JPH08145922A - Method for inspecting defect of painting and coating material - Google Patents

Method for inspecting defect of painting and coating material

Info

Publication number
JPH08145922A
JPH08145922A JP29121594A JP29121594A JPH08145922A JP H08145922 A JPH08145922 A JP H08145922A JP 29121594 A JP29121594 A JP 29121594A JP 29121594 A JP29121594 A JP 29121594A JP H08145922 A JPH08145922 A JP H08145922A
Authority
JP
Japan
Prior art keywords
coating material
coating
temperature
defect
anticorrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29121594A
Other languages
Japanese (ja)
Other versions
JP3079920B2 (en
Inventor
Hisao Kitagawa
尚男 北川
Toshiyuki Yasui
敏之 安井
Yoshihiro Okano
嘉宏 岡野
Tadashi Kawamura
正 川村
Motofumi Hirata
元史 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP06291215A priority Critical patent/JP3079920B2/en
Publication of JPH08145922A publication Critical patent/JPH08145922A/en
Application granted granted Critical
Publication of JP3079920B2 publication Critical patent/JP3079920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE: To provide a method for inspecting a defect of a painting and coating material for detecting the defect such as an air void produced on a steel tube coated with the painting and coating material. CONSTITUTION: A site welding joint part 2c of a coated steel tube 2 is coated with an anticorrosion painting and coating layer material 1 through a bonding agent layer, and heated by a heat source such as a gas burner 6. The anticorrosion painting and coating layer material 1 is contracted thermally, and after the anticorrosion painting and coating layer material 1 is cooled, it is heated. The temperature distribution is observed by an infrared ray camera 3, and a method for inspecting a defect of the painting and coating material for detecting a defect part such as an air void from a part of slow cooling speed is provided by supplying an image processor with a heat image signal of the infrared ray camera 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被覆鋼管の溶接継手部
を被覆する防食塗覆装材の欠陥検査方法に関し、特に、
溶接継手部の防食塗覆装材の浮きや膨れ等の欠陥を検査
する欠陥検査方法に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for inspecting defects in an anticorrosion coating material for coating a welded joint portion of a coated steel pipe, and more particularly,
The present invention relates to a defect inspection method for inspecting defects such as floating and swelling of the anticorrosion coating covering material of a welded joint.

【0002】[0002]

【従来の技術】一般に、ポリエチレン被覆鋼管等の被覆
鋼管を使用した配管現場においては、現地溶接継手部の
防食のために、架橋ポリエチレン等の合成樹脂材を用い
た熱収縮チューブやシートを溶接継手部に被せた後に、
熱収縮させて鋼管と熱収縮チューブ等を密着させて溶接
継手部の防食処理がなされている。被覆鋼管の現地溶接
継手部を防食処理する防食塗覆装材は、図6に示すよう
に、熱収縮性の合成樹脂材からなる防食層2bと、アス
フアルトとゴムの混合物に各種添加物を混入した接着剤
2dとからなり、被覆鋼管2aの現地溶接継手部に防食
層2bを熱収縮させて被覆して防食処理を施した際に、
鋼管2aと接着剤2d間にエアーボイド9が多数存在し
たとすると、鋼管2aが防食に対する信頼性が低下する
ことになる。
2. Description of the Related Art Generally, at a piping site using a coated steel pipe such as a polyethylene coated steel pipe, a heat shrinkable tube or sheet made of a synthetic resin material such as cross-linked polyethylene is welded to prevent corrosion of the on-site welded joint. After covering the part,
The heat-shrinkage is performed to bring the steel pipe and the heat-shrinkable tube into close contact with each other to prevent corrosion of the welded joint. As shown in FIG. 6, the anticorrosion coating covering material for performing the anticorrosion treatment on the on-site welded joint portion of the coated steel pipe is prepared by mixing various additives into the anticorrosion layer 2b made of a heat shrinkable synthetic resin material and a mixture of asphalt and rubber. When the on-site welded joint portion of the coated steel pipe 2a is heat-shrinked and coated with the anticorrosion layer 2b, the anticorrosion treatment is performed.
If a large number of air voids 9 are present between the steel pipe 2a and the adhesive 2d, the reliability of the steel pipe 2a with respect to anticorrosion will decrease.

【0003】このような問題を解消する為に、この防食
塗覆装処理の作業工程には、防食塗覆装材がその溶接継
手部の外周に正常に被覆されているか否かの検査が行わ
れる工程がある。その検査方法は、通常、目視や指触す
る方法等によって行われている。また、防食塗覆装材の
一部を剥離してエアーボイドの発生の有無を検査する方
法がある。この剥離して検査する方法では、剥離した後
にその部分を修復しなければならない。
In order to solve such a problem, in the work process of the anticorrosion coating treatment, it is inspected whether the outer periphery of the welded joint portion is normally covered with the anticorrosion coating covering material. There is a process called. The inspection method is usually performed by visual inspection, touching with a finger, or the like. There is also a method of peeling a part of the anticorrosion coating material and inspecting for the presence of air voids. In this peeling and inspection method, the portion must be repaired after peeling.

【0004】エアーボイドを赤外線カメラで検査する方
法は、従来、存在しなかったが、鋼管の内面の防食塗覆
装の肉厚を検査する方法は特開平2−12045号公報
に記載されている。しかし、この方法は防食塗覆装の肉
厚の薄い欠陥部分を検出するものであり、冷却して温度
差が残っている間に検出する方法であり、温度分布を空
間微分して欠陥部分を検出しており、この検出方法には
温度分布を時間微分する概念はない。また、熱画像撮影
による表面温度分布から被覆された配管の含水部を検出
する方法は、特開平6−118040号公報に開示され
ている。この方法は、空気の層と含水部では熱伝達係数
が大きく相違するので、その相違によって発生する温度
分布によって含水部を検出するものである。しかし、配
管を特別に加熱して含水部を検出するものではない。
A method for inspecting air voids with an infrared camera has not existed in the past, but a method for inspecting the wall thickness of the anticorrosion coating on the inner surface of a steel pipe is described in Japanese Patent Laid-Open No. 12045/1990. . However, this method is for detecting a thin defect portion of the anticorrosion coating and is a method for detecting while cooling and a temperature difference remains, and spatially differentiating the temperature distribution to detect the defect portion. However, this detection method has no concept of differentiating the temperature distribution with respect to time. Further, a method of detecting the water-containing portion of the covered pipe from the surface temperature distribution obtained by taking a thermal image is disclosed in Japanese Patent Laid-Open No. 6-11840. In this method, since the heat transfer coefficient greatly differs between the air layer and the water-containing portion, the water-containing portion is detected by the temperature distribution generated by the difference. However, the water is not detected by specially heating the pipe.

