JPH08145921A - Measuring equipment of flammability limits - Google Patents

Measuring equipment of flammability limits

Info

Publication number
JPH08145921A
JPH08145921A JP31000394A JP31000394A JPH08145921A JP H08145921 A JPH08145921 A JP H08145921A JP 31000394 A JP31000394 A JP 31000394A JP 31000394 A JP31000394 A JP 31000394A JP H08145921 A JPH08145921 A JP H08145921A
Authority
JP
Japan
Prior art keywords
explosion
oxygen
temperature
air
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31000394A
Other languages
Japanese (ja)
Inventor
Hitoshi Kikawa
仁 木川
Masaru Takagi
優 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP31000394A priority Critical patent/JPH08145921A/en
Publication of JPH08145921A publication Critical patent/JPH08145921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE: To enable the measurement of lower and upper flash points of an organic substance at an arbitrary temperature and flammability limit oxygen concentration thereof with ease, accuracy and excellent reproducibility by a method wherein inactive gas and oxygen or air of arbitrary concentrations are introduced into a sealed vessel and heated to a desired temperature by a heating device and the measuring is conducted. CONSTITUTION: A pressure inside a sealed vessel 1 being reduced by a vacuum pump, inactive gas and oxygen or air are introduced 13 into the vessel 1 and an oxygen (air)-inactive gas mixture of prescribed oxygen concentration is produced. Next, the needle of a syringe in which a sample (organic substance) is put is inserted into a cork 2 for sealing, the sample in an appropriate quantity is injected into the bottom part of the vessel 1, the temperature of oil 8 in an oil bath 7 is raised with agitation 6, and when the temperature of the sample and that of the mixed gas reach desired temperatures, explosion is made to occur by a discharge between electrodes 4. By this explosion experiment, a vapor pressure and the explosion temperature of an arbitrary organic substance at an arbitrary oxygen temperature can be measured and the flammability limit oxygen temperature and the lower and upper flash points of the organic substance can be measured with excellent reproducibility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機物質の蒸気を不活
性ガスで任意の濃度で希釈された酸素と混合した混合試
料ガスの下部引火点と上部引火点及び爆発限界酸素濃度
を簡単にしかも正確に測定する爆発限界領域測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention makes it possible to easily determine the lower flash point and upper flash point and the explosive limit oxygen concentration of a mixed sample gas in which a vapor of an organic substance is mixed with oxygen diluted with an inert gas to any concentration Moreover, the present invention relates to an explosion limit region measuring device that measures accurately.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
有機物質の引火点を測定する手段として、ASTM,I
SOやJISによって承認された多数の装置や測定法が
知られている。例えば、JISによる引火点の測定は、
「タグ密閉式引火点測定装置(JIS K 253
9)」、「ペンスキマルテンス引火点測定装置(JIS
K 2265)」、「クリーブランド開放式引火点測
定装置(JIS K 2274)」などを使用し、原則
としてパイロットフレーム(火炎)を有機物に近づけて
行われる。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
As a means for measuring the flash point of organic substances, ASTM, I
Many devices and measurement methods approved by SO and JIS are known. For example, the flash point measurement by JIS is
"Tag closed flash point measuring device (JIS K 253
9) ”,“ Penski Martens flash point measuring device (JIS
K 2265) ”,“ Cleveland open-type flash point measuring device (JIS K 2274) ”, and the like, in principle, the pilot frame (flame) is brought close to the organic matter.

【0003】しかし、開放式は易揮発性成分が気化して
しまい、また密閉式では蓋の温度が時間的な遅れで凝縮
減少を伴って引火点の上昇を招くなど正確な測定が行え
ない。さらには、これら装置では、気体として任意の混
合気体を使用できなかったり、また引火点も爆発の下限
界の測定しか可能でないなどの問題点がある。
However, in the open type, the volatile components are vaporized, and in the closed type, the temperature of the lid is delayed with time and the flash point is increased due to the decrease in condensation, so that an accurate measurement cannot be performed. Further, these devices have problems that an arbitrary mixed gas cannot be used as a gas, and that the flash point can only measure the lower limit of explosion.

【0004】また、特開昭60−119453号、特開
昭60−252249号、特開平5−172771号公
報には、このような問題を改良しようとする試みがなさ
れているが、これら提案の引火点測定装置は、装置その
ものが複雑であったり、任意の混合気体を使用できない
などの問題点がある。その結果、化学反応などを行う
際、有機物質が原因で爆発する温度、不活性ガスと酸素
との混合比などの測定ができずに被検物質の爆発限界酸
素濃度の測定を種々の温度で測定できないので、単に引
火点測定装置としての働きしかしていない。
Further, in JP-A-60-119453, JP-A-60-252249, and JP-A-5-172771, attempts have been made to improve such a problem. The flash point measuring device has problems that the device itself is complicated and that any mixed gas cannot be used. As a result, when performing chemical reactions, etc., it is not possible to measure the temperature at which an organic substance explodes, the mixing ratio of inert gas and oxygen, etc. Since it cannot be measured, it only functions as a flash point measuring device.

【0005】一方、爆発限界の測定で重要な値である
「上部引火点」の測定は、正確な測定値を求めることが
困難であるといわれている。柳生らは、燃焼筒を使用し
て気体の流通法により引火点を測定している(柳生正
三,産業安全研究所「引火温度と爆発限界の関係線図
(第1集)」、1986)。しかし、本方法は複雑な装
置を使用し、とても簡易型とは言いがたく、しかも、自
由に混合気体を作成できないため、空気系での引火点測
定しか行えないという問題がある。
On the other hand, it is said that it is difficult to obtain an accurate measured value in the measurement of the "top flash point" which is an important value in the measurement of the explosion limit. Yagyu et al. Measure the flash point by a gas flow method using a combustion cylinder (Shozo Yagyu, Institute of Industrial Safety, "Relationship diagram between flash temperature and explosion limit (Vol. 1)", 1986). However, this method uses a complicated device and cannot be said to be a very simple type. Further, since it is not possible to freely prepare a mixed gas, there is a problem that only the flash point can be measured in an air system.

【0006】本発明は、上記事情に鑑みなされたもの
で、有機物質蒸気の任意の混合気体中での下部及び上部
引火点並びに爆発限界酸素濃度を容易にかつ再現可能な
正確さをもって測定できる爆発限界領域測定装置を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and is an explosion in which the lower and upper flash points and the explosion limit oxygen concentration in an arbitrary mixed gas of organic substance vapor can be easily and reproducibly measured. An object is to provide a limit area measuring device.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するため、有機物蒸気と不活性ガスと酸素又は空気と
の混合試料ガスの下部引火点及び上部引火点並びに爆発
限界酸素濃度を測定する装置であって、上記混合試料ガ
スの爆発域を有し、この爆発による圧力を検知する手段
を備えた密閉容器と、上記爆発域の温度を測定する温度
測定装置と、上記爆発域に配設された着火用電極と、上
記爆発域を所定温度に加熱する加熱装置と、一端が上記
密閉容器と連結されていると共に、他端が真空装置と接
続され、かつ不活性ガス導入用バルブ及び酸素又は空気
導入用バルブがそれぞれ介装され、上記爆発域に不活性
ガス及び酸素又は空気を供給する気体導入管とを具備す
ることを特徴とする爆発限界領域測定装置を提供する。
In order to achieve the above object, the present invention measures the lower flash point and upper flash point of a mixed sample gas of organic vapor, an inert gas and oxygen or air, and the explosion limit oxygen concentration. Which has an explosion zone for the mixed sample gas and is equipped with a means for detecting the pressure due to this explosion, a temperature measuring device for measuring the temperature of the explosion zone, and An ignition electrode provided, a heating device for heating the explosion region to a predetermined temperature, one end of which is connected to the closed container, the other end of which is connected to a vacuum device, and an inert gas introducing valve and There is provided an explosion limit region measuring device comprising an oxygen or air introduction valve and a gas introduction pipe for supplying an inert gas and oxygen or air to the explosion region.

【0008】また、その好適な実施態様として、有機物
蒸気と不活性ガスと酸素又は空気との混合試料ガスの下
部引火点及び上部引火点並びに爆発限界酸素濃度を測定
する装置であって、上記混合試料ガスの爆発域を有し、
この爆発により脱着可能に密栓が装着された密閉容器
と、上記爆発域の温度を測定する熱電対と、上記爆発域
に配設された着火用電極と、上記密閉容器が浸漬されて
上記爆発域を所定温度に加熱する油浴と、一端が上記密
閉容器と連結されていると共に、他端が真空ポンプと接
続され、かつ不活性ガス導入用バルブ及び酸素又は空気
導入用バルブがそれぞれ介装され、上記爆発域に不活性
ガス及び酸素又は空気を導入する気体導入管とを具備す
ることを特徴とする爆発限界領域測定装置を提供する。
As a preferred embodiment thereof, there is provided an apparatus for measuring the lower flash point and upper flash point of a mixed sample gas of an organic vapor, an inert gas and oxygen or air, and the explosion limit oxygen concentration, wherein Has an explosive area for sample gas,
Due to this explosion, a hermetically sealed container that is detachably attached, a thermocouple for measuring the temperature in the explosion area, an ignition electrode arranged in the explosion area, and the sealed container are immersed in the explosion area. An oil bath for heating to a predetermined temperature, one end of which is connected to the closed container, the other end of which is connected to a vacuum pump, and an inert gas introducing valve and an oxygen or air introducing valve are respectively interposed. And a gas introduction pipe for introducing an inert gas and oxygen or air into the explosion region.

【0009】[0009]

【作用】本発明の装置は、上記気体導入管より任意の濃
度で不活性気体と酸素又は空気とを密閉容器内に導入で
き、加熱装置によるコントロールで所望の温度において
有機物質の蒸気の爆発限界酸素濃度の測定を行うことが
でき、またかかる所望酸素濃度での有機物質の下部引火
点及び上部引火点を簡単かつ正確に測定できる。
The apparatus of the present invention can introduce an inert gas and oxygen or air into an airtight container from the above gas introduction pipe at any concentration, and the explosion limit of vapor of an organic substance at a desired temperature can be controlled by a heating device. The oxygen concentration can be measured, and the lower flash point and the upper flash point of the organic substance at the desired oxygen concentration can be measured easily and accurately.

【0010】即ち、本発明によれば、種々の実験条件下
で所定の有機物質の蒸気が不活性ガスで希釈された酸素
と共に発火可能な混合物を容易に形成することができる
ように、任意の混合気体を供給でき、しかも発火温度を
正確にコントロールすることができる。また、化学反応
などを行う際、有機物質が原因で爆発する温度、不活性
ガスと酸素との混合比などを簡易的にしかも正確に測定
し、被検物質の爆発限界酸素濃度の測定を種々の温度で
測定可能にするものである。
That is, according to the present invention, under various experimental conditions, any vapor of a given organic substance can easily form an ignitable mixture with oxygen diluted with an inert gas, so that any vapor can be easily formed. A mixed gas can be supplied and the ignition temperature can be accurately controlled. In addition, when performing a chemical reaction, the temperature at which an organic substance causes an explosion, the mixing ratio of inert gas and oxygen, etc. can be measured easily and accurately, and the explosion limit oxygen concentration of the test substance can be measured in various ways. It enables measurement at the temperature.

【0011】[0011]

【実施例】以下、本発明の一実施例につき図面を参照し
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0012】図中1は、ステンレススチール製の密閉容
器で、この容器1は、下端面が閉塞され、上端部にフラ
ンジ部1bを有する円筒状容器本体1aと、下端部にフ
ランジ部1dを有する小径円筒状首体1cとからなり、
上記両フランジ部1b,1dがボルト1eで固着、連結
されているものであり、上記首体1cの上端開口部はコ
ルク栓(密栓)2が嵌着されることにより気密に閉塞さ
れている。上記容器1の本体1a内は爆発域1fとして
形成されており、この爆発域1fの温度を測定するため
熱電対3が上記本体1a内を上下方向移動可能に配設さ
れていると共に、着火用の一対のスパーク電極4,4
が、有機物表面に近い程、有機物の飽和蒸気圧に正確に
なるため、上記本体1a内の下部(爆発域1fの下部)
に互いにその先端を数mm離間させて対向状態に配設さ
れている。これらスパーク電極4,4はそれぞれネオン
トランス5に接続され、ネオントランス5のスイッチを
入れると、電極4,4間に放電が生じるようになってい
る。なお、図中6はマグネチックスターラーである。
In the figure, reference numeral 1 is a closed container made of stainless steel, and this container 1 has a cylindrical container body 1a having a lower end surface closed and a flange portion 1b at an upper end portion, and a flange portion 1d at a lower end portion. It consists of a small diameter cylindrical neck 1c,
Both the flange portions 1b and 1d are fixed and connected with a bolt 1e, and an upper end opening portion of the neck body 1c is airtightly closed by a cork plug (sealing plug) 2 being fitted therein. The inside of the main body 1a of the container 1 is formed as an explosion zone 1f, and a thermocouple 3 for measuring the temperature of the explosion zone 1f is arranged so as to be movable in the vertical direction in the main body 1a, and for ignition. A pair of spark electrodes 4, 4
However, the closer to the surface of the organic matter, the more accurate the saturated vapor pressure of the organic matter becomes, so the lower part inside the main body 1a (the lower part of the explosion zone 1f)
Are arranged so as to face each other with their tips separated from each other by several mm. These spark electrodes 4 and 4 are connected to the neon transformer 5, and when the neon transformer 5 is turned on, a discharge is generated between the electrodes 4 and 4. In the figure, 6 is a magnetic stirrer.

【0013】また、図中7は、内部にオイル8が収容さ
れた油浴であり、上記密閉容器1は、その首体1cの上
部がオイル8液面から突出した状態でオイル8中に浸漬
されている。また、9はヒーター、10は温度計であ
り、これらヒーター9、温度計10はそれぞれ温度調節
機11に接続され、上記オイル8が所定温度に制御され
るようになっている。なお、12は撹拌機である。
Reference numeral 7 in the drawing denotes an oil bath containing oil 8 therein, and the closed container 1 is immersed in the oil 8 with the upper portion of the neck 1c thereof protruding from the liquid surface of the oil 8. Has been done. Further, 9 is a heater, 10 is a thermometer, and these heater 9 and thermometer 10 are connected to a temperature controller 11, respectively, and the oil 8 is controlled to a predetermined temperature. In addition, 12 is a stirrer.

【0014】更に、13は気体導入管で、この導入管1
3の一端は、上記本体1aの側部に連結され、この導入
管13内と上記爆発域1fとは互いに連通している。上
記導入管13の他端は真空ポンプ14と連結されている
と共に、この導入管13には、その他端側から一端側に
かけて順次不活性ガス導入用バルブ15、酸素又は空気
導入用バルブ16、圧力計17、遮断用バルブ18が介
装されている。上記不活性ガス導入用バルブ15は、連
結管19を介して不活性ガスボンベ20と連結され、ま
た酸素又は空気導入用バルブ16には、一端が開放した
空気流入用管21の他端が連結されている。なお、上記
圧力計17と遮断用バルブ18との間には冷却管22が
介装されている。この冷却管22は有機物蒸気が導入管
13の上流側に流入するのを防止するために配設するも
ので、冷却管22の外部ジャケット中を水を通じて冷却
するものである。
Further, 13 is a gas introducing pipe, and this introducing pipe 1
One end of 3 is connected to the side portion of the main body 1a, and the inside of the introduction pipe 13 and the explosion area 1f communicate with each other. The other end of the introduction pipe 13 is connected to a vacuum pump 14, and the introduction pipe 13 is provided with an inert gas introduction valve 15, an oxygen or air introduction valve 16, and a pressure sequentially from the other end side to the one end side. A total of 17 and a shutoff valve 18 are provided. The inert gas introducing valve 15 is connected to an inert gas cylinder 20 via a connecting pipe 19, and the oxygen or air introducing valve 16 is connected to the other end of an air inflow pipe 21 having one end open. ing. A cooling pipe 22 is provided between the pressure gauge 17 and the shutoff valve 18. The cooling pipe 22 is arranged to prevent organic vapor from flowing into the upstream side of the introduction pipe 13, and cools the outer jacket of the cooling pipe 22 with water.

【0015】上記装置を用いて試料の爆発限界酸素濃度
を測定する場合は、まずバルブ15,16,18を容器
1内と真空ポンプ14とが連通するように操作し、真空
ポンプ14を作動させ、容器1内を減圧にした後、バル
ブ15をボンベ20と容器1内が連通するように切り換
え、圧力計17をみながら不活性ガスを容器1内に所定
圧導入する。次に、バルブ15を閉じ、バルブ16を開
放にすると、空気流入用管21から空気が容器1内に導
入する。この状態でバルブ18を閉じる。従って、上記
のような操作で、所定酸素濃度の酸素(空気)−不活性
ガス混合気体を形成することができる。
When measuring the explosion limit oxygen concentration of a sample using the above apparatus, first, the valves 15, 16 and 18 are operated so that the inside of the container 1 and the vacuum pump 14 are in communication with each other, and the vacuum pump 14 is operated. After depressurizing the inside of the container 1, the valve 15 is switched so that the cylinder 20 communicates with the inside of the container 1, and the inert gas is introduced into the container 1 at a predetermined pressure while observing the pressure gauge 17. Next, when the valve 15 is closed and the valve 16 is opened, air is introduced into the container 1 from the air inflow pipe 21. In this state, the valve 18 is closed. Therefore, an oxygen (air) -inert gas mixed gas having a predetermined oxygen concentration can be formed by the above operation.

【0016】次いで、爆発限界酸素濃度を測定するため
の試料は、上記のように酸素−不活性ガス混合気体を作
成した後、注射器に入れ、その針をコルク栓2に差し込
み、スパーク電極4,4にかからないように適当量を容
器1内に注入する。容器1内に底部に注入された試料を
マグネチックスターラー6で撹拌しながら油浴7中のオ
イル8の温度を徐々に上昇させ、容器1内の試料温度と
混合気体の温度を測定しながら、測定する爆発限界温度
を調整する。試料温度と混合気体温度が同じ温度である
ことを確かめた後、ネオントランス5のスイッチを入
れ、電極4,4間に放電を生じさせる。この時、爆発が
起こるとコルク栓2がその爆風により首体1cから飛
び、容器1の圧力が開放される。また、爆発がない場合
は、再び温度を変えて爆発実験を繰り返す。
Next, a sample for measuring the explosive limit oxygen concentration was prepared by preparing an oxygen-inert gas mixed gas as described above, and then placed in a syringe, and the needle was inserted into the cork stopper 2 to spark electrode 4, An appropriate amount is poured into the container 1 so as not to cover 4. While stirring the sample injected into the bottom of the container 1 with the magnetic stirrer 6, the temperature of the oil 8 in the oil bath 7 is gradually raised, while measuring the sample temperature in the container 1 and the temperature of the mixed gas, Adjust the explosion limit temperature to be measured. After confirming that the temperature of the sample and the temperature of the mixed gas are the same, the neon transformer 5 is turned on to generate a discharge between the electrodes 4 and 4. At this time, when an explosion occurs, the cork stopper 2 flies from the neck 1c by the blast, and the pressure of the container 1 is released. If there is no explosion, repeat the explosion experiment by changing the temperature again.

【0017】従って、以上の爆発実験により任意の有機
物質の蒸気圧と任意の酸素濃度における爆発温度を測定
することができ、有機物質の爆発限界酸素濃度、下部及
び上部引火点を簡単かつ正確に測定でき、その再現性も
良好なものである。
Therefore, by the above-described explosion experiment, the vapor pressure of any organic substance and the explosion temperature at any oxygen concentration can be measured, and the explosion limit oxygen concentration, lower and upper flash points of the organic substance can be easily and accurately determined. It can be measured and its reproducibility is also good.

【0018】〔実験例〕次に、上記装置を用いた実験例
を示す。
[Experimental Example] Next, an experimental example using the above apparatus will be described.

【0019】爆発限界酸素濃度の測定を行うために、有
機物質試料として、p−キシレン、酢酸、灯油、ペンタ
フルオロプロパノールの4サンプルを20gとり、不活
性ガスとして窒素、二酸化炭素を使用して測定した。
In order to measure the explosive limit oxygen concentration, 20 g of 4 samples of p-xylene, acetic acid, kerosene, and pentafluoropropanol were taken as organic substance samples, and nitrogen and carbon dioxide were used as inert gases. did.

【0020】表1には、空気を使用した時の上部、下部
引火点を測定した結果を示す。この結果より、下部引火
点はJIS引火点より低く、タグ密閉式の欠点である引
火蒸気の飛散が抑えられ、正確な引火点測定が可能にな
っていることが判った。また、上部引火点は、柳生らが
測定した結果と一致しており、本装置において容易に上
部引火点測定が可能になっていることが示された。
Table 1 shows the results of measurement of the upper and lower flash points when air is used. From this result, it was found that the lower flash point is lower than the JIS flash point, the scattering of flash vapor, which is a drawback of the tag closed type, is suppressed, and accurate flash point measurement is possible. Moreover, the upper flash point was in agreement with the result measured by Yagyu et al., Indicating that the upper flash point can be easily measured with this device.

【0021】[0021]

【表1】 [Table 1]

【0022】また、図3〜6及び表2には、不活性ガス
として窒素と二酸化炭素を使用し爆発限界酸素濃度の測
定を行った結果を示す。これらの結果から、本装置を用
いることにより、このように容易に爆発限界酸素濃度の
測定が可能となることが判った。
3 to 6 and Table 2 show the results of measurement of the explosion limit oxygen concentration using nitrogen and carbon dioxide as the inert gas. From these results, it was found that the use of the present apparatus makes it possible to easily measure the explosion limit oxygen concentration.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明の装置によれば、任意の有機物質
の種々酸素濃度における下部及び上部引火点並びに爆発
限界酸素濃度を簡単にかつ再現性をもって正確に測定す
ることができる。
According to the apparatus of the present invention, the lower and upper flash points and the explosion limit oxygen concentration of an arbitrary organic substance at various oxygen concentrations can be accurately measured easily and reproducibly.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an embodiment of the present invention.

【図2】同例の一部省略斜視図である。FIG. 2 is a partially omitted perspective view of the same example.

【図3】p−キシレンの爆発領域を示すグラフである。FIG. 3 is a graph showing an explosive region of p-xylene.

【図4】酢酸の爆発領域を示すグラフである。FIG. 4 is a graph showing an explosion region of acetic acid.

【図5】灯油の爆発領域を示すグラフである。FIG. 5 is a graph showing an explosion region of kerosene.

【図6】ペンタフルオロプロパノールの爆発領域を示す
グラフである。
FIG. 6 is a graph showing the explosion region of pentafluoropropanol.

【符号の説明】[Explanation of symbols]

1 密閉容器 1f 爆発域 2 コルク栓 3 熱電対 4 電極 7 油浴 13 気体導入管 14 真空ポンプ 15 不活性ガス導入用バルブ 16 酸素又は空気導入用バルブ 20 不活性ガスボンベ 21 空気流入用管 1 Airtight container 1f Explosion area 2 Cork stopper 3 Thermocouple 4 Electrode 7 Oil bath 13 Gas inlet pipe 14 Vacuum pump 15 Inert gas inlet valve 16 Oxygen or air inlet valve 20 Inert gas cylinder 21 Air inlet pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機物蒸気と不活性ガスと酸素又は空気
との混合試料ガスの下部引火点及び上部引火点並びに爆
発限界酸素濃度を測定する装置であって、上記混合試料
ガスの爆発域を有し、この爆発による圧力を検知する手
段を備えた密閉容器と、上記爆発域の温度を測定する温
度測定装置と、上記爆発域に配設された着火用電極と、
上記爆発域を所定温度に加熱する加熱装置と、一端が上
記密閉容器と連結されていると共に、他端が真空装置と
接続され、かつ不活性ガス導入用バルブ及び酸素又は空
気導入用バルブがそれぞれ介装され、上記爆発域に不活
性ガス及び酸素又は空気を供給する気体導入管とを具備
することを特徴とする爆発限界領域測定装置。
1. An apparatus for measuring a lower flash point and an upper flash point of a mixed sample gas of an organic vapor, an inert gas and oxygen or air, and an explosion limit oxygen concentration, which has an explosive region of the mixed sample gas. Then, a closed container provided with means for detecting the pressure due to this explosion, a temperature measuring device for measuring the temperature of the explosion region, an ignition electrode arranged in the explosion region,
A heating device for heating the explosion zone to a predetermined temperature, one end of which is connected to the closed container and the other end of which is connected to a vacuum device, and an inert gas introducing valve and an oxygen or air introducing valve are respectively provided. An explosive limit region measuring device comprising: a gas introduction pipe which is interposed and which supplies an inert gas and oxygen or air to the explosive region.
【請求項2】 有機物蒸気と不活性ガスと酸素又は空気
との混合試料ガスの下部引火点及び上部引火点並びに爆
発限界酸素濃度を測定する装置であって、上記混合試料
ガスの爆発域を有し、この爆発により脱着可能に密栓が
装着された密閉容器と、上記爆発域の温度を測定する熱
電対と、上記爆発域に配設された着火用電極と、上記密
閉容器が浸漬されて上記爆発域を所定温度に加熱する油
浴と、一端が上記密閉容器と連結されていると共に、他
端が真空ポンプと接続され、かつ不活性ガス導入用バル
ブ及び酸素又は空気導入用バルブがそれぞれ介装され、
上記爆発域に不活性ガス及び酸素又は空気を導入する気
体導入管とを具備することを特徴とする爆発限界領域測
定装置。
2. A device for measuring a lower flash point and an upper flash point of a mixed sample gas of an organic vapor, an inert gas and oxygen or air, and an explosion limit oxygen concentration, which has an explosive region of the mixed sample gas. Then, due to this explosion, a hermetically sealed container detachably attached, a thermocouple for measuring the temperature in the explosive region, an ignition electrode arranged in the explosive region, and the hermetically sealed container being immersed thereinto An oil bath for heating the explosion zone to a predetermined temperature, one end of which is connected to the closed container, the other end of which is connected to a vacuum pump, and an inert gas introducing valve and an oxygen or air introducing valve are respectively interposed. Equipped,
A device for measuring an explosion limit area, comprising: a gas introduction pipe for introducing an inert gas and oxygen or air into the explosion area.
JP31000394A 1994-11-18 1994-11-18 Measuring equipment of flammability limits Pending JPH08145921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31000394A JPH08145921A (en) 1994-11-18 1994-11-18 Measuring equipment of flammability limits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31000394A JPH08145921A (en) 1994-11-18 1994-11-18 Measuring equipment of flammability limits

Publications (1)

Publication Number Publication Date
JPH08145921A true JPH08145921A (en) 1996-06-07

Family

ID=17999981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31000394A Pending JPH08145921A (en) 1994-11-18 1994-11-18 Measuring equipment of flammability limits

Country Status (1)

Country Link
JP (1) JPH08145921A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277454A (en) * 2001-03-21 2002-09-25 Sumitomo Chem Co Ltd Burning velocity measuring device, method for measuring concentration of critical combustion supporting gas, and powder and granular matter handling method
KR100413620B1 (en) * 2000-10-19 2003-12-31 (주)필립교역 Apparatus for measuring minimum ignition energy of dust
KR100446329B1 (en) * 2002-03-22 2004-09-01 주식회사 로템 Apparatus for testing response to a high pressure oxygen
US7115775B2 (en) * 2001-04-09 2006-10-03 Basf Aktiengesellschaft Method and device for the two-step production of acrylic acid
JP2009517630A (en) * 2005-07-27 2009-04-30 エル−3 コミュニケイションズ サイテラ コーポレイション Energy substance detector
JP2010008135A (en) * 2008-06-25 2010-01-14 Gastec:Kk Apparatus for explosion testing of combustible gas/vapor
JP2010112892A (en) * 2008-11-07 2010-05-20 Tohoku Univ Device and method for measuring ignition temperature
CN102192689A (en) * 2011-03-09 2011-09-21 中国人民解放军总装备部军械技术研究所 Manometric bomb for primer performance test
CN102331441A (en) * 2011-05-27 2012-01-25 西安近代化学研究所 Automatic bursting point test instrument
CN102608160A (en) * 2012-03-01 2012-07-25 西安近代化学研究所 Testing system for critical pressure during thermal explosion of explosives
CN102608158A (en) * 2012-03-01 2012-07-25 西安近代化学研究所 Critical temperature testing system of gunpowder and explosive thermal explosion
US8292496B1 (en) 2005-07-27 2012-10-23 L-3 Communications Cyterra Corporation Energetic material detector
CN103424531A (en) * 2013-01-10 2013-12-04 中国矿业大学(北京) Explosion simulation and explosion suppression experimental device for combustible gases
CN103592332A (en) * 2013-11-27 2014-02-19 上海化工研究院 Airbag external-pressurization type mixed gas blasting determination apparatus
CN103983664A (en) * 2014-05-28 2014-08-13 中国科学院青海盐湖研究所 Device and system for researching steam explosion
CN103983415A (en) * 2014-05-28 2014-08-13 中国科学院青海盐湖研究所 Device and system for researching steam explosion
CN104819994A (en) * 2015-05-08 2015-08-05 武汉钢铁(集团)公司 Long-pipe-type explosion test device being adjustable in pressure and oxygen concentration and use method thereof
JP2016061665A (en) * 2014-09-18 2016-04-25 大陽日酸株式会社 Liquefaction container for low temperature liquefied gas combustion/explosion test
CN105784768A (en) * 2016-03-07 2016-07-20 南京工业大学 Oxygen sensitivity test system and test method
CN106546627A (en) * 2017-01-13 2017-03-29 上海化工研究院有限公司 A kind of Site Detection liquid experimental device for inflammability
CN107219255A (en) * 2016-03-22 2017-09-29 中国石油化工股份有限公司 Oxidation reactor fires risk assessment device
CN107219252A (en) * 2016-03-22 2017-09-29 中国石油化工股份有限公司 The appraisal procedure of oxidation reactor maximum pressure
CN107219253A (en) * 2016-03-22 2017-09-29 中国石油化工股份有限公司 The appraisal procedure on oxidation reactor residence time safety operation border
CN107219256A (en) * 2016-03-22 2017-09-29 中国石油化工股份有限公司 The appraisal procedure on oxidation reactor reaction temperature safety operation border
CN107219254A (en) * 2016-03-22 2017-09-29 中国石油化工股份有限公司 The appraisal procedure of oxidation reactor highest combustible gas concentration
CN112858386A (en) * 2021-01-07 2021-05-28 太原工业学院 Critical explosion temperature testing container for explosive material solution
CN114636731A (en) * 2022-03-21 2022-06-17 中国安全生产科学研究院 High-precision explosion limit tester capable of determining concentration of dissolved air in tested liquid
CN115445536A (en) * 2022-09-20 2022-12-09 北京理工大学 Novel experiment method and experiment device for reaction of hydrogen and fluorine gas
CN117233209A (en) * 2023-09-15 2023-12-15 广州海关技术中心 Lithium battery thermal runaway gas explosion limit device, system and use method

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413620B1 (en) * 2000-10-19 2003-12-31 (주)필립교역 Apparatus for measuring minimum ignition energy of dust
JP4598977B2 (en) * 2001-03-21 2010-12-15 住友化学株式会社 Burning rate measuring device, limit combustion-supporting gas concentration measuring method, and method for handling powdery or granular substances
JP2002277454A (en) * 2001-03-21 2002-09-25 Sumitomo Chem Co Ltd Burning velocity measuring device, method for measuring concentration of critical combustion supporting gas, and powder and granular matter handling method
US7115775B2 (en) * 2001-04-09 2006-10-03 Basf Aktiengesellschaft Method and device for the two-step production of acrylic acid
KR100446329B1 (en) * 2002-03-22 2004-09-01 주식회사 로템 Apparatus for testing response to a high pressure oxygen
US8292496B1 (en) 2005-07-27 2012-10-23 L-3 Communications Cyterra Corporation Energetic material detector
JP2009517630A (en) * 2005-07-27 2009-04-30 エル−3 コミュニケイションズ サイテラ コーポレイション Energy substance detector
JP2010008135A (en) * 2008-06-25 2010-01-14 Gastec:Kk Apparatus for explosion testing of combustible gas/vapor
JP2010112892A (en) * 2008-11-07 2010-05-20 Tohoku Univ Device and method for measuring ignition temperature
CN102192689A (en) * 2011-03-09 2011-09-21 中国人民解放军总装备部军械技术研究所 Manometric bomb for primer performance test
CN102192689B (en) * 2011-03-09 2015-03-11 中国人民解放军总装备部军械技术研究所 Manometric bomb for primer performance test
CN102331441A (en) * 2011-05-27 2012-01-25 西安近代化学研究所 Automatic bursting point test instrument
CN102608160A (en) * 2012-03-01 2012-07-25 西安近代化学研究所 Testing system for critical pressure during thermal explosion of explosives
CN102608158A (en) * 2012-03-01 2012-07-25 西安近代化学研究所 Critical temperature testing system of gunpowder and explosive thermal explosion
CN103424531A (en) * 2013-01-10 2013-12-04 中国矿业大学(北京) Explosion simulation and explosion suppression experimental device for combustible gases
CN103592332A (en) * 2013-11-27 2014-02-19 上海化工研究院 Airbag external-pressurization type mixed gas blasting determination apparatus
CN103592332B (en) * 2013-11-27 2015-07-15 上海化工研究院 Airbag external-pressurization type mixed gas blasting determination apparatus
CN103983415A (en) * 2014-05-28 2014-08-13 中国科学院青海盐湖研究所 Device and system for researching steam explosion
CN103983664A (en) * 2014-05-28 2014-08-13 中国科学院青海盐湖研究所 Device and system for researching steam explosion
JP2016061665A (en) * 2014-09-18 2016-04-25 大陽日酸株式会社 Liquefaction container for low temperature liquefied gas combustion/explosion test
CN104819994A (en) * 2015-05-08 2015-08-05 武汉钢铁(集团)公司 Long-pipe-type explosion test device being adjustable in pressure and oxygen concentration and use method thereof
CN105784768A (en) * 2016-03-07 2016-07-20 南京工业大学 Oxygen sensitivity test system and test method
CN107219255B (en) * 2016-03-22 2021-12-31 中国石油化工股份有限公司 Oxidation reactor blasting risk assessment device
CN107219255A (en) * 2016-03-22 2017-09-29 中国石油化工股份有限公司 Oxidation reactor fires risk assessment device
CN107219252A (en) * 2016-03-22 2017-09-29 中国石油化工股份有限公司 The appraisal procedure of oxidation reactor maximum pressure
CN107219253A (en) * 2016-03-22 2017-09-29 中国石油化工股份有限公司 The appraisal procedure on oxidation reactor residence time safety operation border
CN107219256A (en) * 2016-03-22 2017-09-29 中国石油化工股份有限公司 The appraisal procedure on oxidation reactor reaction temperature safety operation border
CN107219254A (en) * 2016-03-22 2017-09-29 中国石油化工股份有限公司 The appraisal procedure of oxidation reactor highest combustible gas concentration
CN107219253B (en) * 2016-03-22 2021-12-28 中国石油化工股份有限公司 Method for evaluating safety operation boundary of residence time of oxidation reactor
CN107219256B (en) * 2016-03-22 2022-01-04 中国石油化工股份有限公司 Method for evaluating safe operation boundary of reaction temperature of oxidation reactor
CN106546627A (en) * 2017-01-13 2017-03-29 上海化工研究院有限公司 A kind of Site Detection liquid experimental device for inflammability
CN112858386A (en) * 2021-01-07 2021-05-28 太原工业学院 Critical explosion temperature testing container for explosive material solution
CN114636731A (en) * 2022-03-21 2022-06-17 中国安全生产科学研究院 High-precision explosion limit tester capable of determining concentration of dissolved air in tested liquid
CN115445536A (en) * 2022-09-20 2022-12-09 北京理工大学 Novel experiment method and experiment device for reaction of hydrogen and fluorine gas
CN117233209A (en) * 2023-09-15 2023-12-15 广州海关技术中心 Lithium battery thermal runaway gas explosion limit device, system and use method

Similar Documents

Publication Publication Date Title
JPH08145921A (en) Measuring equipment of flammability limits
US3853474A (en) Method of burning combustible fluids for further analysis
Hauptkorn et al. Determination of silicon in biological samples by ICP-OES after non-oxidative decomposition under alkaline conditions
US3247702A (en) Method of calibrating gas analyzers
CN110261556A (en) Measure the component of water or waste water or the measuring mechanism and method of mass parameter
EP0075467A1 (en) Method for analyzing total trace nitrogen
US5049508A (en) Apparatus and process for total sulfur determination
US20050282286A1 (en) Method for determining organically bound carbon (TOC)
ES477406A1 (en) Detection of gases
US3428433A (en) Oxyhydrogen combustion apparatus for determining the sulphur and halogen contents of organic substances
GB922410A (en) Improvements in or relating to the measurement of gases in metals
ES448167A1 (en) Micro-gasometric method and apparatus
US7993930B2 (en) Method and device for determining the phosphorus content of an aqueous sample
JP2007263814A (en) Combustion type water quality measuring instrument
US2561414A (en) Apparatus for gas analysis
JPS6140555A (en) Method and apparatus for measuring water content of lubricant of the like
US3468635A (en) Liquid sampling
US3498889A (en) Oxygen sensing cell and method of using same
Parks et al. Improved Micro-Dumas Method and Apparatus
EP4123302A1 (en) Total organic carbon measurement device and total organic carbon measurement method
Thorpe The electrolytic estimation of minute quantities of arsenic, more especially in brewing materials
US4929314A (en) Coulometric titrator apparatus and method
US20070149022A1 (en) Materials analysis
CN108802342A (en) Oil product detects and application
Holt et al. The analysis of calculi using microchemical methods