昇を水冷により抑制し
ている。なお、この図では側壁81aは、円周方向に所
定の幅の隙間(スリット)85により分割された複数の
セグメント86により形成されている。
According to JIS C 4003, as an insulating material for an insulating coating layer of a flexible cable having heat resistance used in a vacuum induction melting furnace of a vacuum induction melting apparatus, for example, an allowable maximum temperature of 155 ° C. Against, mica, asbestos,
It is recommended to use a composite of glass fiber, etc. with silicone, alkyd resin, polyester imide, etc. For the maximum allowable temperature of 180 ° C, mica, asbestos, glass fiber, etc. composite with silicon resin, heat resistance Polyester, polyimide, polyamide-imide, etc. are recommended and are used in vacuum induction melting furnaces. On the other hand, in a vacuum induction melting furnace, the furnace body is made of a refractory material
There are two types, a cold-wall type and a cold-wall type in which the furnace body is water-cooled. FIG. 8 is a sectional view of the main part showing an example of the cold wall melting furnace. In the cold wall melting furnace 90, cooling water passages 82a (inlet side) and 82b (inlet side) are provided inside a side wall 81a and a bottom wall 81b of a furnace body 81 made of metal such as copper having a large thermal conductivity. Outlet side) and the induction heating coil 83 is spirally wound on the outer peripheral side of the side wall 81a, and the furnace body 81 suppresses the temperature rise of the molten metal m or the temperature rise of the furnace body 81 due to induction heating by water cooling. are doing. In this figure, the side wall 81a is formed by a plurality of segments 86 divided by a gap (slit) 85 having a predetermined width in the circumferential direction.

【0004】[0004]

【発明が解決しようとする課題】従来より一層高純度の
金属や合金を溶成する要求が高まるのに伴い、真空容器
内の雰囲気をできるだけ減圧すること、つまり、可能な
限り高い真空度にする必要が生じ、このような高真空度
下でかつ誘導加熱コイルと接続導体自身を通した伝導熱
や、輻射熱により加熱され温度が上昇する環境に置かれ
た、接続導体としてのケ−ブルを絶縁被覆する前記の絶
縁材料は、マイカ、石綿、ガラス繊維や耐熱材料として
の合成樹脂などにより構成されるため、主として水蒸気
などのガスが表層に付着しており高真空化にともなって
雰囲気中に放出され易く、溶湯に吸収されて不純物とし
て溶湯を汚染したり、あるいは、これらのガスが雰囲気
中に次々に放出されて真空容器内の内部圧力を上昇させ
真空容器内を所定の圧力に維持するのを困難にさせる、
などの問題を生じている。特に、コ−ルドウォ−ル溶解
炉のように高純度金属の溶解を使命とする炉では、溶湯
の汚染防止と高真空の維持が最重要な要件であり、上記
の問題の影響は大きい。そこで、高温、高真空中に曝し
てもガス放出の少ないセラミックス等を絶縁被覆層とし
て使用することが期待されるが、可撓性ケ−ブルの特性
として絶縁被覆層を構成する絶縁材料にも可撓性が要求
されるので、この点から硬く柔軟性に欠けるセラミック
ス等の使用は不可能である。本発明は、このようなガス
放出の問題なしに、誘導加熱コイルと外部電源とを電気
的に接続し、かつ炉体の傾動を可能にする傾動装置を有
する誘導溶解炉を開発することを課題とした。
With the increasing demand for melting metals and alloys of higher purity than ever before, the atmosphere in the vacuum vessel should be decompressed as much as possible, that is, the degree of vacuum should be as high as possible. It becomes necessary to insulate the cable as a connection conductor placed in an environment where the temperature is raised by conduction heat or radiant heat through the induction heating coil and the connection conductor itself under such a high vacuum degree. Since the insulating material to be coated is composed of mica, asbestos, glass fiber and synthetic resin as a heat resistant material, gas such as water vapor mainly adheres to the surface layer and is released into the atmosphere as the vacuum becomes higher. Is easily absorbed and contaminated the molten metal as an impurity, or these gases are released into the atmosphere one after another to increase the internal pressure in the vacuum container and maintain the inside of the vacuum container at a predetermined level. It makes it difficult to maintain the pressure,
Are causing problems. In particular, in a furnace whose mission is to melt high-purity metals such as a cold wall melting furnace, prevention of contamination of the molten metal and maintenance of a high vacuum are the most important requirements, and the above problems have a great influence. Therefore, it is expected that ceramics or the like, which emits less gas even when exposed to high temperature and high vacuum, is used as the insulating coating layer. However, as a characteristic of the flexible cable, it is also used as the insulating material forming the insulating coating layer. Since flexibility is required, it is impossible to use ceramics which are hard and lack flexibility from this point. It is an object of the present invention to develop an induction melting furnace having a tilting device that electrically connects an induction heating coil and an external power source and allows tilting of a furnace body without such a problem of gas release. And

【0005】[0005]

【課題を解決するための手段】本発明では、真空誘導溶
解装置において、真空誘導溶解炉の炉体またはるつぼの
外周に配置された誘導加熱コイルと真空容器外に配置さ
れた外部電源との間に、所定の間隔を有して対向配置さ
れ、それぞれに電磁コイルが巻回された1次側のコアと
2次側のコアとにより構成されるポット型トランス方式
の非接触給電装置を配置し、誘導加熱コイルと外部電源
間を非接触給電装置を介して電気的に接続し、誘導加熱
コイルと非接触給電装置の2次側のコアの電磁コイルと
の間を水冷銅パイプまたは水冷銅ブスバ−で接続し、2
次側のコアが1次側のコアと2次側のコアの同軸の回転
対称軸を回動の中心軸として傾動され、これにより、炉
体を傾動する場合も非接触給電装置の2次側部分のみが
上記の回転対称軸を中心軸として回動するため、給電さ
れた状態のまま傾動に追従するので、従来技術のように
真空容器内に絶縁被覆層を有する可撓性ケ−ブルを使用
する必要がなくなり、絶縁被覆層からのガス放出による
真空容器内の圧力上昇の問題とそのガスによる溶湯の汚
染を解消する。
According to the present invention, in a vacuum induction melting apparatus, between an induction heating coil arranged on the outer circumference of a furnace body or a crucible of a vacuum induction melting furnace and an external power source arranged outside the vacuum vessel. And a pot-type transformer non-contact power supply device, which is arranged to face each other with a predetermined interval, and which includes a primary core and a secondary core around which electromagnetic coils are wound. , An induction heating coil and an external power source are electrically connected via a non-contact power feeding device, and a water-cooled copper pipe or a water-cooled copper bus bar is connected between the induction heating coil and the electromagnetic coil of the secondary side core of the non-contact power feeding device. Connect with-and 2
The secondary side core is tilted with the coaxial rotational symmetry axis of the primary side core and the secondary side core as the central axis of rotation, so that even when the furnace body is tilted, the secondary side of the contactless power supply device is tilted. Since only a part rotates about the above-mentioned rotational symmetry axis as a central axis, it follows the tilting while being supplied with power, so that a flexible cable having an insulating coating layer in a vacuum container as in the prior art is used. It eliminates the need for use, and solves the problem of pressure increase in the vacuum container due to gas release from the insulating coating layer and the contamination of the molten metal by the gas.

【0006】必要に応じて、誘導加熱コイルと2次側の
コアとを接続する水冷銅パイプあるいは水冷銅ブスバ−
および/または2次側のコアと炉体とを、セラミックス
などの絶縁性材料製の支持部材で固定することにより、
傾動時の水冷銅パイプあるいは水冷銅ブスバ−の変形を
確実に防止する。上記の非接触型給電装置は真空容器の
内部に、あるいは真空容器の壁部を挟んで配置すること
ができる。いずれの場合も、誘導加熱コイルと2次側の
コアの電磁コイルとの間は接続導体として上記のように
水冷銅パイプあるいは水冷銅ブスバ−を使用するが、1
次側のコアの電磁コイルと外部電源との間の接続導体に
は真空容器内にある部分だけ水冷銅パイプあるいは水冷
銅ブスバ−を使用し、真空容器外にある部分には通常の
水冷ケ−ブルあるいは絶縁ケ−ブルを使用できる。本発
明では上記の構成により課題を解決した。
If necessary, a water-cooled copper pipe or a water-cooled copper bus bar for connecting the induction heating coil and the secondary core.
And / or by fixing the core on the secondary side and the furnace body with a support member made of an insulating material such as ceramics,
Deformation of the water-cooled copper pipe or water-cooled copper bus bar during tilting is surely prevented. The above-mentioned non-contact power supply device can be arranged inside the vacuum container or with the wall of the vacuum container interposed therebetween. In either case, a water-cooled copper pipe or a water-cooled copper busbar is used as a connecting conductor between the induction heating coil and the electromagnetic coil of the secondary side core.
For the connecting conductor between the electromagnetic coil of the secondary core and the external power source, use a water-cooled copper pipe or water-cooled copper busbar only in the part inside the vacuum container, and use a normal water-cooled cable in the part outside the vacuum container. Cable or insulated cable can be used. The present invention has solved the problem by the above configuration.

【0007】[0007]

【作用】誘導加熱コイルと非接触給電装置の2次側のコ
アの電磁コイルとに接続される水冷銅パイプまたは水冷
銅ブスバ−は、炉体に固定したセラミックス等の支持板
に取り付けられ、炉体の傾動に追従して、ポット型トラ
ンス方式の非接触給電装置の1次側のコアと同じ2次側
のコアの回転対称軸を中心にして回転されるので絶縁被
覆層を有する可撓性ケ−ブルを使用する必要が無く、絶
縁被覆層からのガス放出の問題を解消でき高真空下での
真空誘導溶解炉、特に導電性金属製水冷セグメントるつ
ぼを使用するコ−ルドウォ−ル溶解炉における高純度の
金属あるいは合金の溶解を一層確実にする。
The water-cooled copper pipe or the water-cooled copper busbar connected to the induction heating coil and the electromagnetic coil of the secondary core of the non-contact power feeding device is attached to a supporting plate made of ceramics or the like fixed to the furnace body. Following the tilting of the body, it is rotated about the rotational symmetry axis of the primary side core and the secondary side core of the pot type transformer non-contact power supply device. It is possible to solve the problem of gas release from the insulating coating layer without using a cable, and a vacuum induction melting furnace under high vacuum, especially a cold wall melting furnace using a water-cooled segment crucible made of conductive metal. To ensure the melting of high-purity metals or alloys in.

【0008】[0008]

【実施例】図1は、本発明の第1実施例として、非接触
給電装置を真空容器内に配置した誘導溶解炉の主要部の
概略断面図である。非接触給電装置は真空容器の内部に
配置することも真空容器の壁部に配置することも可能で
あるが、第1実施例として真空容器の内部に配置した場
合を示し、真空容器の壁部に設置する実施例については
後述する。図1を参照して本発明の第1実施例を説明す
ると、符号10は通常の真空誘導溶解炉であり、また符
号11は炉体であり、非接触給電装置16の一次側のコ
ア16aおよび2次側のコア16bの共通の回転対称軸
を回動の中心軸Xとして矢示Rの方向に所定の角度だけ
回動され、炉体11の内部で所定の溶解作業を終わった
溶湯mをインゴットモ−ルド15または通常の鋳物の鋳
型(図示せず)内に注入する。本発明の非接触給電装置
16は、例えば図示のようにポット型トランスにより成
り、その1次側のコア16aに巻回された電磁コイル2
4aは外部電源19に接続されるが、その接続導体17
の真空容器20内にある部分は水冷銅パイプまたは水冷
銅ブスバ−を使用するものとする。本発明の以下に示す
各実施例の給電装置のすべての2次側のコアと接続胴体
とは、図示はしないが図1に示したものと同様に1次側
のコアと2次側のコアとの共通の回転対称軸を回動の中
心軸として回動される。
1 is a schematic sectional view of a main part of an induction melting furnace in which a non-contact power feeding device is arranged in a vacuum container as a first embodiment of the present invention. Although the non-contact power feeding device can be arranged inside the vacuum container or on the wall portion of the vacuum container, the case where the non-contact power feeding device is arranged inside the vacuum container is shown as the first embodiment. An example of installing the device will be described later. A first embodiment of the present invention will be described with reference to FIG. 1. Reference numeral 10 is a normal vacuum induction melting furnace, reference numeral 11 is a furnace body, and a core 16a on the primary side of the non-contact power supply device 16 and The melt m that has been rotated by a predetermined angle in the direction of the arrow R with the common rotational symmetry axis of the secondary side core 16b as the rotation center axis X and has finished the predetermined melting operation inside the furnace body 11 It is poured into an ingot mold 15 or a conventional casting mold (not shown). The non-contact power feeding device 16 of the present invention is, for example, a pot type transformer as shown in the drawing, and the electromagnetic coil 2 wound around the core 16a on the primary side thereof.
4a is connected to the external power source 19 and its connecting conductor 17
The portion inside the vacuum container 20 of the above shall use a water-cooled copper pipe or a water-cooled copper bus bar. Although not shown, all of the secondary cores and connecting bodies of the power supply devices of the following embodiments of the present invention are similar to those shown in FIG. 1, but the primary core and the secondary core are the same. It is rotated with a common rotational symmetry axis as the central axis of rotation.

【0009】一方、2次側の電磁コイル24bは、誘導
溶解炉10の誘導加熱コイル13に接続導体18として
の水冷銅パイプまたは水冷銅ブスバ−により接続され、
2次側のコア16bと接続導体18とはセラミックスな
どの支持部材により炉体11に取り付けられて、真空誘
導溶解炉10の傾動とともにこれと一体に回動されるの
で、可撓性ケ−ブルを使用する必要はなく、さらに必要
に応じ絶縁被覆材としてセラミックスなどを使用するこ
ともできる。なお真空容器20の内部と外部とにある接
続導体17は、真空容器20の中間フランジ部などに設
けられた絶縁材料製の円板20aに埋め込まれた導体を
介して、真空容器20内の気密を破ることなく相互に電
気的に接続される。図2は非接触給電装置16の斜視図
である。また、図3は非接触給電装置16内に生じる磁
束φを示す断面図である。この磁束φは一次側コイルを
流れる電流の方向反転と同時に方向を反転する。図2と
図3を参照して非接触給電装置について概略説明する。
斜視図としての図2と磁束を示す図3の断面図に示され
るように、ポット型トランスと呼ばれるこの非接触給電
装置16は、それぞれ対向する断面形状がE字形で底付
円筒状の1対のポット型のコア16a、16bの、底部
23a、23bと、これらの底部23a、23bの外周
部に設けられた円筒状の周壁21a、21bと、各底部
の軸心部から周壁21a、21bに平行にそれぞれ軸方
向内方に突出した突出部22a、22bと、これらの突
出部22a、22bの外周に巻かれた電磁コイル24
a、24bとから成る。
On the other hand, the electromagnetic coil 24b on the secondary side is connected to the induction heating coil 13 of the induction melting furnace 10 by a water-cooled copper pipe or a water-cooled copper bus bar as the connecting conductor 18.
The core 16b on the secondary side and the connecting conductor 18 are attached to the furnace body 11 by a supporting member such as ceramics and are rotated integrally with the vacuum induction melting furnace 10 as the vacuum induction melting furnace 10 is tilted. It is not necessary to use, and if necessary, ceramics or the like can be used as the insulating coating material. The connecting conductors 17 inside and outside the vacuum container 20 are hermetically sealed inside the vacuum container 20 via a conductor embedded in a disk 20a made of an insulating material provided on an intermediate flange portion of the vacuum container 20. Be electrically connected to each other without breaking. FIG. 2 is a perspective view of the contactless power feeding device 16. Further, FIG. 3 is a sectional view showing a magnetic flux φ generated in the non-contact power feeding device 16. This magnetic flux φ reverses the direction at the same time as the direction of the current flowing through the primary coil is reversed. The contactless power supply device will be briefly described with reference to FIGS. 2 and 3.
As shown in FIG. 2 as a perspective view and the cross-sectional view of FIG. 3 showing magnetic flux, this non-contact power feeding device 16 called a pot-type transformer has a pair of cylindrical shapes with a bottom and an E-shaped cross section. Bottom portions 23a, 23b of the pot-shaped cores 16a, 16b, cylindrical peripheral walls 21a, 21b provided on the outer peripheral portions of these bottom portions 23a, 23b, and the axial center portion of each bottom portion to the peripheral walls 21a, 21b. Projections 22a and 22b that respectively project inward in the axial direction in parallel, and an electromagnetic coil 24 wound around the outer circumferences of these projections 22a and 22b.
a and 24b.

【0010】電磁コイル24aを外部電源に接続して1
次側とした時、1次側の電磁コイル24aを流れる電流
によって発生する磁界の磁束φは突出部22aから軸方
向外方に向かい底部23aを経由し、さらに上下両側の
周壁21aに向かって放射状に拡散して均一に形成さ
れ、所定の間隔を保って対向して配置された2次側のコ
ア16bの側壁21bに向かって均一に流れ、さらに底
部23aを経て突出部22bに至り、1次側のコア16
aに還流する。この磁束φは一次側コイルを流れる電流
の方向反転と同時に方向を反転する。この磁束φによ
り、2次側の電磁コイル24bに発生した誘導電流が、
水冷銅パイプまたは水冷銅ブスバ−による接続導体18
を通して前記の誘導加熱コイル13(図1参照)に供給
され炉体10の内部に装入された被溶解材料が誘導加熱
される。図4は本発明の第2実施例を示す概略断面図で
あり、炉体や外部電源の部分は第1実施例と同一なので
図示を省略した。この実施例では1次側の電磁コイル3
4aと2次側の電磁コイル34bの中間に、真空容器3
0のフランジ部31にボルト35等でOリング33を介
して気密に固定した例えば円板状の壁31aが配置さ
れ、1次側の電磁コイル34aと外部電源との間の接続
導体17aとしては通常の水冷ケ−ブルあるいは通常の
絶縁ケ−ブルで接続される。
The electromagnetic coil 24a is connected to an external power source to
When the secondary side is set, the magnetic flux φ of the magnetic field generated by the current flowing through the primary-side electromagnetic coil 24a is radially outward from the protrusion 22a toward the axially outward direction, passes through the bottom portion 23a, and further toward the peripheral walls 21a on both upper and lower sides. Flow toward the side walls 21b of the secondary side cores 16b which are arranged facing each other with a predetermined interval, and further flow to the protrusions 22b through the bottom 23a. Side core 16
reflux to a. This magnetic flux φ reverses the direction at the same time as the direction of the current flowing through the primary coil is reversed. Due to this magnetic flux φ, the induced current generated in the electromagnetic coil 24b on the secondary side is
Connection conductor 18 with water-cooled copper pipe or water-cooled copper busbar
The material to be melted, which is supplied to the induction heating coil 13 (see FIG. 1) through and is loaded into the furnace body 10, is induction-heated. FIG. 4 is a schematic sectional view showing a second embodiment of the present invention, and the illustration of the furnace body and the external power source is omitted because they are the same as those of the first embodiment. In this embodiment, the primary side electromagnetic coil 3
4a and the electromagnetic coil 34b on the secondary side, between the vacuum container 3
For example, a disk-shaped wall 31a, which is airtightly fixed to the flange portion 31 of 0 with bolts 35 or the like via an O-ring 33, is arranged, and as a connection conductor 17a between the electromagnetic coil 34a on the primary side and an external power source, It is connected with a normal water-cooled cable or a normal insulating cable.

【0011】それぞれ対向する1次側のコア26aと2
次側のコア26bとの間の壁31aの材質は、磁束φの
漏洩を少なくし2次側に発生する電流を大きく保つた
め、非導電材料とするのが好ましい。図4では、真空容
器30にフランジ部31を設けて、このフランジ部31
に壁31aを固定したが、第2実施例の別の実施態様と
しては、壁31aと同じ材質の壁をねじ込みあるいはろ
う付けなど他の方法を利用して真空容器に気密に取り付
けることによっても同じ効果が得られる。図5は本発明
の第3実施例を示す概略断面図であ。本実施例では、1
次側のコア36aの周壁41aの内周面と、中心部の突
出部42aの外周面との間には、内外両面にOリング4
5aと45bとがはめ込まれた環状のシ−ル部材47に
よりシ−ルされる。第2実施例と同様に、前記コア36
aの周壁41aの外周と真空容器40との間には、Oリ
ング48が配置されて真空容器40内が外部の大気から
シ−ルされる。従って、1次側の電磁コイル44aと外
部電源との間の接続導体17bとしては通常の水冷銅パ
イプあるいは絶縁ケ−ブルを用いて接続することができ
る。
Primary side cores 26a and 2 facing each other
The material of the wall 31a between the core 26b on the secondary side is preferably a non-conductive material in order to reduce the leakage of the magnetic flux φ and keep a large current generated on the secondary side. In FIG. 4, the vacuum container 30 is provided with a flange portion 31, and the flange portion 31
The wall 31a is fixed to the wall 31a, but as another embodiment of the second embodiment, the same can be achieved by hermetically attaching the wall made of the same material as the wall 31a to the vacuum container by using another method such as screwing or brazing. The effect is obtained. FIG. 5 is a schematic sectional view showing a third embodiment of the present invention. In this embodiment, 1
Between the inner peripheral surface of the peripheral wall 41a of the core 36a on the next side and the outer peripheral surface of the protruding portion 42a at the center, the O-ring 4 is formed on both inner and outer surfaces.
Sealing is performed by an annular seal member 47 in which 5a and 45b are fitted. Similar to the second embodiment, the core 36
An O-ring 48 is arranged between the outer circumference of the peripheral wall 41a of a and the vacuum container 40 to seal the inside of the vacuum container 40 from the outside atmosphere. Therefore, as the connecting conductor 17b between the primary-side electromagnetic coil 44a and the external power source, a normal water-cooled copper pipe or an insulating cable can be used for connection.

【0012】本実施例のシ−ル部材47は非導電性であ
ることが好ましい。また、1次側の電磁コイル44aが
発生した磁束を2次側の部材以外に漏洩させることのな
いようにするため、真空容器40と1次側のコア36a
の周壁41aの外周との間隔を大きくするか、または真
空容器40の1次側のコア36aに近接する部分だけ非
導電性の材料で構成することによって、2次側のコア3
6bに流れる磁束を大きくすることが好ましい。なお、
図5では簡略化して示したが、真空容器40の内部の圧
力と外側の大気圧との圧力差により、シ−ル部材47や
1次側のコア36aが真空容器の内方に引き込まれるこ
とがないよう、非導電性材料製の係止部材50、51を
配置する必要がある。図6は本発明の第4実施例を示す
概略断面図である。同図においてこれまでに示した部材
と同じ効果を有する部材には特に符号を付していない。
本実施例は、第2実施例と同様の手段により1次側のコ
ア66aに近接する部分だけ非導電性材料で構成した真
空容器67に、Oリング61などシ−ル材料を介して気
密に固定した1次側のコア66aに所定の間隔を有して
2次側のコア66bを対向して配置するものである。こ
の場合、1次側のコア66aの底部63aの接続導体1
7cを導入する部分に真空容器内の気密を保つため一対
のシ−ル部材63cが設けられている。接続導体17c
に水冷銅パイプあるいは水冷銅ブスバ−を使用する場
合、1次側のコアの軸方向外方に配置したコネクタ17
dを介して外部電源19からの絶縁ケ−ブルなどによる
接続導体17eと接続する。コネクタ17dには上記の
水冷銅パイプなどのため図示しない冷却水の給、排水口
が設けられている。
The seal member 47 of this embodiment is preferably non-conductive. Further, in order to prevent the magnetic flux generated by the electromagnetic coil 44a on the primary side from leaking to other than the member on the secondary side, the vacuum container 40 and the core 36a on the primary side are provided.
The core 3 on the secondary side is formed by increasing the distance from the outer periphery of the peripheral wall 41a or by configuring only the portion close to the core 36a on the primary side of the vacuum container 40 with a non-conductive material.
It is preferable to increase the magnetic flux flowing in 6b. In addition,
Although simplified in FIG. 5, the seal member 47 and the primary side core 36a are drawn inward of the vacuum container 40 due to the pressure difference between the internal pressure of the vacuum container 40 and the external atmospheric pressure. It is necessary to dispose the locking members 50 and 51 made of a non-conductive material so that there is no such problem. FIG. 6 is a schematic sectional view showing a fourth embodiment of the present invention. In the figure, members having the same effects as the members shown so far are not designated by reference numerals.
In this embodiment, the vacuum container 67, which is made of a non-conductive material only in the portion close to the core 66a on the primary side, is hermetically sealed via a seal material such as an O-ring 61 by the same means as in the second embodiment. The secondary-side core 66b is arranged so as to face the fixed primary-side core 66a with a predetermined gap. In this case, the connecting conductor 1 on the bottom 63a of the core 66a on the primary side
A pair of seal members 63c is provided at a portion where 7c is introduced in order to keep airtightness in the vacuum container. Connection conductor 17c
When a water-cooled copper pipe or a water-cooled copper bus bar is used for the connector, the connector 17 is arranged axially outside the core on the primary side.
It is connected to the connection conductor 17e by an insulating cable or the like from the external power source 19 via d. The connector 17d is provided with a water supply / drainage port (not shown) for the water-cooled copper pipe or the like.

【0013】上記の各実施例は、アルミナやマグネシア
などセラミックス製の炉体を使用して被溶解金属など装
入材料の加熱に伴い加熱されるホットウォ−ル型の真空
誘導溶解炉を参照して説明したが、好適には図8に示し
たコ−ルドウォ−ル溶解炉に適用できる。コ−ルドウォ
−ル溶解炉は炉体の内部に冷却水を供給して炉体の温度
上昇を抑制して、銅などを炉体材料として使用可能に
し、セラミックスの微粒子が脱粒したり、高温下におけ
る化学反応を生じたりして溶湯に混入することを防止で
きるので、コ−ルドウォ−ル溶解炉を使用する真空誘導
溶解炉に対しても上記各実施例が同様に適用可能であ
る。このようなコ−ルドウォ−ル溶解炉においても、給
電方式や傾動機構などは上記の各実施例におけるホット
ウォ−ル型の誘導溶解炉のそれと同じであり、上記各実
施例の誘導溶解炉をコ−ルドウォ−ル溶解炉に置き換え
ることにより同じ効果が得られる。
Each of the above-mentioned embodiments refers to a hot-wall type vacuum induction melting furnace in which a furnace body made of ceramics such as alumina or magnesia is used to heat a charged material such as a metal to be melted. Although described, it is preferably applicable to the cold wall melting furnace shown in FIG. In the cold wall melting furnace, cooling water is supplied to the inside of the furnace body to suppress the temperature rise of the furnace body, and copper etc. can be used as a furnace body material. Since it is possible to prevent the chemical reaction from occurring in the molten metal and to mix it into the molten metal, the above-mentioned respective embodiments can be similarly applied to a vacuum induction melting furnace using a cold wall melting furnace. Also in such a cold wall melting furnace, the power feeding method and tilting mechanism are the same as those of the hot wall type induction melting furnace in each of the above-mentioned embodiments, and the induction melting furnace of each of the above-mentioned embodiments is -The same effect can be obtained by replacing with a Rudwall melting furnace.

【0014】[0014]

【発明の効果】本発明では、ポット型トランスによる非
接触給電装置を用い、少なくとも2次側のコアを真空容
器の内部に備え、また2次側の接続導体に水冷銅パイプ
あるいは水冷銅ブスバ−を使用し、2次側のこれら部材
をセラミックスなどによる支持部材で炉体に固定して炉
体に追従して回動可能にしたため、高温高真空中でガス
を放出する可撓性の絶縁ケ−ブル不必要とし、真空容器
内での上記のガスの発生を防止して、放出ガスによる真
空容器内の圧力上昇を防止して、溶湯の汚染を防止する
ことにより高純度の金属あるいは合金の溶解が可能にな
った。
According to the present invention, a non-contact power supply device using a pot type transformer is used, at least the core on the secondary side is provided inside the vacuum container, and a water-cooled copper pipe or a water-cooled copper bus bar is used for the connection conductor on the secondary side. Since these members on the secondary side are fixed to the furnace body by a supporting member made of ceramics or the like so as to be rotatable following the furnace body, a flexible insulating case that releases gas in high temperature and high vacuum is used. -Bur is unnecessary and prevents the generation of the above-mentioned gas in the vacuum container, prevents the pressure rise in the vacuum container due to the released gas, and prevents the contamination of the molten metal. Dissolution became possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例として、非接触給電装置を
真空容器内に配置した誘導溶解炉の主要部の概略断面図
である。
FIG. 1 is a schematic cross-sectional view of a main part of an induction melting furnace in which a non-contact power supply device is arranged in a vacuum container as a first embodiment of the present invention.

【図2】非接触給電装置の斜視図である。FIG. 2 is a perspective view of a contactless power supply device.

【図3】非接触給電装置内に生じる磁束φを示す断面図
である。
FIG. 3 is a cross-sectional view showing a magnetic flux φ generated in the non-contact power feeding device.

【図4】本発明の第2実施例を示す概略断面図である。FIG. 4 is a schematic sectional view showing a second embodiment of the present invention.

【図5】本発明の第3実施例を示す概略断面図であ。FIG. 5 is a schematic sectional view showing a third embodiment of the present invention.

【図6】本発明の第4実施例を示す概略断面図である。FIG. 6 is a schematic sectional view showing a fourth embodiment of the present invention.

【図7】従来技術による真空誘導溶解装置の主要部を示
す概略断面図である。
FIG. 7 is a schematic sectional view showing a main part of a vacuum induction melting apparatus according to a conventional technique.

【図8】コ−ルドウォ−ル溶解炉の一例を示す主要部の
断面図である。
FIG. 8 is a sectional view of a main part showing an example of a cold wall melting furnace.

【符号の説明】[Explanation of symbols]

10 真空誘導溶解炉 11 炉体 13 誘導加熱コイル 16 非接触給電装置 16a、26a、36a、66a 1次側のコア 16b、26b、66b 2次側のコア 17、17a、17c、17e、18 接続導体 19 外部電源 20、30、40 真空容器 21a、21b、41a 周壁 22a、22b、42a 突出部 23a、23b、63a 底部 31a、40、67 壁 33、45a、45b、48、61 Oリング 47 シ−ル部材 X 回転対称軸 10 vacuum induction melting furnace 11 furnace body 13 induction heating coil 16 non-contact power supply device 16a, 26a, 36a, 66a primary side core 16b, 26b, 66b secondary side core 17, 17a, 17c, 17e, 18 connection conductor 19 External power source 20, 30, 40 Vacuum container 21a, 21b, 41a Peripheral wall 22a, 22b, 42a Projection part 23a, 23b, 63a Bottom part 31a, 40, 67 wall 33, 45a, 45b, 48, 61 O-ring 47 seal Member X rotational symmetry axis

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 真空容器内に収容され外部電源に接続さ
れた真空誘導溶解炉により金属や合金を溶解し、炉体を
傾動して溶湯を注湯する真空誘導溶解炉の炉体傾動装置
において:前記真空誘導溶解炉の炉体の外周に配置され
た誘導加熱コイルと外部電源との間に配置され、2次側
のコアが1次側のコアから分離されて炉体の傾動に追従
して回動される非接触給電装置と、 該非接触給電装置と前記誘導加熱コイルとを接続する水
冷銅パイプまたは水冷銅ブスバ−と、 前記非接触給電装置と外部電源との間に接続され、その
少なくとも前記真空容器内に延在する部分が水冷銅パイ
プまたは水冷銅ブスバ−である導体と、を含んで成る非
接触給電による真空誘導溶解炉の炉体傾動装置。
1. A furnace tilting device for a vacuum induction melting furnace, in which a metal or alloy is melted by a vacuum induction melting furnace housed in a vacuum container and connected to an external power source, and the furnace body is tilted to pour the molten metal. A core disposed on the outer periphery of the furnace body of the vacuum induction melting furnace and an external power source, and the core on the secondary side is separated from the core on the primary side to follow the tilting of the furnace body. And a water-cooled copper pipe or a water-cooled copper bus bar that connects the non-contact power feeding device and the induction heating coil, and is connected between the non-contact power feeding device and an external power source. A furnace tilting apparatus for a vacuum induction melting furnace by non-contact power supply, comprising: a conductor which is at least a water-cooled copper pipe or a water-cooled copper bus bar extending into the vacuum container.
【請求項2】 前記非接触給電装置は断面がE形で、円
板状の底部の外周側に周壁を、中心部に突出部を有する
底付円筒状の1対のコアが、それぞれの凹面部が対向さ
れて所定の間隔を保って対称に配置され、前記2次側の
コアが前記1対のコアの共通の回転対称軸の周りに回動
可能にされた非接触型変圧器である請求項1記載の非接
触給電による真空誘導溶解炉の炉体傾動装置。
2. The non-contact power feeding device has an E-shaped cross section, a pair of bottomed cylindrical cores having a peripheral wall on the outer peripheral side of a disk-shaped bottom, and a projecting portion at the center, each having a concave surface. A non-contact type transformer in which parts are opposed to each other and are symmetrically arranged at a predetermined interval, and the secondary side core is rotatable about a common rotational symmetry axis of the pair of cores. The furnace tilting apparatus for a vacuum induction melting furnace according to claim 1, wherein the contactless power feeding is used.
【請求項3】 前記非接触給電装置が、その2次側のコ
アと1次側のコアとが中間に真空容器の壁を挟んで対向
されている請求項1または2記載の非接触給電による真
空誘導溶解炉の炉体傾動装置。
3. The non-contact power feeding according to claim 1, wherein the non-contact power feeding device has a core on the secondary side and a core on the primary side facing each other with the wall of the vacuum container interposed therebetween. Tilt device for vacuum induction melting furnace.
【請求項4】 前記2次側のコアと1次側のコアとの間
に挟まれた真空容器の壁の磁束通過部が、セラミックス
などの非導電性材料製である請求項3記載の非接触給電
による真空誘導溶解炉の炉体傾動装置。
4. The non-conductive material according to claim 3, wherein the magnetic flux passage portion of the wall of the vacuum container sandwiched between the secondary core and the primary core is made of a non-conductive material such as ceramics. Tilt device for vacuum induction melting furnace by contact feeding.
【請求項5】 前記非接触給電装置の1次側のコアが前
記真空容器の壁に、溶接、ろう付け、Oリングなどによ
り真空容器外の大気からシ−ルされた状態で、前記1次
側のコアが真空容器を貫通して真空容器内に突出してい
ることを特徴とする請求項1または2記載の非接触給電
による真空誘導溶解炉の炉体傾動装置。
5. The primary core of the non-contact power feeding device is sealed to the wall of the vacuum container from the atmosphere outside the vacuum container by welding, brazing, O-ring, or the like, and the primary core is sealed. 3. The furnace tilting apparatus for a vacuum induction melting furnace by non-contact power supply according to claim 1, wherein the core on the side penetrates the vacuum vessel and projects into the vacuum vessel.
【請求項6】 前記1次側のコアの前記周壁の内周と前
記突出部の外周との間にOリングを介して円環状で非導
電性材料製のシ−ル部材を配置した請求項5記載の非接
触給電による真空誘導溶解炉の炉体傾動装置。
6. A ring-shaped seal member made of a non-conductive material is disposed between an inner circumference of the peripheral wall of the primary side core and an outer circumference of the protruding portion via an O-ring. 5. The furnace body tilting device of the vacuum induction melting furnace according to the non-contact power supply described in 5.
【請求項7】 前記水冷銅パイプまたは水冷銅ブスバ−
の絶縁被覆として、前記真空容器内の雰囲気の減圧と昇
温によってもガス放出の可能性の無いセラミックスなど
が使用されている請求項1から6までのいずれかに記載
の非接触給電による真空誘導溶解炉の炉体傾動装置。
7. The water-cooled copper pipe or water-cooled copper busbar.
7. The vacuum induction by non-contact power supply according to any one of claims 1 to 6, wherein a ceramic or the like that does not release gas even when the atmosphere in the vacuum container is depressurized and heated is used as the insulating coating. Tilt device for melting furnace.
JP16863894A 1994-06-29 1994-06-29 Cold body melting furnace tilting device with non-contact power supply Expired - Fee Related JP3815626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16863894A JP3815626B2 (en) 1994-06-29 1994-06-29 Cold body melting furnace tilting device with non-contact power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16863894A JP3815626B2 (en) 1994-06-29 1994-06-29 Cold body melting furnace tilting device with non-contact power supply

Publications (2)

Publication Number Publication Date
JPH0814761A true JPH0814761A (en) 1996-01-19
JP3815626B2 JP3815626B2 (en) 2006-08-30

Family

ID=15871754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16863894A Expired - Fee Related JP3815626B2 (en) 1994-06-29 1994-06-29 Cold body melting furnace tilting device with non-contact power supply

Country Status (1)

Country Link
JP (1) JP3815626B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065759A (en) * 2007-09-05 2009-03-26 Dainippon Printing Co Ltd Non-contact transmission equipment
JP2011076843A (en) * 2009-09-30 2011-04-14 Sinfonia Technology Co Ltd Water-cooled cable, and vacuum heating device
JP2012119662A (en) * 2011-09-22 2012-06-21 Panasonic Corp Noncontact charging module and noncontact charger
JP2013135490A (en) * 2011-12-26 2013-07-08 Nichiei Intec Co Ltd Vacuum chamber
KR20140050727A (en) * 2011-08-15 2014-04-29 콘삭 코퍼레이션 Electric induction melting assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215069B (en) * 2014-08-01 2016-01-20 洛阳鹏起实业有限公司 A kind of split type liquid holding cup for vacuum consumable electrode skull crucible

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065759A (en) * 2007-09-05 2009-03-26 Dainippon Printing Co Ltd Non-contact transmission equipment
JP2011076843A (en) * 2009-09-30 2011-04-14 Sinfonia Technology Co Ltd Water-cooled cable, and vacuum heating device
KR20140050727A (en) * 2011-08-15 2014-04-29 콘삭 코퍼레이션 Electric induction melting assembly
JP2014527612A (en) * 2011-08-15 2014-10-16 コンサーク コーポレイションConsarc Corporation Electric induction melting assembly
JP2012119662A (en) * 2011-09-22 2012-06-21 Panasonic Corp Noncontact charging module and noncontact charger
JP2013135490A (en) * 2011-12-26 2013-07-08 Nichiei Intec Co Ltd Vacuum chamber

Also Published As

Publication number Publication date
JP3815626B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
JP4285789B2 (en) Vertical electric furnace
US5425048A (en) Heating apparatus for induction ladle and vacuum furnaces
EP0103809B1 (en) High frequency induction coupled plasma torch
US9127373B2 (en) Melting-solidification furnace with variable heat exchange via the side walls
JP4287281B2 (en) Induction furnace
JP3815626B2 (en) Cold body melting furnace tilting device with non-contact power supply
US3223519A (en) Induction furnace
US7285758B2 (en) Rapid thermal processing lamp and method for manufacturing the same
JPS63182221A (en) Method, system and equipment for delivering thermoplastic material
KR20000029468A (en) Glass induction melting furnace using a cold crucible
US3717713A (en) Arc furnace crucible
US5892790A (en) Cold crucible induction furnace
US5257281A (en) Induction heating apparatus and method
JP2005510869A (en) Heating vacuum support device
JP2953744B2 (en) Heat treatment equipment
KR940003253B1 (en) Apparatus for heating molten metal in a ladle
US3046320A (en) Induction furnace coil
JP4282912B2 (en) Vertical heat treatment equipment
JP3160956B2 (en) Cold wall melting equipment using ceramic crucible
GB2161591A (en) Coreless induction furnace
KR100353763B1 (en) Dc-heated metallurgical vessel with base electrode
JP3972390B2 (en) High frequency induction melting crucible furnace
WO1997016051A1 (en) Electric heating element
US4276082A (en) Process for the heating and/or melting of metals and an induction furnace to carry out the process
JPH07103660A (en) Cold wall induction melting furnace

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040525

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees