JPH08146107A - Device for measuring internal resistance of storage battery - Google Patents

Device for measuring internal resistance of storage battery

Info

Publication number
JPH08146107A
JPH08146107A JP6309980A JP30998094A JPH08146107A JP H08146107 A JPH08146107 A JP H08146107A JP 6309980 A JP6309980 A JP 6309980A JP 30998094 A JP30998094 A JP 30998094A JP H08146107 A JPH08146107 A JP H08146107A
Authority
JP
Japan
Prior art keywords
storage battery
voltage
internal resistance
terminal voltage
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6309980A
Other languages
Japanese (ja)
Other versions
JP3398921B2 (en
Inventor
Yoshiya Yamano
佳哉 山野
Yukio Tada
幸生 多田
Katsuhisa Michinaga
勝久 道永
Yoshitaka Konya
好孝 紺屋
Kazuo Takano
和夫 高野
Terumichi Takasaki
輝道 高崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N T T FACILITIES KK
Japan Storage Battery Co Ltd
NTT Facilities Inc
Original Assignee
N T T FACILITIES KK
Japan Storage Battery Co Ltd
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N T T FACILITIES KK, Japan Storage Battery Co Ltd, NTT Facilities Inc filed Critical N T T FACILITIES KK
Priority to JP30998094A priority Critical patent/JP3398921B2/en
Publication of JPH08146107A publication Critical patent/JPH08146107A/en
Application granted granted Critical
Publication of JP3398921B2 publication Critical patent/JP3398921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PURPOSE: To improve measuring accuracy by providing another voltage measuring means for measuring the terminal voltage of another storage battery so as to measure a ripple component separately, and computing for eliminating the ripple component. CONSTITUTION: Before a predetermined current is made to flow in a first storage battery 31 by a current generating means 130, the terminal voltage of the first storage battery 31 and the terminal voltage of second storage battery 32 are separately measured by first voltage measuring means 120 and second voltage measuring means 121. When the predetermined current is made to flow in the first storage battery 31 by the current generating means 130, the terminal voltage of the first storage battery 31 and the terminal voltage of the second storage battery 32 are separately measured by the first voltage measuring means 120 and the second voltage measuring means 121. A computing/controlling means 140 conducts subtraction correction of the variation of the terminal voltage of the first storage battery 31 measured through the first voltage measuring means 120 by using the variation of the terminal voltage of the second storage battery 32 measured through the second voltage measuring means 121. The internal resistance of the first battery 31 is obtained thereby.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓄電池の内部抵抗を求
める蓄電池内部抵抗測定装置の測定精度向上に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in measurement accuracy of a storage battery internal resistance measuring device for determining the internal resistance of a storage battery.

【0002】[0002]

【従来の技術】図4は蓄電池の使用例を示すシステム構
成図である。この図において、10は商用電源、20は
整流器、30は蓄電池、40は負荷である。整流器20
は入力端子と出力端子とを備えており、その入力端子に
は商用電源10が接続され、出力端子には蓄電池30と
負荷40とが並列に接続される。整流器20は商用電源
10から交流電力を受電し、それを直流電力に変換し
て、蓄電池30を充電するとともに負荷40に給電す
る。また、商用電源10の停電時と、整流器20の故障
時と、負荷40の過負荷時とには、蓄電池30が放電す
ることによって、瞬断することなく負荷40に給電し続
ける。
2. Description of the Related Art FIG. 4 is a system configuration diagram showing an example of use of a storage battery. In this figure, 10 is a commercial power source, 20 is a rectifier, 30 is a storage battery, and 40 is a load. Rectifier 20
Has an input terminal and an output terminal, the commercial power supply 10 is connected to the input terminal, and the storage battery 30 and the load 40 are connected in parallel to the output terminal. The rectifier 20 receives AC power from the commercial power supply 10, converts the AC power into DC power, charges the storage battery 30, and supplies power to the load 40. Further, when the commercial power source 10 is out of power, when the rectifier 20 is out of order, and when the load 40 is overloaded, the storage battery 30 is discharged, so that power is continuously supplied to the load 40 without instantaneous interruption.

【0003】一般に蓄電池は、単電池又は単位電池を何
個か直列に接続した組電池の形態で使用する。公称電圧
2V/セルの鉛蓄電池を例にとると、単電池24個(2
4セル)を直列に接続して48V系組電池として使用し
たり、6セル構成の単位電池9個(54セル)を直列に
接続して100V系組電池として使用したりする。図4
の蓄電池30も組電池である。
Generally, a storage battery is used in the form of an assembled battery in which several unit cells or unit cells are connected in series. Taking a lead-acid battery with a nominal voltage of 2V / cell as an example, 24 unit cells (2
4 cells) are connected in series to be used as a 48V battery pack, or 9 unit batteries (54 cells) having a 6-cell configuration are connected in series to be used as a 100V battery pack. FIG.
The storage battery 30 of is also an assembled battery.