【0005】[0005]

【発明が解決しようとする課題】従来、被覆鋼管におけ
る現地溶接継手部は、防食塗覆装材を熱収縮させて現地
溶接継手部を覆い防食処理を行っている。その際、防食
塗覆装材と鋼管との間に多数のエアボイドが発生する
と、塗覆装の防食に対する信頼性が薄れる。従来、エア
ボイドを目視や指触して検査する方法は、比較的大きい
ものであれば、検出が可能である。しかし、小さいもの
である場合、その存在を確認することが難しく、また、
被覆部全体を指触で検査する方法は作業者にとって極め
て煩わしいものである。更に、エアボイドの数が多い場
合はその位置や寸法を特定することが困難である。ま
た、目視や指触して異常が感じられる場合には、防食塗
覆装の一部を剥離して検査していた。この剥離した部分
は補修する必要があり、この補修に時間がかかるためコ
スト高となる欠点があった。
Conventionally, the on-site welded joint portion of the coated steel pipe has been subjected to the anti-corrosion treatment by covering the on-site welded joint portion by heat-shrinking the anticorrosion coating material. At that time, if a large number of air voids are generated between the anticorrosion coating material and the steel pipe, the reliability of the coating material against corrosion is reduced. Conventionally, a method of visually inspecting an air void or touching it with a finger can detect a relatively large one. However, if it is small, it is difficult to confirm its existence, and
The method of inspecting the entire covering portion by touching the finger is extremely troublesome for the operator. Furthermore, when the number of air voids is large, it is difficult to specify the position and size thereof. Further, when abnormality was felt by visual inspection or finger touch, a part of the anticorrosion coating was peeled off and inspected. This peeled portion needs to be repaired, and this repair takes time, resulting in a high cost.

【0006】このようなことから防食処理に於いて、鋼
管と防食塗覆装材間に発生したエアボイド等の欠陥を非
破壊検査方法で検出する方法の開発が望まれている。従
来例の非破壊検査方法には、赤外線カメラを用いて温度
分布から含水部を検出する方法がある。しかし、断熱材
で被覆された配管における含水部の検出に当たり、配管
の外部加熱は行っていない。このため、非常に小さいエ
アボイドや密着不良箇所等の欠陥部を検査するのは難し
い欠点がある。
In view of the above, in the anticorrosion treatment, it is desired to develop a method for detecting defects such as air voids generated between the steel pipe and the anticorrosion coating material by the nondestructive inspection method. As a conventional nondestructive inspection method, there is a method of detecting a water-containing portion from a temperature distribution using an infrared camera. However, when detecting the water-containing portion in the pipe covered with the heat insulating material, the pipe is not externally heated. Therefore, there is a drawback that it is difficult to inspect a defective portion such as a very small air void or a defective adhesion portion.

【0007】本発明は、上述のような課題に鑑みなされ
たもので、塗覆装材で被覆された鋼管に発生したエアボ
イド等の欠陥を検出する為の塗覆装材の欠陥検査方法を
提供することを目的とするものである。
The present invention has been made in view of the above problems, and provides a method for inspecting a coating material defect for detecting defects such as air voids generated in a steel pipe coated with the coating material. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】上述の課題を解決する為
に、本発明に係る塗覆装材の欠陥検査方法は、被覆鋼管
の現地溶接継手部に被せた塗覆装材を加熱して、該塗覆
装材の温度を冷却して、その温度分布を赤外線カメラで
観測して冷却速度の遅い箇所からエアーボイドの発生を
検知することを特徴とする方法である。また、前記塗覆
装材の欠陥検査方法に於いて、前記塗覆装材の温度分布
を鏡の反射による赤外線を赤外線カメラで観測すること
を特徴とする方法である。また、前記塗覆装材の欠陥検
査方法に於いて、前記塗覆装材の加熱温度を初期温度よ
り1〜200℃高くすることを特徴とする方法である。
また、前記塗覆装材の欠陥検査方法に於いて、前記塗覆
装材の冷却温度分布を時間微分してその分布からエアー
ボイドの大きさを検査することを特徴とする方法であ
る。
In order to solve the above-mentioned problems, a method for inspecting a coating-covering material defect according to the present invention comprises heating a coating-covering material covered on a field welded joint of a coated steel pipe. The method is characterized by cooling the temperature of the coating and covering material and observing the temperature distribution with an infrared camera to detect the occurrence of air voids from a location with a slow cooling rate. In the defect inspection method for the coating / covering material, the temperature distribution of the coating / covering material is observed by an infrared camera for infrared rays reflected by a mirror. Further, in the defect inspection method for the coating / covering material, the heating temperature of the coating / covering material is set to be higher than the initial temperature by 1 to 200 ° C.
Further, in the defect inspection method for the coating and covering material, the cooling temperature distribution of the coating and covering material is differentiated with respect to time, and the size of the air void is inspected from the distribution.

【0009】[0009]

【作用】上述の手段によって、本発明に係る塗覆装材の
欠陥検査方法は、被覆鋼管の現地溶接継手部を被覆する
防食塗覆装材を加熱した後に、鋼管と防食塗覆装材との
間に発生したエアボイドや密着不良箇所等の欠陥部が発
生した場合、その欠陥部の空気が断熱層となり、この部
分の冷却速度が遅いことを利用して、赤外線カメラでそ
の冷却速度の違いによる温度分布を検出して、比較的小
さい欠陥部を検出する検出方法である。また、本発明に
係る塗覆装材の欠陥検査方法は、鏡を利用して防食塗覆
装材から放射される赤外線を赤外線カメラ方向に反射さ
せて計測する検出方法であり、温度分布の検出が困難な
部分であっても欠陥部の検出ができる。更に、赤外線カ
メラで検出される温度は実際の表面温度よりも低くなる
が、反射によって得られる熱画像信号を時間微分して得
ることによって、相対的な冷却速度の差を一層明確なも
のとしてエアボイドや密着不良箇所等の等の欠陥の存在
を確認するものである。
According to the above-mentioned means, the defect inspection method for the coating material according to the present invention comprises the steps of heating the anticorrosion coating material for coating the on-site welded joint of the coated steel pipe, and then heating the steel pipe and the anticorrosion coating material. If a defective part such as an air void or a poorly adhered part occurs between the parts, the air in the defective part becomes a heat insulating layer, and the cooling speed of this part is slow This is a detection method for detecting a relatively small defective portion by detecting the temperature distribution due to. Moreover, the defect inspection method of the coating / covering material according to the present invention is a detection method in which infrared rays radiated from the anticorrosion coating / covering material using a mirror are reflected and measured in the direction of the infrared camera, and the temperature distribution is detected. Defects can be detected even in difficult areas. Furthermore, the temperature detected by the infrared camera is lower than the actual surface temperature, but by obtaining the thermal image signal obtained by reflection by time differentiation, the difference in relative cooling rate is made clearer and the air void is made clearer. It is to confirm the existence of a defect such as a contact failure portion or the like.

【0010】また、本発明に係る塗覆装材の欠陥検査方
法は、エアボイドや密着不良箇所等の欠陥部分の検出が
赤外線カメラで得られる熱画像信号を画像処理装置で時
間微分して得られる情報から欠陥部の輪郭を明確なもの
とし、その大きさを正確に検出するものである。また、
本発明に係る塗覆装材の欠陥検査方法は、防食塗覆装処
理時に加熱して防食塗覆装材を加熱収縮させる工程を行
った後に、自然冷却させてその温度降下の部分的な差に
よって、エアボイドの存在を検出することができるの
で、非破壊検査のための加熱工程を行うことなく欠陥部
の検出を行うことも可能である。
Further, in the defect inspection method for the coated covering material according to the present invention, the detection of the defective portion such as the air void or the defective adhesion portion is obtained by time-differentiating the thermal image signal obtained by the infrared camera by the image processing device. The contour of the defective portion is made clear from the information, and its size is accurately detected. Also,
The defect inspection method of the coating / covering material according to the present invention, after performing a step of heating and shrinking the coating / coating material by heating during the anticorrosion coating / coating treatment, it is naturally cooled to cause a partial difference in temperature drop. Since it is possible to detect the presence of the air voids, it is possible to detect the defective portion without performing a heating step for nondestructive inspection.

【0011】[0011]

【実施例】以下、本発明の実施例について図1乃至図5
を参照して説明する。 (実施例1)図1は、本発明に係る塗覆装材の欠陥検査
方法の一実施例を説明する為の図である。同図に於い
て、防食塗覆装材が被覆された被覆鋼管と測定装置及び
熱源が図示されており、被覆鋼管2の溶接及び防食処理
は現地における配管工程でなされる。同図を参照して、
被覆鋼管2の配管工程について簡単に説明する。先ず、
被覆材2bを剥離して鋼管2aを露出させた後に、互い
の鋼管2a同志を溶接する。その溶接継手部2cと被覆
材2bは、防食塗覆装材1で覆おれ、その後、防食塗覆
装材1をガスバーナー6等の熱源で加熱収縮させて、溶
接部2cと鋼管2aの露出部及び被覆材2bに密着させ
る。防食塗覆装材1は熱収縮性の樹脂チューブ或いはシ
ート状のものであって、その裏面には、例えば、アスフ
ァルトとゴムとの混合物に各種添加物を混入した接着剤
層が設けられている。接着剤層は加熱によって溶融して
粘性を帯びる。
Embodiments of the present invention will be described below with reference to FIGS.
Will be described with reference to. (Embodiment 1) FIG. 1 is a diagram for explaining an embodiment of a defect inspection method for a coated covering material according to the present invention. In the figure, a coated steel pipe coated with an anticorrosion coating material, a measuring device and a heat source are shown, and welding and anticorrosion treatment of the coated steel pipe 2 are carried out in a local piping process. Referring to the figure,
The piping process of the coated steel pipe 2 will be briefly described. First,
After the coating material 2b is peeled off to expose the steel pipe 2a, the steel pipes 2a are welded to each other. The welded joint portion 2c and the covering material 2b are covered with the anticorrosion coating material 1, and then the anticorrosion coating material 1 is heated and shrunk by a heat source such as a gas burner 6 to expose the welding portion 2c and the steel pipe 2a. The portion and the covering material 2b are brought into close contact with each other. The anticorrosion coating material 1 is in the form of a heat-shrinkable resin tube or sheet, and the back surface thereof is provided with, for example, an adhesive layer in which various additives are mixed in a mixture of asphalt and rubber. . The adhesive layer is melted by heating and becomes viscous.

【0012】上記のような防食処理工程がなされた後
に、塗覆装材の欠陥検査方法の一実施例であるエアボイ
ドや密着不良部等の欠陥部の有無の欠陥検査工程に進
む。先ず、防食処理工程時で加熱した部分を一旦室温ま
で冷却した後に、新たに、赤外線ランプ、レーザー光、
ガスバーナー或いは電熱器等によって防食塗覆装材1を
加熱する。その後、加熱収縮させた防食塗覆装材1を自
然冷却させて温度分布の測定を行う。温度分布の測定
は、赤外線カメラ3によって行い、その熱画像信号をコ
ンピュータ等の画像処理装置4に入力して画像処理を行
って、防食塗覆装材1の表面の温度分布を観測してエア
ボイドや密着不良箇所等の欠陥部を検出する。また、他
の検査方法としては、防食処理工程時で加熱した部分を
所定時間冷却した後に、赤外線カメラ3でその表面部分
の温度分布を測定して欠陥部を検出してもよい。尚、防
食処理工程と欠陥検査工程の各処理工程における防食塗
覆装材の表面温度は、赤外線放射温度計7で観測しなが
ら作業を行う。
After the above-described anticorrosion treatment process is performed, the process proceeds to a defect inspection process for the presence / absence of a defect such as an air void or a poor adhesion portion, which is one embodiment of the defect inspection method for the coating material. First, after the portion heated in the anticorrosion treatment step is once cooled to room temperature, a new infrared lamp, laser light,
The anticorrosion coating material 1 is heated by a gas burner or an electric heater. Then, the heat-shrinked anticorrosion coating material 1 is naturally cooled and the temperature distribution is measured. The temperature distribution is measured by the infrared camera 3, the thermal image signal thereof is input to the image processing device 4 such as a computer to perform image processing, and the temperature distribution on the surface of the anticorrosion coating material 1 is observed to detect the air voids. Detecting defective parts such as or defective adhesion. As another inspection method, after the portion heated in the anticorrosion treatment step is cooled for a predetermined time, the infrared camera 3 may measure the temperature distribution of the surface portion to detect the defective portion. The surface temperature of the anticorrosion coating material in each processing step of the anticorrosion processing step and the defect inspection step is observed while being observed by the infrared radiation thermometer 7.

【0013】以下、エアボイドや密着不良箇所の欠陥検
査方法における赤外線カメラによる温度分布の測定の有
効性について実験結果に基づき説明する。図1を参照し
て説明する。この実験では、750Aポリエチレン被覆
鋼管2を溶接して、その溶接継手部2cを防食塗覆装材
1(例えば、750A用熱収縮性樹脂,厚さ3mm)で
被覆して人為的に直径6mmと20mmのエアボイドを
形成した。防食塗覆装材1を熱収縮させた後、室温まで
一旦冷却させて、再び、防食塗覆装材1を赤外線ランプ
等で加熱して表面温度分布を測定することによってエア
ボイドを検出した。その検査結果が図2に示されてい
る。図2は横軸が防食塗覆装材の初期表面温度からの加
熱からの加熱温度を示し、縦軸が10個のエアボイド中
の判定個数を示している。図中の破線(イ)は直径が6
mmのエアボイドの各表面温度に対する検出個数を示
し、実線(ロ)は直径が20mmのエアボイドの各表面
温度に対する検出個数を示している。
The effectiveness of measuring the temperature distribution by an infrared camera in the defect inspection method for air voids and poor adhesion will be described below based on experimental results. This will be described with reference to FIG. In this experiment, a 750A polyethylene-coated steel pipe 2 was welded, and its weld joint portion 2c was coated with an anticorrosion coating covering material 1 (for example, heat-shrinkable resin for 750A, thickness 3mm) to artificially increase the diameter to 6mm. A 20 mm air void was formed. After the anticorrosion coating material 1 was heat-shrinked, it was once cooled to room temperature, and again the anticorrosion coating material 1 was heated with an infrared lamp or the like to measure the surface temperature distribution to detect air voids. The inspection result is shown in FIG. In FIG. 2, the horizontal axis shows the heating temperature from the heating from the initial surface temperature of the anticorrosion coating material, and the vertical axis shows the number of judgments in 10 air voids. The broken line (a) in the figure has a diameter of 6
The number detected for each surface temperature of the air void of mm is shown, and the solid line (b) shows the number detected for each surface temperature of the air void having a diameter of 20 mm.

【0014】図2から明らかなように、約3℃から約3
5℃の範囲では破線(イ)と実線(ロ)のエアボイドが
何れも100%(10個/10個)が検出されている。
破線(イ)の場合では、約1℃の場合は70%(7個/
10個)が検出され、約35℃から130℃までの範囲
で80%(8個/10個)のエアボイドが検出され、1
30℃から200℃の範囲では段階的に検出率が低下し
ている。一方、実線(ロ)の場合は、約1℃の場合は8
0%(8個/10個)が検出され、約35℃から160
℃までの範囲では90%(9個/10個)のエアボイド
が検出され、160℃から200℃の範囲では段階的に
検出率が低下している。
As is apparent from FIG. 2, about 3 ° C. to about 3 ° C.
In the range of 5 ° C., 100% (10/10) of the air voids indicated by the broken line (a) and the solid line (b) are both detected.
In the case of the broken line (a), 70% (7 pieces /
10) were detected, 80% (8/10) air voids were detected in the range from about 35 ℃ to 130 ℃, and 1
The detection rate gradually decreases in the range of 30 ° C to 200 ° C. On the other hand, in the case of the solid line (b), it is 8 when it is about 1 ° C.
0% (8/10) detected, about 35 to 160
90% (9/10) of air voids are detected in the range up to ° C, and the detection rate gradually decreases in the range from 160 ° C to 200 ° C.

【0015】また、この結果からエアボイドを検出する
のに最も適した表面温度の範囲は、初期表面より3〜3
5℃高い温度が適していることを示している。しかし、
検出率を50%に落とせば、エアボイドの直径によって
も異なるが、直径が20mmの場合、表面温度が1〜1
80℃高い温度まで検出が可能である。更に、直径の大
きいエアボイドであれば、200℃まで検出することが
できる。このように検出率はエアボイドの直径に依存し
ているが、概ね防食塗覆装材の表面温度が1℃以上20
0℃以下までの範囲でエアボイドの検出が可能である。
また、この検出率は防食塗覆装材の厚さにも依存するこ
とは明らかである。また、図2では、加熱温度を1℃に
すると検出率が下がっているが、これは健全部分と欠陥
部との間の温度差自体も小さくなるために検出率が下が
るためである。
From this result, the most suitable surface temperature range for detecting air voids is 3 to 3 from the initial surface.
It has been shown that a temperature of 5 ° C. higher is suitable. But,
If the detection rate is reduced to 50%, it depends on the diameter of the air void, but when the diameter is 20 mm, the surface temperature is 1 to 1
It is possible to detect up to 80 ° C higher temperature. Furthermore, even an air void having a large diameter can be detected up to 200 ° C. As described above, the detection rate depends on the diameter of the air void, but generally the surface temperature of the anticorrosion coating material is 1 ° C or higher and 20
Air voids can be detected in the range up to 0 ° C.
It is also clear that this detection rate also depends on the thickness of the anticorrosion coating material. Further, in FIG. 2, the detection rate decreases when the heating temperature is set to 1 ° C. This is because the detection rate decreases because the temperature difference itself between the sound portion and the defective portion also decreases.

【0016】次に、従来と実施例の検査方法との検出率
の相違を表1,表2に示す。表1は、防食塗覆装材を加
熱収縮させて鋼管に密着させ、室温まで冷却させた後、
防食塗覆装材の加熱温度を、その初期表面温度より20
℃高い温度に設定して欠陥部の検査を行った実験結果に
よる検出率を示したものであり、従来の検査方法は目視
や指触による。表2は、防食塗覆処理時に加熱して防食
塗覆装材を加熱収縮した後、自然冷却させて検出を行っ
た実験結果を示したものである。
Next, Tables 1 and 2 show the difference in detection rate between the conventional inspection method and the inspection method of the embodiment. Table 1 shows that the anticorrosion coating material was heat-shrinked to adhere to the steel pipe, and after cooling to room temperature,
The heating temperature of the anticorrosion coating material is 20 from the initial surface temperature.
The detection rate is shown by an experimental result of inspecting a defective portion by setting the temperature higher by ℃, and the conventional inspection method is visual inspection or finger touch. Table 2 shows the results of an experiment in which, during the anticorrosion coating treatment, the anticorrosion coating covering was heated and shrunk, and then naturally cooled to perform detection.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示した実験結果では、従来例の目視
や指触による方法では、直径が6mmのエアボイドは検
出ができなかった。しかし、実施例1の方法では、10
0%の検出ができた。また、直径が10mmのエアボイ
ドの場合では、従来の検出方法では30%(3個/10
個)の検出率であったが、実施例1では100%の検出
ができた。また、表2に示した実験結果では、エアボイ
ドの直径が10mmと20mmの場合の検出率を目視や
指触による方法と実施例による方法とで比較した。
According to the experimental results shown in Table 1, an air void having a diameter of 6 mm could not be detected by the conventional visual or finger touch method. However, in the method of Example 1, 10
0% detection was possible. Further, in the case of an air void having a diameter of 10 mm, 30% (3/10
However, in Example 1, 100% could be detected. In addition, in the experimental results shown in Table 2, the detection rates when the diameters of the air voids are 10 mm and 20 mm were compared between the method by visual observation and finger touch and the method according to the example.

【0019】表2に示した実験結果では、エアボイドの
直径が10mmの場合、従来の方法では10%(1個/
10個)の検出率であったが、実施例の方法では90%
(9個/10個)の検出率であった。また、エアボイド
の直径が20mmの場合、従来の方法では30%(3個
/10個)の検出率であったが、実施例1では100%
(10個/10個)の検出率であった。尚、エアボイド
の位置の確認は剥離検査で確認した。また、表1,2に
示したように、エアボイドの直径が10mmの場合の結
果から明らかなように、検査に多少の誤差が発生するこ
とを示している。
According to the experimental results shown in Table 2, when the diameter of the air void is 10 mm, 10% (1 piece /
The detection rate was 10), but 90% in the method of the example.
The detection rate was (9/10). Further, when the diameter of the air void is 20 mm, the detection rate was 30% (3/10) in the conventional method, but 100% in Example 1.
The detection rate was (10 pieces / 10 pieces). The position of the air void was confirmed by a peeling test. Further, as shown in Tables 1 and 2, it is shown that some errors occur in the inspection, as is clear from the results when the air void diameter is 10 mm.

【0020】次に、図3に基づいてエアボイド等の欠陥
検出における測定条件について詳細に説明する。図3の
縦軸が防食塗覆装の表面温度を示し、横軸が冷却時間で
ある。同図に於いて、aは防食塗覆装材で被覆された被
覆鋼管の防食塗覆装材の初期表面温度を示している。b
は加熱温度を示し、cは測定温度範囲を示している。
(イ)が健全に接着されている部分の温度冷却曲線であ
り、(ロ)がエアボイド等の欠陥部の温度冷却曲線であ
る。
Next, the measurement conditions for detecting defects such as air voids will be described in detail with reference to FIG. The vertical axis of FIG. 3 represents the surface temperature of the anticorrosion coating, and the horizontal axis represents the cooling time. In the figure, a indicates the initial surface temperature of the anticorrosion coating material of the coated steel pipe coated with the anticorrosion coating material. b
Indicates the heating temperature, and c indicates the measurement temperature range.
(A) is a temperature cooling curve of a portion that is soundly bonded, and (B) is a temperature cooling curve of a defective portion such as an air void.

【0021】図3に示した測定条件について説明する
と、被覆鋼管の現地溶接継手部を覆う防食塗覆装材を加
熱してその表面温度を初期表面温度aより10℃乃至2
0℃高い温度に加熱した。その後、自然冷却して所定経
過時間毎の温度分布を測定した結果を示すものである。
測定温度は表面温度から1.8〜4.2℃高い温度で行
い、センサの感度は0.3℃で測定を行った。センサの
感度が高い場合は、時間変化に対して温度分布を示す色
の分布が激しく変動するために検出効率を低下させる原
因となるが、センサの感度は0.3℃の場合には、時間
変化に対して温度分布を示す色の変化が緩やかとなり、
エアボイドを検出する場合の検出効率が良好であること
が分かった。すなわち、温度のサンプリング時間を任意
に設定することにより、検出効率を向上させることがで
きる。
Explaining the measurement conditions shown in FIG. 3, the anticorrosion coating material covering the on-site welded joint of the coated steel pipe is heated so that its surface temperature is 10 ° C. to 2 ° C. higher than the initial surface temperature a.
Heated to 0 ° C. higher temperature. After that, the result of natural cooling and measurement of the temperature distribution at every predetermined elapsed time is shown.
The measurement temperature was 1.8 to 4.2 ° C. higher than the surface temperature, and the sensor sensitivity was 0.3 ° C. When the sensitivity of the sensor is high, the color distribution showing the temperature distribution fluctuates drastically with time, which causes a decrease in the detection efficiency. The change of the color showing the temperature distribution becomes gentle with respect to the change,
It was found that the detection efficiency is good when detecting air voids. That is, the detection efficiency can be improved by arbitrarily setting the temperature sampling time.

【0022】しかし、これらの結果は、その防食塗覆装
材の材質や厚さ等に影響するために、材質の比熱や厚
さ、加熱温度によってこれらの値は異なる。エアボイド
や密着不良箇所内の空気が断熱装となり、冷却速度が遅
いことに着目して温度分布を検査することによってエア
ボイド等の欠陥部分を検出するものである。尚、図3の
欠陥部分(エアボイド)と健全部分の温度冷却曲線
(イ),(ロ)は、本発明の理解を容易にするためにモ
デル的に示したものである。
However, since these results affect the material and thickness of the anticorrosion coating material, these values differ depending on the specific heat and thickness of the material and the heating temperature. The air in the air voids or the poorly adhered portion serves as a heat insulating device, and the temperature distribution is inspected by focusing on the slow cooling rate to detect defective portions such as air voids. The temperature cooling curves (a) and (b) of the defective portion (air void) and the sound portion in FIG. 3 are shown as a model in order to facilitate understanding of the present invention.

【0023】(実施例2)図4は、塗覆装材の欠陥検査
方法の他の実施例を説明する為の図である。同図に於い
て、図1と同一部分には同一符号が付与されている。同
図では、防食塗覆装材1の加熱収縮には、ガスバーナー
を用いて行い、防食塗覆装材1は現地溶接継手部2cと
鋼管2aの露出部及び被覆材2bを覆って、防食処理が
なされている。熱収縮させた防食塗覆装材1の温度を自
然冷却した後に、赤外線ヒータ(または、パネルヒー
タ)8を用いて防食塗覆装材1を加熱する。その後、図
3の冷却曲線から求められる所定時間経過後に、赤外線
カメラ3でその表面部分の温度分布を測定する。赤外線
カメラ3からの画像信号をケーブル5を通してコンピュ
ータ等の画像処理装置4に入力してアエボイドや密着不
良箇所等の欠陥部の検出を行う。尚、この場合もアエボ
イドや密着不良箇所等の欠陥部の検出率は先に説明した
通りである。また、シート状のヒータ(赤外線ヒータや
パネルヒータ)を用いて防食塗覆装材1を加熱すること
により、広い面積を一度に加熱することができるので、
温度分布の観察が容易であり、検出効率を高めるのによ
い。
(Embodiment 2) FIG. 4 is a view for explaining another embodiment of the defect inspection method for the coating covering material. In the figure, the same parts as those in FIG. 1 are designated by the same reference numerals. In the figure, the heat shrinkage of the anticorrosion coating covering material 1 is performed using a gas burner, and the anticorrosion coating covering material 1 covers the on-site welded joint 2c, the exposed portion of the steel pipe 2a and the covering material 2b to prevent corrosion. Processing is being done. After the temperature of the heat-shrinked anticorrosion coating material 1 is naturally cooled, the anticorrosion coating material 1 is heated using an infrared heater (or panel heater) 8. Then, after a lapse of a predetermined time obtained from the cooling curve of FIG. 3, the infrared camera 3 measures the temperature distribution of the surface portion. An image signal from the infrared camera 3 is input to the image processing device 4 such as a computer through the cable 5 to detect defective portions such as a void or a defective adhesion portion. In this case as well, the detection rate of defective portions such as a void and a poorly adhered portion is as described above. In addition, by heating the anticorrosion coating material 1 using a sheet-shaped heater (infrared heater or panel heater), a large area can be heated at one time.
The temperature distribution can be easily observed, which is good for improving the detection efficiency.

【0024】(実施例3)図5は、塗覆装材の欠陥検査
方法の他の実施例を説明する為の図である。同図に於い
て、図1と同一部分には同一符号が付与されている。同
図では実施例2と同様に、赤外線ヒータ8を用いて防食
塗覆装材1を加熱して収縮させ、防食塗覆装材1を溶接
部2cと鋼管2aの露出部を被覆材2bを覆っている。
続いて、防食塗覆装材1を加熱収縮させて一旦冷却した
後に、防食塗覆装材1を加熱して赤外線カメラ3でその
表面部分の温度分布を鏡10を通して測定する。温度分
布の測定は、防食塗覆層材1から放射される赤外線を鏡
10で反射させてその赤外線を赤外線カメラ3で撮ら
え、赤外線カメラ3からの画像信号がケーブル5を通し
てコンピュータ等の画像処理装置4に入力される。加熱
処理時の塗覆装材1の表面温度は赤外線放射温度計7で
計測する。次に、実施例3j従来例によるエアボイドの
検出率の比較を表3に示す。
(Embodiment 3) FIG. 5 is a view for explaining another embodiment of the defect inspection method for the coating covering material. In the figure, the same parts as those in FIG. 1 are designated by the same reference numerals. In the same figure, as in the second embodiment, the anticorrosion coating material 1 is heated and contracted by using the infrared heater 8, and the anticorrosion coating material 1 is welded to the welded portion 2c and the exposed portion of the steel pipe 2a to the coating material 2b. Covering.
Then, the anticorrosion coating material 1 is heated and shrunk and once cooled, then the anticorrosion coating material 1 is heated and the infrared camera 3 measures the temperature distribution of its surface portion through the mirror 10. To measure the temperature distribution, infrared rays emitted from the anticorrosion coating layer material 1 are reflected by a mirror 10 and the infrared rays are taken by an infrared camera 3, and an image signal from the infrared camera 3 is processed by a computer such as a computer through a cable 5. Input to the device 4. The surface temperature of the coating material 1 at the time of heat treatment is measured by the infrared radiation thermometer 7. Next, Table 3 shows a comparison of air void detection rates according to the conventional example of Example 3j.

【0025】[0025]

【表2】 [Table 2]

【0026】表3は、人為的にエアボイドを10個形成
して実施例と従来例による方法で検査した結果を示すも
のである。従来の目視や指触による検査と比較した場合
は、エアボイドの直径が6mmでは検出が不可能であっ
たが、実施例3によれば、90%(9個/10個)の検
出が可能であった。また、その直径が20mmの場合で
は従来の検査方法では30%(3個/10個)であった
のに対し、実施例1,2の検査方法では100%が検出
された。この実施例では、直接温度分布を検出する方法
と比較して直径が6mmの場合、直接防食塗覆装材1の
表面温度を検出する場合と比較して多少欠陥部の検出率
が低下している。しかし、欠陥部の検出に当たり鏡を用
いることによって測定が困難な部分であっても検査が容
易となる。
Table 3 shows the results of inspecting by artificially forming 10 air voids by the method according to the example and the conventional example. When compared with the conventional visual inspection and finger touch inspection, detection was not possible when the air void diameter was 6 mm, but according to Example 3, 90% (9/10) detection was possible. there were. When the diameter was 20 mm, the conventional inspection method had 30% (3/10 pieces), while the inspection methods of Examples 1 and 2 detected 100%. In this embodiment, when the diameter is 6 mm as compared with the method of directly detecting the temperature distribution, the detection rate of the defective portion is slightly lowered as compared with the case of directly detecting the surface temperature of the anticorrosion coating material 1. There is. However, by using a mirror to detect the defective portion, inspection can be facilitated even in a portion where measurement is difficult.

【0027】(実施例4)次に、本発明に係る塗覆装材
の欠陥検査方法の他の実施例について説明する。尚、被
検査物と測定器等の配置は、図1,図4,図5で説明し
た同じ方法による。この実施例では、防食塗覆装材の温
度分布を時間微分して得られる画像信号に基づいて、エ
アボイド等の欠陥部を検出するものである。
(Embodiment 4) Next, another embodiment of the method for inspecting defects of a coated covering material according to the present invention will be described. Incidentally, the arrangement of the object to be inspected, the measuring device and the like is based on the same method described in FIGS. In this embodiment, a defect such as an air void is detected based on an image signal obtained by time-differentiating the temperature distribution of the anticorrosion coating material.

【0028】上記実施例に示したように、防食塗覆装材
に人為的に直径が6mm,15mmのエアボイドを形成
した後に、防食塗覆装材を加熱してその冷却過程から得
られる画像信号を時間微分して欠陥部を検出する方法で
ある。時間微分して得られる画像は欠陥部の輪郭が一層
明確になり、エアボイドの大きさが明らかになる。従っ
て、鏡を用いて防食塗覆装材の温度分布を検出した後、
時間微分することによって多少検出効率が低下したとし
ても、より境界部が明確になるので検出率を高めること
ができる。また、画像信号を時間微分処理することによ
って、上記に示した検出結果より、更に、良好な検出結
果を得ることができる。
As shown in the above embodiment, after artificially forming air voids having diameters of 6 mm and 15 mm in the anticorrosion coating material, the anticorrosion coating material is heated to obtain an image signal obtained from the cooling process. Is time-differentiated to detect a defective portion. In the image obtained by differentiating with time, the outline of the defect becomes clearer and the size of the air void becomes clearer. Therefore, after detecting the temperature distribution of the anticorrosion coating using a mirror,
Even if the detection efficiency is slightly lowered by performing the time differentiation, the boundary can be made clearer, so that the detection rate can be increased. Further, by performing time differentiation processing on the image signal, it is possible to obtain a better detection result than the above-described detection result.

【0029】[0029]

【表3】 [Table 3]

【0030】この測定結果は、画像信号を時間微分する
ことによって、従来の検査方法と比較して測定誤差が少
ないことを示している。従来の検査方法ではエアボイド
の直径が6mmの場合、19%の測定誤差が発生するの
に対して、本発明による検査方法では、僅か7%の測定
誤差が発生するのみである。また、エアボイドの直径が
15mmの場合では、12%の測定誤差が発生するのに
対して、本発明による検査方法では、僅か5%の測定誤
差が発生するのみである。この結果から明らかなよう
に、実施例4の熱画像信号を時間微分する方法によっ
て、欠陥部の検出精度が高くなる。更に、この結果は、
上記の実施例1乃至3にも適用される。従って、熱画像
信号を時間微分することによって、測定条件が緩和され
ることを意味し、一層検出率を高めることができる。ま
た、欠陥部の輪郭が明確になり、位置の特定が容易であ
るので、欠陥部の補修が短時間になし得る。
This measurement result indicates that the measurement error is small as compared with the conventional inspection method by differentiating the image signal with respect to time. In the conventional inspection method, when the air void diameter is 6 mm, a measurement error of 19% occurs, whereas in the inspection method of the present invention, a measurement error of only 7% occurs. Further, when the diameter of the air void is 15 mm, a measurement error of 12% occurs, whereas in the inspection method according to the present invention, a measurement error of only 5% occurs. As is clear from this result, the method of differentiating the thermal image signal of Example 4 with respect to time increases the accuracy of detecting a defective portion. Furthermore, the result is
The same applies to the first to third embodiments described above. Therefore, by differentiating the thermal image signal with time, it means that the measurement conditions are relaxed, and the detection rate can be further increased. Further, since the contour of the defective portion becomes clear and the position can be easily specified, the defective portion can be repaired in a short time.

【0031】[0031]

【発明の効果】上述のように、本発明によれば、被覆鋼
管の現地溶接継手部を被覆する防食塗覆装材の浮きや膨
れ等の欠陥の存在及び位置を容易に検出することが可能
である。従来、目視や指触によってエアボイド等の欠陥
部を検出していたが、欠陥部の検出が不十分であり、防
食に対する信頼性が完全でなかった。しかし、本発明の
検査方法によれば、小さなアエボイド等の欠陥を略10
0%検出することが可能であり、而も、その位置の特定
が容易であるので、その補修に時間を要することがな
く、容易に欠陥部の補修ができる利点があり、現地溶接
継手部の防食に対する信頼性が一層高められる利点があ
る。
As described above, according to the present invention, it is possible to easily detect the presence and position of defects such as floating and swelling of the anticorrosion coating covering material that covers the on-site welded joint portion of the coated steel pipe. Is. Conventionally, a defective portion such as an air void has been detected by visual inspection or touch with a finger, but the defective portion is not sufficiently detected, and the reliability of anticorrosion is not perfect. However, according to the inspection method of the present invention, defects such as small aevoids can be detected in about 10
It is possible to detect 0%, and since the position can be easily specified, there is an advantage that repairing the defect does not take time and the defect can be easily repaired. There is an advantage that the reliability of anticorrosion is further enhanced.

【0032】また、防食塗覆装材の欠陥検査方法に於い
て、鏡を用いてその反射赤外線を検出して防食塗覆装材
表面の温度分布を検出することによって、欠陥部を比較
的検出の困難な部分であっても容易に検出することがで
きる利点がある。また、画像処理装置で熱画像信号を時
間微分処理をすることにより一層検出率を高めることが
できる利点がある。また、現地溶接継手部の防食施工時
に加熱処理をして防食塗覆装を形成しており、この加熱
した防食塗覆装を冷却してその温度分布を計測すること
によって、アエボイド等の検出が可能であり、防食施工
の後に、検査を行う際には、新たな加熱をする工程を省
くことが可能である。
Further, in the defect inspection method for the anticorrosion coating material, the defect is relatively detected by detecting the infrared ray reflected by the mirror to detect the temperature distribution on the surface of the anticorrosion coating material. There is an advantage that even a difficult part can be easily detected. Further, there is an advantage that the detection rate can be further increased by subjecting the thermal image signal to the time differential processing in the image processing apparatus. In addition, the anti-corrosion coating is formed by heat treatment during the anti-corrosion construction of the on-site welded joint.By cooling this heated anti-corrosion coating and measuring its temperature distribution, it is possible to detect aevoid, etc. It is possible, and it is possible to omit the step of newly heating when performing the inspection after the anticorrosion construction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る塗覆装材の欠陥検査方法における
被検査物と測定装置の配置を示す図である。
FIG. 1 is a diagram showing an arrangement of an object to be inspected and a measuring device in a defect inspection method for a coating covering material according to the present invention.

【図2】本発明による塗覆装材の欠陥検査方法における
加熱温度に対する欠陥部の判定個数を示す図である。
FIG. 2 is a diagram showing the number of defects determined with respect to the heating temperature in the defect inspection method for a coated covering material according to the present invention.

【図3】現地溶接継手部を被覆する塗覆装材の欠陥部と
健全部の温度冷却曲線をモデル的に示した図である。
FIG. 3 is a diagram showing, as a model, a temperature cooling curve of a defective portion and a sound portion of the coating material covering the field welded joint.

【図4】本発明に係る塗覆装材の欠陥検査方法における
被検査物と測定装置の他の配置を示す図である。
FIG. 4 is a diagram showing another arrangement of the object to be inspected and the measuring device in the defect inspection method for the coating covering material according to the present invention.

【図5】本発明に係る塗覆装材の欠陥検査方法における
被検査物と測定装置の他の配置を示す図である。
FIG. 5 is a diagram showing another arrangement of the object to be inspected and the measuring device in the defect inspection method for the coating covering material according to the present invention.

【図6】エアボイドを示す断面図である。FIG. 6 is a cross-sectional view showing an air void.

【符合の説明】[Description of sign]

1 防食被覆装材 2 被覆鋼管 2a 鋼管 2b 被覆材 2c 溶接継手部 2d 接着剤層 3 赤外線カメラ 4 画像処理装置 5 ケーブル 6 ガスバーナー 7 赤外線放射温度計 8 赤外線ヒータ 10 鏡 DESCRIPTION OF SYMBOLS 1 Anticorrosion coating material 2 Coating steel pipe 2a Steel pipe 2b Coating material 2c Weld joint part 2d Adhesive layer 3 Infrared camera 4 Image processing device 5 Cable 6 Gas burner 7 Infrared radiation thermometer 8 Infrared heater 10 Mirror

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川村 正 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 平田 元史 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Tadashi Kawamura, 1-2, Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Co., Ltd. (72) Motofumi Hirata, 1-2, Marunouchi, Chiyoda-ku, Tokyo Date Main Steel Pipe Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被覆鋼管の現地溶接継手部を接着剤層と
防食装からなる塗覆装材を加熱して、該塗覆装材の温度
を冷却して、その温度分布を赤外線カメラで観測して冷
却速度の遅い箇所からエアーボイドの発生を検知するこ
とを特徴とする塗覆装材の欠陥検査方法。
1. An on-site welded joint of a coated steel pipe is heated by heating a coating material comprising an adhesive layer and anticorrosion equipment, the temperature of the coating material is cooled, and the temperature distribution is observed by an infrared camera. Then, a method for inspecting defects of a coated covering material is characterized in that the occurrence of air voids is detected from a location having a slow cooling rate.
【請求項2】 前記塗覆装材の温度分布を鏡の反射によ
る赤外線を赤外線カメラで観測することを特徴とする請
求項1記載の塗覆装材の欠陥検査方法。
2. The defect inspection method for the coating and covering material according to claim 1, wherein the temperature distribution of the coating and covering material is observed by an infrared camera for infrared rays reflected by a mirror.
【請求項3】 前記塗覆装材の加熱温度を初期温度より
1〜200℃高くすることを特徴とする請求項1又は2
に記載の塗覆装材の欠陥検査方法。
3. The heating temperature of the coating and covering material is set to be 1 to 200 ° C. higher than the initial temperature.
The method for inspecting defects of the coating and covering material according to.
【請求項4】 前記塗覆装材の温度分布を時間微分して
その分布からエアーボイドの大きさを検査することを特
徴とする請求項1,2又は3に記載の塗覆装材の欠陥検
査方法。
4. The defect of the coating material according to claim 1, wherein the temperature distribution of the coating material is differentiated with respect to time and the size of the air void is inspected from the distribution. Inspection methods.
JP06291215A 1994-11-25 1994-11-25 Defect inspection method for painted covering materials Expired - Lifetime JP3079920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06291215A JP3079920B2 (en) 1994-11-25 1994-11-25 Defect inspection method for painted covering materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06291215A JP3079920B2 (en) 1994-11-25 1994-11-25 Defect inspection method for painted covering materials

Publications (2)

Publication Number Publication Date
JPH08145922A true JPH08145922A (en) 1996-06-07
JP3079920B2 JP3079920B2 (en) 2000-08-21

Family

ID=17765963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06291215A Expired - Lifetime JP3079920B2 (en) 1994-11-25 1994-11-25 Defect inspection method for painted covering materials

Country Status (1)

Country Link
JP (1) JP3079920B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129492B2 (en) 2003-07-29 2006-10-31 Toyota Motor Manufacturing North America, Inc. Systems and methods for inspecting coatings
US7220966B2 (en) 2003-07-29 2007-05-22 Toyota Motor Manufacturing North America, Inc. Systems and methods for inspecting coatings, surfaces and interfaces
JP2009133845A (en) * 2007-11-02 2009-06-18 Kanto Chem Co Inc Non-destructive inspection method of lining tank
WO2009136380A1 (en) 2008-05-09 2009-11-12 Aygaz Anonim Sirketi A control system
CN102466643A (en) * 2010-11-18 2012-05-23 中国石油天然气集团公司 Method for checking electric arc burn defect in pipeline welding process
US8204294B2 (en) 2009-11-25 2012-06-19 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for detecting defects in coatings utilizing color-based thermal mismatch
KR101314553B1 (en) * 2012-04-13 2013-10-07 민성정보기술(주) Welding state discrimination device having function of image transmission
KR20160085288A (en) * 2013-11-08 2016-07-15 써머툴 코포레이션 Heat energy sensing and analysis for welding processes
CN105928979A (en) * 2016-07-05 2016-09-07 南京中车浦镇城轨车辆有限责任公司 Method and equipment for measuring friction stir welding holes
WO2018064104A1 (en) * 2016-09-28 2018-04-05 Amazon Technologies, Inc. Automated thermographic inspection for composite structures
US10168217B2 (en) 2016-09-28 2019-01-01 Amazon Technologies, Inc. Automated thermographic inspection for composite structures
US10175186B2 (en) 2016-09-28 2019-01-08 Amazon Technologies, Inc. Thermographic inspection process for composite vehicle and components

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10564108B2 (en) 2017-07-03 2020-02-18 Saudi Arabian Oil Company Apparatus and method for nondestructively inspecting fiberglass and nonmetallic pipes

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129492B2 (en) 2003-07-29 2006-10-31 Toyota Motor Manufacturing North America, Inc. Systems and methods for inspecting coatings
US7220966B2 (en) 2003-07-29 2007-05-22 Toyota Motor Manufacturing North America, Inc. Systems and methods for inspecting coatings, surfaces and interfaces
JP2009133845A (en) * 2007-11-02 2009-06-18 Kanto Chem Co Inc Non-destructive inspection method of lining tank
WO2009136380A1 (en) 2008-05-09 2009-11-12 Aygaz Anonim Sirketi A control system
US8204294B2 (en) 2009-11-25 2012-06-19 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for detecting defects in coatings utilizing color-based thermal mismatch
CN102466643A (en) * 2010-11-18 2012-05-23 中国石油天然气集团公司 Method for checking electric arc burn defect in pipeline welding process
KR101314553B1 (en) * 2012-04-13 2013-10-07 민성정보기술(주) Welding state discrimination device having function of image transmission
KR20160085288A (en) * 2013-11-08 2016-07-15 써머툴 코포레이션 Heat energy sensing and analysis for welding processes
CN105928979A (en) * 2016-07-05 2016-09-07 南京中车浦镇城轨车辆有限责任公司 Method and equipment for measuring friction stir welding holes
WO2018064104A1 (en) * 2016-09-28 2018-04-05 Amazon Technologies, Inc. Automated thermographic inspection for composite structures
US10168217B2 (en) 2016-09-28 2019-01-01 Amazon Technologies, Inc. Automated thermographic inspection for composite structures
US10175186B2 (en) 2016-09-28 2019-01-08 Amazon Technologies, Inc. Thermographic inspection process for composite vehicle and components
US10732047B2 (en) 2016-09-28 2020-08-04 Amazon Technologies, Inc. Automated thermographic inspection for composite structures

Also Published As

Publication number Publication date
JP3079920B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
JP3079920B2 (en) Defect inspection method for painted covering materials
US4983836A (en) Method for detecting thinned out portion on inner surface or outer surface of pipe
JPS61120950A (en) Inspection for inside of piping
JP2008014959A (en) Method for inspecting coating member for interface defects
Zakar et al. Fracture of a saddle fusion (weld) joint in high density polyethylene (HDPE) pipe
JP3275770B2 (en) Defect inspection method for resin-coated steel
CN113567501A (en) Nondestructive testing method and device for weld penetration uniformity and cracks of tube plate plug
JP2653532B2 (en) Surface defect inspection equipment
JP3275796B2 (en) Manufacturing equipment for resin-coated steel
JPH11344390A (en) Device for detecting damaged position of pipe or container
EP1882923A3 (en) Method and apparatus for ultrasonic inspection of steel pipes
JPS59151046A (en) Inside defect detecting method
Gueugnaut et al. Ultrasonic phased array inspection of electrofused joints implemented in polyethylene gas piping systems
JP3099649B2 (en) Self-propelled defect detection system for tubular coating
JP3152955B2 (en) Non-destructive inspection method for divertor plate
JPH07218459A (en) Method for detecting inside corrosion of pipe
JP2001330594A (en) Inspection method of metal pipe bonded body
JP2001004574A (en) Interface defect inspection method of coating member
JP3147272B2 (en) Defect height measurement method for ultrasonic flaw detector
Hagemaier Nondestructive Inspection
JPS59145959A (en) Defect detecting method of pipe weld zone
JPH0356847A (en) Nondestructive detecting method for interfacial defect of coating member
JPS62126338A (en) Method for detecting flaw of ceramic coating
Russell et al. Detection, Location, and Classification of Space Shuttle Main Engine Nozzle Leaks by Transient Thermographic Inspection
JPS60123712A (en) Measuring method of thickness of lining on inner surface of pipe

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140623

Year of fee payment: 14

EXPY Cancellation because of completion of term