【0004】周知のとおり、蓄電池は経年劣化によって
実容量が次第に低下し、ついには寿命に達して使用に耐
えなくなる。図4のシステムにおいて、経年劣化によっ
て蓄電池30の実容量が低下すると、商用電源10の停
電時等に負荷40への給電ができなくなる場合がある。
従って、システムの信頼性を確保するためには、蓄電池
の劣化状況を定期的に把握し、劣化した蓄電池があれば
新品に交換するということが重要になる。
As is well known, the actual capacity of a storage battery gradually decreases as it ages, and eventually it reaches the end of its useful life. In the system of FIG. 4, when the actual capacity of the storage battery 30 decreases due to deterioration over time, power supply to the load 40 may not be possible when the commercial power supply 10 fails.
Therefore, in order to ensure the reliability of the system, it is important to periodically check the deterioration status of the storage battery and replace it with a new one if there is a deterioration.

【0005】蓄電池の劣化状況を把握する方法としては
様々な方法が提案されているが、有力な方法の一つとし
て蓄電池の内部抵抗を測定するという方法がある。一般
に、劣化した蓄電池は内部抵抗が大きくなるためであ
る。そこで、蓄電池の内部抵抗を測定する装置がいくつ
か提案されている。
Various methods have been proposed as a method of grasping the deterioration state of the storage battery, but one of the promising methods is a method of measuring the internal resistance of the storage battery. This is because a deteriorated storage battery generally has a large internal resistance. Therefore, some devices for measuring the internal resistance of the storage battery have been proposed.

【0006】図5は従来の蓄電池内部抵抗測定装置の構
成を示すブロック図である。この図において、100は
蓄電池内部抵抗測定装置であり、31は蓄電池内部抵抗
測定装置100の測定対象となる蓄電池である。蓄電池
内部抵抗測定装置100は装置本体101と接続手段1
10とで構成され、さらに装置本体101は電圧測定手
段120と、電流発生手段130と、演算・制御手段1
40と、操作・表示手段150とを備えている。なお、
測定対象となる蓄電池31は、単電池又は単位電池でな
ければならない場合が多い。
FIG. 5 is a block diagram showing the structure of a conventional storage battery internal resistance measuring device. In this figure, 100 is a storage battery internal resistance measuring device, and 31 is a storage battery to be measured by the storage battery internal resistance measuring device 100. The storage battery internal resistance measuring device 100 includes a device body 101 and a connecting means 1.
10, the apparatus main body 101 further includes a voltage measuring unit 120, a current generating unit 130, and an arithmetic / control unit 1.
40 and an operation / display means 150. In addition,
The storage battery 31 to be measured often has to be a single battery or a unit battery.

【0007】接続手段110は装置本体101を蓄電池
31の端子に接続するためのものであり、少なくとも陽
極電路と陰極電路とを備えている。実際には、蓄電池3
1の内部抵抗が極めて小さいので、四端子測定を行うた
めに陽極電圧電路と、陽極電流電路と、陰極電圧電路
と、陰極電流電路とを備えている場合が多い。
The connecting means 110 is for connecting the apparatus main body 101 to the terminals of the storage battery 31, and has at least an anode electric path and a cathode electric path. Actually, the storage battery 3
Since the internal resistance of 1 is extremely small, an anode voltage circuit, an anode current circuit, a cathode voltage circuit, and a cathode current circuit are often provided for performing four-terminal measurement.

【0008】電圧測定手段120は接続手段110を通
じて蓄電池31の端子電圧を測定し、電流発生手段13
0は接続手段110を通じて蓄電池31に電流を流す。
演算・制御手段140は蓄電池内部抵抗測定装置100
の各部の動作を制御するとともに、その動作に必要とな
る演算を行う。また、操作・表示手段150は蓄電池内
部抵抗測定装置100を操作するための操作入力と、蓄
電池内部抵抗測定装置100の測定結果を表示するため
の表示出力とを処理する。
The voltage measuring means 120 measures the terminal voltage of the storage battery 31 through the connecting means 110, and the current generating means 13
0 causes a current to flow through the storage battery 31 through the connection means 110.
The calculation / control means 140 is a storage battery internal resistance measuring device 100.
It controls the operation of each of the above parts and performs the calculation required for the operation. Further, the operation / display means 150 processes an operation input for operating the storage battery internal resistance measuring apparatus 100 and a display output for displaying the measurement result of the storage battery internal resistance measuring apparatus 100.

【0009】図6は従来の蓄電池内部抵抗測定装置の動
作手順を示すフローチャートである。測定を行うには、
まず人が接続手段110を蓄電池31の端子に接続し、
次に操作・表示手段150を操作する。すると、演算・
制御手段140が操作・表示手段150における操作入
力を受けて、蓄電池内部抵抗測定装置100の各部の動
作を以下のように制御する。
FIG. 6 is a flow chart showing an operation procedure of a conventional storage battery internal resistance measuring apparatus. To make a measurement
First, a person connects the connecting means 110 to the terminal of the storage battery 31,
Next, the operation / display means 150 is operated. Then, the calculation
The control means 140 receives the operation input from the operation / display means 150 and controls the operation of each part of the storage battery internal resistance measuring device 100 as follows.

【0010】まず、電圧測定手段120によって蓄電池
31の端子電圧を測定し、これをV1として記憶する。
次に、電流発生手段130によって蓄電池31に所定の
電流Iを流す。この状態で所定の時間だけ待機した後、
再び電圧測定手段120によって蓄電池31の端子電圧
を測定し、これをV2として記憶する。電流発生手段1
30はV2の測定後に電流Iを停止させる。演算・制御
手段140は、まずV2−V1を求めてこれをΔVと
し、次にΔVの絶対値をIで除して蓄電池31の内部抵
抗Rを求める。求めたRは操作・表示手段150にて表
示する。
First, the terminal voltage of the storage battery 31 is measured by the voltage measuring means 120 and stored as V1.
Next, the current generator 130 causes a predetermined current I to flow through the storage battery 31. After waiting for a predetermined time in this state,
The terminal voltage of the storage battery 31 is measured again by the voltage measuring means 120, and this is stored as V2. Current generation means 1
30 stops the current I after measuring V2. The calculation / control means 140 first finds V2-V1 and sets it as ΔV, then divides the absolute value of ΔV by I to find the internal resistance R of the storage battery 31. The obtained R is displayed on the operation / display means 150.

【0011】電流発生手段130によって蓄電池31に
流す電流は、充電電流であっても放電電流であってもか
まわない。充電電流であった場合は蓄電池31の端子電
圧は過渡的に上昇するのでV1<V2(ΔV>0)とな
り、放電電流であった場合は逆に下降するのでV1>V
2(ΔV<0)となる。いずれにしても、電流Iを流す
ことによって、内部抵抗Rに比例した電圧変化分ΔVが
蓄電池31の端子電圧に現れるので、ΔVを測定するこ
とでRを求める。電流Iが放電電流であった場合の、従
来の蓄電池内部抵抗測定装置の動作波形図を図7に示
す。
The current supplied to the storage battery 31 by the current generating means 130 may be a charging current or a discharging current. When the current is the charging current, the terminal voltage of the storage battery 31 transiently rises, so that V1 <V2 (ΔV> 0), and when the current is the discharging current, it drops on the contrary, so V1> V
2 (ΔV <0). In any case, since the voltage change ΔV proportional to the internal resistance R appears in the terminal voltage of the storage battery 31 by passing the current I, R is obtained by measuring ΔV. FIG. 7 shows an operation waveform diagram of a conventional storage battery internal resistance measuring device when the current I is a discharge current.

【0012】[0012]

【発明が解決しようとする課題】前述した従来の技術で
は、所定の電流Iを流す前の蓄電池31の端子電圧V1
と、所定の電流Iを流している時の蓄電池31の端子電
圧V2とを測定し、V2−V1を求めてこれをΔVと
し、ΔVの絶対値をIで除して蓄電池31の内部抵抗R
を求めていた。すなわち、ΔVは電流Iを流すことによ
って内部抵抗Rに発生する電圧変化分であるという論理
に基づいていた。
In the above-mentioned conventional technique, the terminal voltage V1 of the storage battery 31 before the predetermined current I is passed.
And the terminal voltage V2 of the storage battery 31 when a predetermined current I is flowing, V2−V1 is obtained and this is ΔV, and the absolute value of ΔV is divided by I to determine the internal resistance R of the storage battery 31.
Was seeking. That is, ΔV is based on the logic that the voltage change occurs in the internal resistance R when the current I flows.

【0013】ここで、蓄電池31の端子電圧に何らかの
原因でリップル成分が重畳していると、電流Iを流すこ
とによって内部抵抗Rに発生する電圧変化分に加え、電
流Iに無関係なリップル成分が、ΔVに含まれて測定さ
れることになる。蓄電池31の端子電圧にリップル成分
が重畳していた場合の、従来の蓄電池内部抵抗測定装置
の動作波形図を図8に示す。この場合、V2−V1で求
められるΔVは、電圧変化分ΔV1とリップル成分ΔV
2とのベクトル和になる。このΔVの絶対値をIで除し
た値は、求めるべきRの値とは異なってしまうことにな
る。
If a ripple component is superimposed on the terminal voltage of the storage battery 31 for some reason, a ripple component unrelated to the current I is added to the voltage change generated in the internal resistance R when the current I flows. , ΔV is included in the measurement. FIG. 8 shows an operation waveform diagram of a conventional storage battery internal resistance measuring device when a ripple component is superimposed on the terminal voltage of the storage battery 31. In this case, ΔV obtained by V2-V1 is the voltage change ΔV1 and the ripple component ΔV.
It becomes the vector sum with 2. The value obtained by dividing the absolute value of ΔV by I will be different from the value of R to be obtained.

【0014】蓄電池は図4に示したように整流器又は負
荷に接続されて使用されるが、蓄電池に重畳するリップ
ル成分は接続される整流器又は負荷の種類によって異な
る。例えば、通信用電源システムにおいては、リップル
成分を極力少なくすべくスイッチング整流器が接続され
るため、前述した従来の技術でも実用上十分な精度で蓄
電池の内部抵抗を測定できた。しかしながら、サイリス
タ整流器が接続されたり、負荷としてインバータが接続
された場合は、蓄電池に無視できない大きさのリップル
成分が重畳するため、前述した従来の技術では蓄電池の
内部抵抗を正確には測定できないという問題点があっ
た。
The storage battery is used by being connected to a rectifier or load as shown in FIG. 4, but the ripple component superimposed on the storage battery differs depending on the type of the rectifier or load connected. For example, in the power supply system for communication, since the switching rectifier is connected to minimize the ripple component, the internal resistance of the storage battery can be measured with sufficient accuracy in practical use even with the above-mentioned conventional technique. However, when a thyristor rectifier is connected or an inverter is connected as a load, a ripple component having a non-negligible amount is superimposed on the storage battery, so that the internal resistance of the storage battery cannot be accurately measured by the above-described conventional technique. There was a problem.

【0015】本発明の目的は、第2の蓄電池の端子電圧
を測定する第2の電圧測定手段を備えてリップル成分を
別途測定し、演算・制御手段にてリップル成分を除去す
る演算を行うことにより、測定精度を向上させた蓄電池
内部抵抗測定装置を提供することにある。
An object of the present invention is to provide a second voltage measuring means for measuring the terminal voltage of the second storage battery, measure the ripple component separately, and carry out a calculation for removing the ripple component by the calculation / control means. Accordingly, it is an object of the present invention to provide a storage battery internal resistance measuring device with improved measurement accuracy.

【0016】[0016]

【課題を解決するための手段】前述の目的を達成するた
め、本発明では第2の蓄電池の端子に接続するための第
2の接続手段と、第2の接続手段を通じて第2の蓄電池
の端子電圧を測定する第2の電圧測定手段と、電流発生
手段130によって第1の蓄電池31に電流を流した上
で第1の電圧測定手段120によって第1の蓄電池31
の端子電圧を測定するとともに、第2の電圧測定手段に
よって第2の蓄電池の端子電圧を測定し、第1の電圧測
定手段120で測定された第1の蓄電池31の端子電圧
の変化分ΔVを、第2の電圧測定手段で測定された第2
の蓄電池の端子電圧の変化分によって減算補正すること
により、第1の蓄電池31の内部抵抗を求める演算・制
御手段140とを備えることとした。
In order to achieve the above-mentioned object, in the present invention, the second connecting means for connecting to the terminal of the second storage battery, and the terminal of the second storage battery through the second connecting means. A second voltage measuring unit that measures a voltage and a current generating unit 130 cause a current to flow through the first storage battery 31, and then the first voltage measuring unit 120 causes the first storage battery 31.
And the terminal voltage of the second storage battery is measured by the second voltage measuring means, and the change ΔV of the terminal voltage of the first storage battery 31 measured by the first voltage measuring means 120 is calculated. , Second measured by the second voltage measuring means
The calculation / control means 140 for obtaining the internal resistance of the first storage battery 31 by subtracting and correcting the change in the terminal voltage of the storage battery of 1.

【0017】[0017]

【作用】本発明による蓄電池内部抵抗測定装置では、第
1の電圧測定手段120と電流発生手段130とが第1
の接続手段110を通じて第1の蓄電池31の端子に接
続され、第2の電圧測定手段が第2の接続手段を通じて
第2の蓄電池の端子に接続される。そして、まず電流発
生手段130が第1の蓄電池31に所定の電流Iを流す
前の、第1の蓄電池31の端子電圧V1及び第2の蓄電
池の端子電圧を、第1の電圧測定手段120及び第2の
電圧測定手段が各々測定する。次に、電流発生手段13
0が第1の蓄電池31に所定の電流Iを流している時
の、第1の蓄電池31の端子電圧V2及び第2の蓄電池
の端子電圧を、第1の電圧測定手段120及び第2の電
圧測定手段が各々測定する。演算・制御手段140は、
第1の電圧測定手段120で測定された第1の蓄電池3
1の端子電圧の変化分ΔVを、第2の電圧測定手段で測
定された第2の蓄電池の端子電圧の変化分によって減算
補正することにより、第1の蓄電池31の内部抵抗Rを
求める。
In the storage battery internal resistance measuring device according to the present invention, the first voltage measuring means 120 and the current generating means 130 are the first
Is connected to the terminal of the first storage battery 31 through the connecting means 110, and the second voltage measuring means is connected to the terminal of the second storage battery through the second connecting means. Then, first, the terminal voltage V1 of the first storage battery 31 and the terminal voltage of the second storage battery 31 before the current generation unit 130 supplies the predetermined current I to the first storage battery 31, The second voltage measuring means measures each. Next, the current generating means 13
The terminal voltage V2 of the first storage battery 31 and the terminal voltage of the second storage battery 31 when 0 is flowing a predetermined current I in the first storage battery 31 are the first voltage measuring means 120 and the second voltage. Each measuring means measures. The arithmetic / control means 140 is
First storage battery 3 measured by the first voltage measuring means 120
The internal resistance R of the first storage battery 31 is obtained by subtracting and correcting the change ΔV of the terminal voltage of 1 by the change of the terminal voltage of the second storage battery measured by the second voltage measuring means.

【0018】[0018]

【実施例】以下、本発明の実施例について、図面を参照
して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は本発明を実施した蓄電池内部抵抗測
定装置の構成を示すブロック図である。この図におい
て、図5と共通するものについては同じ符号を付し、説
明を省略する。なお、31は第1の蓄電池であって図5
の蓄電池31と共通するものであり、110は第1の接
続手段であって図5の接続手段110と共通するもの、
120は第1の電圧測定手段であって図5の電圧測定手
段120と共通するものである。いずれも、説明のため
に「第1の」という言葉を付加したにすぎない。
FIG. 1 is a block diagram showing the structure of a storage battery internal resistance measuring apparatus embodying the present invention. In this figure, the elements common to those in FIG. Incidentally, 31 is a first storage battery, which is shown in FIG.
Of the storage battery 31, and 110 is a first connecting means which is also common to the connecting means 110 of FIG.
Reference numeral 120 denotes a first voltage measuring means, which is common to the voltage measuring means 120 shown in FIG. In each case, the word "first" is simply added for the purpose of explanation.

【0020】図1において、32は第1の蓄電池31と
共に同一の組電池に属する蓄電池であって、蓄電池内部
抵抗測定装置100の第2の測定対象となる蓄電池であ
る。蓄電池内部抵抗測定装置100は装置本体101と
第1の接続手段110との他に第2の接続手段111を
備え、さらに装置本体101は第1の電圧測定手段12
0と電流発生手段130と演算・制御手段140と操作
・表示手段150との他に、第2の電圧測定手段121
を備えている。第2の接続手段111は装置本体101
を第2の蓄電池32の端子に接続するためのものであ
り、陽極電路と陰極電路とを備えている。第2の電圧測
定手段121は第2の接続手段111を通じて第2の蓄
電池32の端子電圧を測定する。
In FIG. 1, reference numeral 32 denotes a storage battery which belongs to the same battery pack as the first storage battery 31 and which is a second measurement target of the storage battery internal resistance measuring apparatus 100. The storage battery internal resistance measuring apparatus 100 includes a second connecting means 111 in addition to the apparatus main body 101 and the first connecting means 110, and the apparatus main body 101 further includes the first voltage measuring means 12
0, current generation means 130, calculation / control means 140, operation / display means 150, and second voltage measurement means 121.
It has. The second connecting means 111 is the apparatus main body 101.
Is connected to the terminal of the second storage battery 32, and includes an anode electric path and a cathode electric path. The second voltage measuring means 121 measures the terminal voltage of the second storage battery 32 through the second connecting means 111.

【0021】図2は本発明を実施した蓄電池内部抵抗測
定装置の動作手順を示すフローチャートである。測定を
行うには、まず人が第1の接続手段110を第1の蓄電
池31の端子に接続し、さらに第2の接続手段111を
第2の蓄電池32の端子に接続して、操作・表示手段1
50を操作する。すると、演算・制御手段140が操作
・表示手段150における操作入力を受けて、蓄電池内
部抵抗測定装置100の各部の動作を以下のように制御
する。
FIG. 2 is a flow chart showing the operation procedure of the storage battery internal resistance measuring apparatus embodying the present invention. In order to perform the measurement, first, a person connects the first connecting means 110 to the terminal of the first storage battery 31, and further connects the second connecting means 111 to the terminal of the second storage battery 32 to operate / display. Means 1
Operate 50. Then, the calculation / control means 140 receives the operation input from the operation / display means 150, and controls the operation of each part of the storage battery internal resistance measuring apparatus 100 as follows.

【0022】まず、第1の電圧測定手段120によって
第1の蓄電池31の端子電圧を測定すると同時に、第2
の電圧測定手段121によって第2の蓄電池32の端子
電圧を測定し、前者をV1、後者をV3として記憶す
る。次に、電流発生手段130によって第1の蓄電池3
1に所定の電流Iを流す。この状態で所定の時間だけ待
機した後、再び第1の電圧測定手段120によって第1
の蓄電池31の端子電圧を測定すると同時に、再び第2
の電圧測定手段121によって第2の蓄電池32の端子
電圧を測定し、前者をV2、後者をV4として記憶す
る。電流発生手段130はV2及びV4の測定後に電流
Iを停止させる。演算・制御手段140は、まずV2−
V1及びV4−V3を各々求め、前者をΔV、後者をΔ
V2とする。次にΔV−ΔV2を求めてこれをΔV1と
し、ΔV1の絶対値をIで除して第1の蓄電池31の内
部抵抗Rを求める。求めたRは操作・表示手段150に
て表示する。
First, the terminal voltage of the first storage battery 31 is measured by the first voltage measuring means 120 and, at the same time, the second voltage is measured.
The voltage measuring means 121 measures the terminal voltage of the second storage battery 32, and stores the former as V1 and the latter as V3. Next, by the current generating means 130, the first storage battery 3
A predetermined current I is passed through 1. In this state, after waiting for a predetermined time, the first voltage measuring means 120 again causes the first voltage to be measured.
The terminal voltage of the storage battery 31 of
The voltage measuring means 121 measures the terminal voltage of the second storage battery 32, and stores the former as V2 and the latter as V4. The current generating means 130 stops the current I after measuring V2 and V4. The calculation / control means 140 first determines V2-
V1 and V4-V3 are obtained, and the former is ΔV and the latter is ΔV.
V2. Next, ΔV−ΔV2 is obtained, this is set to ΔV1, and the absolute value of ΔV1 is divided by I to obtain the internal resistance R of the first storage battery 31. The obtained R is displayed on the operation / display means 150.

【0023】図3は本発明を実施した蓄電池内部抵抗測
定装置の動作波形図である。V4−V3で求められるΔ
V2は、V3の測定時すなわちV1の測定時からV4の
測定時すなわちV2の測定時までの間に、第2の蓄電池
32の端子電圧に重畳したリップル成分である。第1の
蓄電池31と第2の蓄電池32とは同一の組電池に属す
るので、重畳するリップル成分はほとんど同じ値を示
す。従って、V1の測定時からV2の測定時までの間に
第1の蓄電池31の端子電圧に重畳したリップル成分
を、ΔV2で近似することができる。
FIG. 3 is an operation waveform diagram of the storage battery internal resistance measuring apparatus embodying the present invention. Δ obtained by V4-V3
V2 is a ripple component superimposed on the terminal voltage of the second storage battery 32 during the measurement of V3, that is, the measurement of V1 to the measurement of V4, that is, the measurement of V2. Since the first storage battery 31 and the second storage battery 32 belong to the same assembled battery, the superimposed ripple components have almost the same value. Therefore, the ripple component superimposed on the terminal voltage of the first storage battery 31 from the time of measuring V1 to the time of measuring V2 can be approximated by ΔV2.

【0024】一方、V2−V1で求められるΔVは、所
定の電流Iを流したことによって第1の蓄電池31の内
部抵抗Rに発生した電圧変化分と、前述したリップル成
分ΔV2とのベクトル和になる。すなわち、電圧変化分
をΔV1とすると、ΔV=ΔV1+ΔV2である。従っ
て、ΔVの絶対値をIで除した値は、求めるべきRの値
とは異なってしまうことになる。そこで、ΔV−ΔV2
にてΔV1を求め、ΔV1の絶対値をIで除して第1の
蓄電池31の内部抵抗Rを求める。
On the other hand, ΔV obtained by V2-V1 is the vector sum of the voltage change generated in the internal resistance R of the first storage battery 31 due to the flow of the predetermined current I and the ripple component ΔV2 described above. Become. That is, assuming that the voltage change is ΔV1, ΔV = ΔV1 + ΔV2. Therefore, the value obtained by dividing the absolute value of ΔV by I will be different from the value of R to be obtained. Therefore, ΔV-ΔV2
ΔV1 is obtained by dividing the absolute value of ΔV1 by I to obtain the internal resistance R of the first storage battery 31.

【0025】[0025]

【発明の効果】本発明によれば、蓄電池の内部抵抗を求
める時に、蓄電池の端子電圧に重畳しているリップル成
分を除去する演算を行うため、蓄電池の内部抵抗を正確
に測定することが可能になる。特に、蓄電池に接続され
る整流器又は負荷の種類によっては、従来の技術では蓄
電池の内部抵抗を事実上測定できない場合すらあったた
め、本発明による測定精度向上の効果は極めて大きくな
る。
According to the present invention, when the internal resistance of the storage battery is obtained, the calculation for removing the ripple component superimposed on the terminal voltage of the storage battery is performed, so that the internal resistance of the storage battery can be accurately measured. become. In particular, depending on the type of rectifier or load connected to the storage battery, the internal resistance of the storage battery may not be practically measured by the conventional technique, so that the effect of the present invention for improving the measurement accuracy becomes extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明蓄電池内部抵抗測定装置の構成を示すブ
ロック図
FIG. 1 is a block diagram showing the configuration of a storage battery internal resistance measuring device of the present invention.

【図2】本発明蓄電池内部抵抗測定装置の動作手順を示
すフローチャート
FIG. 2 is a flowchart showing an operation procedure of the storage battery internal resistance measuring device of the present invention.

【図3】本発明蓄電池内部抵抗測定装置の動作波形図FIG. 3 is an operation waveform diagram of the storage battery internal resistance measuring device of the present invention.

【図4】蓄電池の使用例を示すシステム構成図FIG. 4 is a system configuration diagram showing a usage example of a storage battery.

【図5】従来の蓄電池内部抵抗測定装置の構成を示すブ
ロック図
FIG. 5 is a block diagram showing a configuration of a conventional storage battery internal resistance measuring device.

【図6】従来の蓄電池内部抵抗測定装置の動作手順を示
すフローチャート
FIG. 6 is a flowchart showing an operation procedure of a conventional storage battery internal resistance measuring device.

【図7】従来の蓄電池内部抵抗測定装置の動作波形図FIG. 7 is an operation waveform diagram of a conventional storage battery internal resistance measuring device.

【図8】蓄電池の端子電圧にリップル成分が重畳してい
た場合の、従来の蓄電池内部抵抗測定装置の動作波形図
FIG. 8 is an operation waveform diagram of a conventional storage battery internal resistance measuring device when a ripple component is superimposed on the storage battery terminal voltage.

【符号の説明】[Explanation of symbols]

31 第1の蓄電池 32 第2の蓄電池 100 蓄電池内部抵抗測定装置 101 装置本体 110 第1の接続手段 111 第2の接続手段 120 第1の電圧測定手段 121 第2の電圧測定手段 130 電流発生手段 140 演算・制御手段 150 操作・表示手段 31 first storage battery 32 second storage battery 100 storage battery internal resistance measuring device 101 device body 110 first connecting means 111 second connecting means 120 first voltage measuring means 121 second voltage measuring means 130 current generating means 140 Arithmetic / control means 150 Operation / display means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多田 幸生 京都市南区吉祥院西ノ庄猪之馬場町1番地 日本電池株式会社内 (72)発明者 道永 勝久 京都市南区吉祥院西ノ庄猪之馬場町1番地 日本電池株式会社内 (72)発明者 紺屋 好孝 東京都港区六本木一丁目4番33号 株式会 社エヌ・ティ・ティファシリティーズ内 (72)発明者 高野 和夫 東京都港区六本木一丁目4番33号 株式会 社エヌ・ティ・ティファシリティーズ内 (72)発明者 高崎 輝道 東京都港区六本木一丁目4番33号 株式会 社エヌ・ティ・ティファシリティーズ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukio Tada No. 1 Nishinosho-Inaba Babacho, Kichijoin, Minami-ku, Kyoto, Japan Battery Co., Ltd. Nobabacho No. 1 Japan Battery Co., Ltd. (72) Inventor Yoshitaka Konya 1-43 Roppongi, Minato-ku, Tokyo NTT Corporation (72) Inventor Kazuo Takano Roppongi, Minato-ku, Tokyo 1-34, Inc. NTT FACILITIES, INC. (72) Inventor, Teruichi Takasaki 1-34, Roppongi, Minato-ku, Tokyo NTT FACILITIES INC.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1の蓄電池の端子に接続するための第
1の接続手段と、前記第1の接続手段を通じて前記第1
の蓄電池の端子電圧を測定する第1の電圧測定手段と、
前記第1の接続手段を通じて前記第1の蓄電池に電流を
流す電流発生手段と、前記電流発生手段によって前記第
1の蓄電池に電流を流した上で前記第1の電圧測定手段
によって前記第1の蓄電池の端子電圧を測定することで
前記第1の蓄電池の内部抵抗を求める演算・制御手段と
を備える蓄電池内部抵抗測定装置において、第2の蓄電
池の端子に接続するための第2の接続手段と、前記第2
の接続手段を通じて前記第2の蓄電池の端子電圧を測定
する第2の電圧測定手段と、前記電流発生手段によって
前記第1の蓄電池に電流を流した上で前記第1の電圧測
定手段によって前記第1の蓄電池の端子電圧を測定する
とともに、前記第2の電圧測定手段によって前記第2の
蓄電池の端子電圧を測定し、前記第1の電圧測定手段で
測定された前記第1の蓄電池の端子電圧の変化分を、前
記第2の電圧測定手段で測定された前記第2の蓄電池の
端子電圧の変化分によって減算補正することにより、前
記第1の蓄電池の内部抵抗を求める演算・制御手段とを
備えることを特徴とする蓄電池内部抵抗測定装置。
1. A first connecting means for connecting to a terminal of a first storage battery, and the first connecting means through the first connecting means.
First voltage measuring means for measuring the terminal voltage of the storage battery of
A current generating means for supplying a current to the first storage battery through the first connecting means; and a first voltage measuring means for supplying the current to the first storage battery by the current generating means. A storage battery internal resistance measuring device, comprising: a calculation / control means for determining an internal resistance of the first storage battery by measuring a terminal voltage of the storage battery; and a second connecting means for connecting to a terminal of the second storage battery. , The second
Second voltage measuring means for measuring the terminal voltage of the second storage battery through the connection means, and the first voltage measuring means for supplying the current to the first storage battery by the current generating means. And measuring the terminal voltage of the first storage battery, measuring the terminal voltage of the second storage battery by the second voltage measuring means, and measuring the terminal voltage of the first storage battery by the first voltage measuring means. By subtracting and correcting the variation of the terminal voltage of the second storage battery measured by the second voltage measuring means to obtain the internal resistance of the first storage battery. A storage battery internal resistance measuring device, comprising:
JP30998094A 1994-11-18 1994-11-18 Battery internal resistance measurement device Expired - Fee Related JP3398921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30998094A JP3398921B2 (en) 1994-11-18 1994-11-18 Battery internal resistance measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30998094A JP3398921B2 (en) 1994-11-18 1994-11-18 Battery internal resistance measurement device

Publications (2)

Publication Number Publication Date
JPH08146107A true JPH08146107A (en) 1996-06-07
JP3398921B2 JP3398921B2 (en) 2003-04-21

Family

ID=17999691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30998094A Expired - Fee Related JP3398921B2 (en) 1994-11-18 1994-11-18 Battery internal resistance measurement device

Country Status (1)

Country Link
JP (1) JP3398921B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117796A (en) * 2009-12-02 2011-06-16 Toyota Motor Corp Abnormality detecting system for battery assembly
CN105259420A (en) * 2015-11-02 2016-01-20 南车株洲电力机车有限公司 Method and device for measuring internal resistance of energy storage power supply
CN107505494A (en) * 2017-05-23 2017-12-22 宝沃汽车(中国)有限公司 The acquisition method and device of monomer supply voltage
KR20180101683A (en) * 2017-03-03 2018-09-13 에스에이치모바일 (주) Internal Resistance Measuring Device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117796A (en) * 2009-12-02 2011-06-16 Toyota Motor Corp Abnormality detecting system for battery assembly
CN105259420A (en) * 2015-11-02 2016-01-20 南车株洲电力机车有限公司 Method and device for measuring internal resistance of energy storage power supply
KR20180101683A (en) * 2017-03-03 2018-09-13 에스에이치모바일 (주) Internal Resistance Measuring Device
CN107505494A (en) * 2017-05-23 2017-12-22 宝沃汽车(中国)有限公司 The acquisition method and device of monomer supply voltage
CN107505494B (en) * 2017-05-23 2020-02-14 宝沃汽车(中国)有限公司 Method and device for collecting voltage of single power supply

Also Published As

Publication number Publication date
JP3398921B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
US6828757B2 (en) Circuit for adjusting charging rate of cells in combination
JPWO2019026142A1 (en) Degradation state calculation method and deterioration state calculation device
EP3444625A1 (en) Electricity storage device, electricity storage system, and power supply system
CN105051559A (en) Secondary battery charge status estimation device and secondary battery charge status estimation method
KR20010040157A (en) Device for estimating the state of charge of a battery
US20220278534A1 (en) Method of battery balancing and battery system providing the same
JPH10270092A (en) Secondary battery deterioration judging method and its device
JPH08146107A (en) Device for measuring internal resistance of storage battery
JPH09285029A (en) Secondary battery charger
JPH09121472A (en) Ac power supply apparatus
KR20210051809A (en) Method for estimating of battery&#39;s state of charge and Battery Management System
TW200409931A (en) Battery managing method and device
JP3904875B2 (en) Method for measuring internal impedance of storage battery
CN115421047A (en) Battery pack charge state correction method and device and electronic equipment
US11322963B2 (en) Control method for power supply
JPH1189104A (en) Charging method for lead battery
JPH08126214A (en) Method and circuit for measuring capacity of storage battery
JP3209325B2 (en) Charging device
JPH09121473A (en) Ac power supply device
JP2003169424A (en) Secondary battery charging method and charging device
JP2000133322A (en) Charge/discharge system for secondary battery
JPH09121471A (en) Ac power supply apparatus
JP5846170B2 (en) Electric storage system and electric vehicle using the same
JP2658502B2 (en) Lead-acid battery internal impedance measurement device
JPH07241043A (en) Charge/discharge controller for battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees