JPH08145679A - Target for three-dimensional survey - Google Patents

Target for three-dimensional survey

Info

Publication number
JPH08145679A
JPH08145679A JP29144194A JP29144194A JPH08145679A JP H08145679 A JPH08145679 A JP H08145679A JP 29144194 A JP29144194 A JP 29144194A JP 29144194 A JP29144194 A JP 29144194A JP H08145679 A JPH08145679 A JP H08145679A
Authority
JP
Japan
Prior art keywords
target
axis
flat plate
vertical shaft
support frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29144194A
Other languages
Japanese (ja)
Other versions
JP2627871B2 (en
Inventor
Koichi Takahashi
浩一 高橋
Harumi Norita
治己 乘田
Kunihito Hayase
邦仁 早瀬
Yoshihisa Kaneko
慶尚 金子
Yoshio Kobayashi
義夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TETSUDO KENSETSU KODAN
Railway Technical Research Institute
Kaneko Co Ltd
Central Japan Railway Co
Original Assignee
NIPPON TETSUDO KENSETSU KODAN
Railway Technical Research Institute
Kaneko Co Ltd
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TETSUDO KENSETSU KODAN, Railway Technical Research Institute, Kaneko Co Ltd, Central Japan Railway Co filed Critical NIPPON TETSUDO KENSETSU KODAN
Priority to JP6291441A priority Critical patent/JP2627871B2/en
Publication of JPH08145679A publication Critical patent/JPH08145679A/en
Application granted granted Critical
Publication of JP2627871B2 publication Critical patent/JP2627871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a target suitable for three-dimensional survey in which a preset position having known coordinates is surveyed while taking account of Z-axis in the direction of height in addition to the two-dimensional values on the X-axis and Y-axis of a plane coordinates. CONSTITUTION: A plunger 101 given a downward biasing force by means of a spring 103 is mounted in the center on the lower surface of the lower side member 104A of a frame 104 for supporting a reflection target rotatably about a horizontal axis and a vertical shaft 105 is disposed, while directing upward, in the center of the upper side member 104B of the frame 104. The vertical shaft 105 projects through a through hole 202 made through a flat plate 201 and provided with a level 109 at the upper part thereof. The flat plate 201 is held by three legs 203A-203C having adjustable height.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は水平角・鉛直角・距離
を測定することができる測量用の計測機を用いて三次元
の測量を行なう場合に利用する三次元測量用ターゲット
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional survey target used when performing three-dimensional survey using a surveying instrument capable of measuring horizontal angle, vertical angle and distance.

【0002】[0002]

【従来の技術】視準望遠鏡を用いて近赤外線光源を照射
し、反射ターゲットからの反射光を受光して距離を測定
する測距機能及び視準望遠鏡の光軸の回動角度を読取る
技術により水平角・鉛直角を測定する角度測定機能を具
備した測量用の計測機が各種開発され、実用されてい
る。
2. Description of the Related Art A distance measuring function for irradiating a near-infrared light source using a collimating telescope, receiving reflected light from a reflective target and measuring a distance, and a technique for reading a rotation angle of an optical axis of the collimating telescope are provided. Various measuring instruments for surveying having an angle measuring function for measuring a horizontal angle and a vertical angle have been developed and put into practical use.

【0003】図7を用いてこの種の計測機の測定原理を
簡単に説明する。図中1は計測機を示す。計測機1は天
頂軸Vから視準望遠鏡の光軸までの鉛直角VAと、水平
角(水平方向の振れ角)HAと、測定点Piまでの斜距
離Rとを測定できる機能を具備している。このため、測
定点Piを含むX,Y,Zの三次元座標の基準点
(X o ,Yo ,Zo )の座標位値を定めることにより、
測定点Piの座標(Xi ,Y i ,Zi )は Xi =R・sin(VA)・sin(HA)−Xoi =R・sin(VA)・cos(HA)−Yoi =R・cos(VA)−Zo で求めることができる。
The principle of measurement of this type of measuring instrument will be described with reference to FIG.
Briefly explained. In the figure, reference numeral 1 denotes a measuring machine. Measuring machine 1 is heaven
The vertical angle VA from the top axis V to the optical axis of the collimating telescope,
Angle (horizontal deflection angle) HA and the oblique distance to the measurement point Pi
It has a function to measure the distance R. For this reason,
Reference point of three-dimensional coordinates of X, Y, Z including fixed point Pi
(X o, Yo, Zo),
The coordinates (Xi, Y i, Zi) Is Xi= R sin (VA) sin (HA) -Xo Yi= R sin (VA) cos (HA) -Yo Zi= R.cos (VA) -Zo.

【0004】測定点Piに反射ターゲットを配置するこ
とにより、反射ターゲットに向って例えば近赤外線を照
射しその反射光を受光することにより斜距離Rを測定し
ている。反射ターゲットは例えばシール状のものが用意
され、このシール状の反射ターゲットを被測定体、例え
ば橋、船舶、車体、タンク等の構造体の要所に貼付け、
その反射ターゲットの位置を順次計測することにより、
構造体の形状を三次元で計測することができる。
By disposing a reflective target at the measuring point Pi, the oblique distance R is measured by irradiating the reflective target with, for example, near infrared rays and receiving the reflected light. For example, a reflective target is prepared in the form of a seal, and the reflective target in the form of a seal is affixed to an object to be measured, for example, a bridge, a ship, a vehicle body, a key point of a structure such as a tank,
By sequentially measuring the position of the reflection target,
The shape of the structure can be measured in three dimensions.

【0005】基準点(Xo ,Yo ,Zo )を決めるター
ゲットには一般に回転型ターゲットが用いられる。回転
型ターゲットは図8に示すように基台2の上面に水平面
に沿って回転できるターゲット支持具3が取付けられ、
このターゲット支持具3に反射ターゲット4が水平軸を
軸支点として回転自在に支持されて構成されている。反
射ターゲット4はガラス或はプラスチックの鏡で構成さ
れ、その表面に水平方向と鉛直方向の軸支点と合致した
線XとYが描かれ、観測時にこの線XとYに計測機1の
視準望遠鏡に装着されたヘヤーラインを合致させて計測
を行なう。
A rotary target is generally used as a target for determining the reference points (X o , Y o , Z o ). As shown in FIG. 8, the rotary target has a target support 3 that can be rotated along a horizontal plane mounted on the upper surface of the base 2,
A reflection target 4 is rotatably supported on the target support 3 with a horizontal axis as a fulcrum. The reflection target 4 is made of a mirror made of glass or plastic, and lines X and Y corresponding to the horizontal and vertical axis fulcrums are drawn on the surface thereof. The measurement is performed by matching the hairline attached to the telescope.

【0006】この回転ターゲットを基準点に用いること
により、計測機1の位置を移動させた場合でも、計測機
1の位置に応じて反射ターゲット4の向を変更すればど
の位置からでも基準点として利用することができる。従
って例えば図9に示すように船舶のような構造体5の外
形を測定するような場合に、構造体5の両側の何れから
も見通すことができる位置に2個の回転ターゲットT1
とT2を設置すれば、これら2個の回転ターゲットT1
とT2を構造体5の両側の何れからでも基準点として利
用することができる。よって1台の計測機1を移動し、
計測することにより構造体5の表側と裏側を連続した同
一の座標系で形状表示を行なうことができる。
By using this rotating target as a reference point, even if the position of the measuring machine 1 is moved, if the direction of the reflection target 4 is changed according to the position of the measuring machine 1, it can be used as a reference point from any position. Can be used. Therefore, for example, as shown in FIG. 9, when measuring the outer shape of the structure 5 such as a ship, the two rotating targets T1 are located at positions that can be seen from both sides of the structure 5.
And T2, these two rotating targets T1
And T2 can be used as reference points from either side of the structure 5. Therefore, one measuring device 1 is moved,
By performing the measurement, the shape can be displayed in the same coordinate system in which the front side and the back side of the structure 5 are continuous.

【0007】[0007]

【発明が解決しようとする課題】上述では基準点を移動
させないものとして説明した、然し乍ら構造体が大きい
場合には基準点を順次移動させなければならない場合が
ある。特に構造体が鉄道レール或は道路のように無限に
長い場合には、基準点を順次移動させないと、レール或
は道路の状況を三次元測量することはできない。
The above description has been made on the assumption that the reference point is not moved. However, when the structure is large, it may be necessary to sequentially move the reference point. In particular, when the structure is infinitely long, such as a railway rail or a road, it is impossible to three-dimensionally measure the state of the rail or the road unless the reference points are sequentially moved.

【0008】つまり、基準点の移動は以下の如くして行
なわれる。頭初の第1基準点を基準にレール或は道路の
状況を測量する。第1基準点でカバーできる範囲のレー
ル或は道路を測量し終ると、第2基準点を設置するに適
した候補地を定め、その位置を計測機により計測し、座
標位置を定める。この座標位置に回転ターゲットを移し
第2基準点とする。この第2基準点を基準に次の区間の
レールを測量する。この区間の測量が終了すると、回転
ターゲットを第3基準点に移動させる。この繰返しで無
限に延びるレール或は道路等を測量する。
That is, the movement of the reference point is performed as follows. The condition of the rail or road is measured based on the first reference point at the beginning. After surveying the rails or roads within the range that can be covered by the first reference point, a candidate site suitable for setting the second reference point is determined, and its position is measured by a measuring machine to determine the coordinate position. The rotation target is moved to this coordinate position and is set as a second reference point. The rail of the next section is measured based on the second reference point. When the survey of this section is completed, the rotating target is moved to the third reference point. A rail or a road extending infinitely is measured by this repetition.

【0009】新しい基準点を定める場合、その新しい基
準点の位置は計測機1で計測した位置によって定めてい
る。計測機1は高精度であるとはいっても、わずかなが
ら測定誤差を持つ。この測定誤差が基準点を移動させる
毎に累積されると、最終的に大きな誤差に成長するおそ
れがある。この発明の目的はこのような累積誤差を発生
しないように、座標既知点の基準点を設置し、その位置
を三次元で正確に測量可能ならしめる三次元測量用ター
ゲットの構造を提案するものである。
When a new reference point is determined, the position of the new reference point is determined by the position measured by the measuring device 1. Although the measuring instrument 1 is highly accurate, it has a slight measurement error. If this measurement error is accumulated each time the reference point is moved, it may eventually grow to a large error. An object of the present invention is to propose a structure of a target for three-dimensional surveying in which a reference point of a coordinate known point is set so that such a cumulative error does not occur and the position can be accurately measured in three dimensions. is there.

【0010】[0010]

【課題を解決するための手段】この発明では無限長に近
い構造物に沿って予め既知の位置に定められた基準点を
所定の間隔で設置する。しかる後、これらの基準点に対
し、従来の測量法である三角網を形成した基準点測量を
施行し、閉合誤差を配分し、各基準点に座標値を与え
る。以後、これらの基準点は座標既知点として、取り扱
うことが可能となる。この基準点に三次元測量用ターゲ
ットを装着することにより、三次元測量用ターゲットは
既知の位置を正確に指示することができる。即ち、三次
元測量用ターゲットには基準点に係合するプランジャが
設けられ、プランジャによって基準点の位置をターゲッ
トに正確に伝達することができるからである。
According to the present invention, reference points predetermined at known positions are set at predetermined intervals along a structure that is nearly infinite. Thereafter, a reference point survey forming a triangular net, which is a conventional survey method, is performed on these reference points, a closing error is distributed, and a coordinate value is given to each reference point. Thereafter, these reference points can be handled as coordinate known points. By mounting the three-dimensional survey target on this reference point, the three-dimensional survey target can accurately indicate a known position. That is, the plunger that engages with the reference point is provided in the three-dimensional survey target, and the position of the reference point can be accurately transmitted to the target by the plunger.

【0011】従ってこの発明の三次元測量用ターゲット
によれば無限長に近い構造物に沿って予め設置した基準
点に、ターゲットを係合させて設置するから、ターゲッ
トを順次移動させても、その移動は参照する基準点が代
わったことにすぎないから、各設置点でターゲットの位
置による新たな誤差が発生することはない。よってどこ
までも連続して測量を行なっても誤差が累積されること
はなく、測量開始点と終了点で同一の精度を保つことが
できる。
Therefore, according to the target for three-dimensional surveying of the present invention, the target is engaged with a reference point previously set along a structure having an infinite length, so that even if the target is sequentially moved, the target is not moved. Since the movement is merely a change of the reference point to be referred to, no new error due to the position of the target occurs at each installation point. Therefore, no error is accumulated even if the surveying is continuously performed to any extent, and the same accuracy can be maintained at the survey start point and the survey start point.

【0012】[0012]

【実施例】図1及び図5にこの発明による三次元測量用
ターゲットの一実施例を示す。図中10は例えばレール
を敷設するための床面を示す。この床面10は例えばコ
ンクリート等で固められているものとする。床面10に
は基準標11が埋設されている。基準標11は図4に示
すように円形頭部を具備したボルトで構成され、頂部に
円錐形状の孔11Aと、その底部に小径孔11Bを有
し、この小径孔11Bによって基準点の位置を精度よく
表示している。基準標11のネジ部11Cはここでは特
に図示しないが、レールの延長方向と、その延長方向と
直交する方向にネジ送り機構によって移動させることが
できるように構成された位置合せ機構に螺合して支持さ
れる。基準標11の小径孔11Bの軸芯位置は予め計算
等で求められて与えられ、その既知の位置に既存の方法
の測量によって位置合せされる。また基準標11の頂面
の標高位置も予め計算で算出されて与えられ、その算出
された標高位置に設定される。基準標11の位置が予め
決められた位置に位置合せ機構によって設定されると、
位置合せ機構を含めてコンクリートに埋め込み、コンク
リートでその設置位置に固定する。このようにして設置
される基準標11を図6に示すようにレール12Aと1
2Bに沿って所定の間隔で設置する。
1 and 5 show an embodiment of a three-dimensional survey target according to the present invention. In the drawing, reference numeral 10 denotes a floor surface for laying rails, for example. It is assumed that the floor 10 is hardened by concrete or the like, for example. A reference mark 11 is buried in the floor 10. The reference mark 11 is composed of a bolt having a circular head as shown in FIG. 4 and has a conical hole 11A at the top and a small diameter hole 11B at the bottom, and the position of the reference point is determined by the small diameter hole 11B. The display is accurate. Although not particularly shown here, the threaded portion 11C of the reference mark 11 is screwed to an alignment mechanism configured to be movable by a screw feed mechanism in an extension direction of the rail and a direction orthogonal to the extension direction. Supported. The axial center position of the small-diameter hole 11B of the reference mark 11 is determined and given in advance by calculation or the like, and is aligned with the known position by surveying using an existing method. The altitude position of the top surface of the reference altitude 11 is also calculated and given in advance, and is set to the calculated altitude position. When the position of the reference mark 11 is set to a predetermined position by the positioning mechanism,
It is embedded in concrete, including the alignment mechanism, and is fixed at the installation position with concrete. The reference mark 11 installed in this manner is connected to the rails 12A and 1A as shown in FIG.
It is installed at a predetermined interval along 2B.

【0013】説明は再び図1に戻る。基準標11の頭部
に形成した円錐形の孔11aにこの発明による三次元測
量用ターゲットに設けたプランジャ101の先細形状と
された先端を係合させる。プランジャ101は保持体1
02に推動自在に保持され、バネ103の偏倚力によっ
て下向に突出偏倚される。バネ103の偏倚力はわずか
な力とし、これから説明するターゲット支持枠104等
の重みによって容易に圧縮形成される。ターゲット支持
枠104は開口面が水平方向を向く姿勢でターゲット支
持具200によって支持される。
The description returns to FIG. The tapered tip of the plunger 101 provided in the three-dimensional survey target according to the present invention is engaged with the conical hole 11a formed in the head of the reference mark 11. Plunger 101 is holder 1
02 is held so as to be freely propelled, and is projected downward by the biasing force of the spring 103. The biasing force of the spring 103 is a small force, and the spring 103 is easily compressed and formed by the weight of the target support frame 104 and the like described below. The target support frame 104 is supported by the target support 200 with the opening face in the horizontal direction.

【0014】プランジャ101はターゲット支持枠10
4を構成する下辺部材104Aに取付けられる。ターゲ
ット支持枠104の上辺部材104Bには上向に鉛直軸
105が取付けられる。この鉛直軸105はその軸芯を
プランジャ101の軸芯と合致する位置に植設される。
ターゲット支持枠104を構成する2本の縦部材104
Cには互に水平方向に対向して一対のピボット106が
取付けられる。このピボット106によって反射ターゲ
ット107が水平軸を軸支点として回転自在に支持され
る。図3に図1に示すA−A線上の断面を示す。反射タ
ーゲット107はその表面の反射面はピボット106の
軸線の位置に合致するようにターゲット支持部材108
に取り付けられる。この例ではビス108Aでターゲッ
ト支持部材108に取付けた場合を示す。ピボット10
6の軸線と反射ターゲット107の反射面との位置を合
致させることにより、反射ターゲット107を表側に向
けても、裏側に向けても何れの方向に対しても、反射タ
ーゲット107位置がずれることはない。
The plunger 101 is the target support frame 10.
4 attached to the lower side member 104A. A vertical shaft 105 is attached upward to the upper side member 104B of the target support frame 104. The vertical shaft 105 is implanted at a position where its axis coincides with the axis of the plunger 101.
Two vertical members 104 constituting the target support frame 104
A pair of pivots 106 are attached to C horizontally opposite to each other. The pivot 106 supports the reflection target 107 so as to be rotatable around a horizontal axis. FIG. 3 shows a cross section taken along the line AA shown in FIG. The reflection target 107 has a target support member 108 such that the reflection surface on the surface matches the position of the axis of the pivot 106.
Attached to. In this example, the case where the target support member 108 is attached with the screw 108A is shown. Pivot 10
By aligning the position of the axis of 6 with the reflection surface of the reflection target 107, the position of the reflection target 107 can be shifted regardless of whether the reflection target 107 is directed to the front side or the back side. Absent.

【0015】図5A〜Jに反射ターゲット107の反射
面に描く、パターンの例を示す。図5に示すように、反
射ターゲット107の反射面に描くパターンは主に水平
方向の線Xと、鉛直方向の線Yで構成され、利用者の好
みに応じて交換できる構造とされる。ターゲット支持具
200は平板201と、この平板201を水平な姿勢に
支持するネジ脚203A,203B,203Cとによっ
て構成され、鉛直軸105はターゲット支持具200を
構成する平板201に形成した貫通孔202を貫通し、
平板201によって鉛直な姿勢に支持される。貫通孔2
02は平板201の肉厚の中央部分にエッジ部を有し、
このエッジ部で鉛直軸105を支持する。つまり、エッ
ジ部で鉛直軸105を支持することにより、可及的に鉛
直軸105と貫通孔202との間の遊びを少なくし、然
もエッジにすることによって接触面積を小さくして楽に
鉛直軸105を軸芯方向に移動できるようにしている。
FIGS. 5A to 5J show examples of patterns drawn on the reflection surface of the reflection target 107. FIG. As shown in FIG. 5, the pattern drawn on the reflection surface of the reflection target 107 is mainly composed of a horizontal line X and a vertical line Y, and has a structure that can be replaced according to the user's preference. The target support 200 includes a flat plate 201 and screw legs 203A, 203B, and 203C that support the flat plate 201 in a horizontal posture. A vertical shaft 105 has a through hole 202 formed in the flat plate 201 that forms the target support 200. Through
It is supported in a vertical position by the flat plate 201. Through hole 2
02 has an edge portion in the central portion of the thickness of the flat plate 201,
The vertical shaft 105 is supported by this edge portion. That is, by supporting the vertical shaft 105 at the edge portion, the play between the vertical shaft 105 and the through-hole 202 is reduced as much as possible, and the edge is used to reduce the contact area, which facilitates the vertical shaft. 105 can be moved in the axial direction.

【0016】平板201には貫通孔202の位置からほ
ぼ等しい距離の位置の3箇所にネジ脚203A,203
B,203Cをそれぞれ平板201の板面に対して垂直
方向に螺合させる。各ネジ脚203Aには各支持脚20
3A,203B,203Cを回転操作させるためのツマ
ミ204が取付けられる。また、ネジ脚203A,20
3B,203Cの動きをロックするロックナット205
を螺合させている。
On the flat plate 201, screw legs 203A and 203 are provided at three positions at substantially the same distance from the position of the through hole 202.
B and 203C are respectively screwed in the direction perpendicular to the plate surface of the flat plate 201. Each support leg 20 is attached to each screw leg 203A.
A knob 204 for rotating the 3A, 203B and 203C is attached. In addition, the screw legs 203A, 20
Lock nut 205 for locking the movement of 3B and 203C
Are screwed together.

【0017】鉛直軸105の上端には水準器109を取
付け、鉛直軸105及びターゲット支持枠104の姿勢
が鉛直に設定されたか否かを見ることができる構造とし
ている。水準器109は図の例では円形気泡管を用いた
場合を示すが、他の構造の水準器、例えば円弧管を十字
状に結合した構造の水準器を用いることもできる。この
発明による三次元測量用ターゲットの基準標11への設
置手順は以下の如くである。プランジャ101の先端を
基準標11の頂面に形成された孔11Aに係合させる。
保持体102の底面が基準標11の頂面に接触している
状態を保って平板201がほぼ水平な姿勢になるように
ネジ脚203A,203B,203Cを調整する。平板
201の姿勢は目視でほぼ水平な状態に見える状態に設
定できればよい。
A level 109 is attached to the upper end of the vertical shaft 105 so that it can be checked whether the posture of the vertical shaft 105 and the target support frame 104 is set to vertical. In the example shown in the figure, the level 109 uses a circular bubble tube, but a level having another structure, for example, a level in which arc tubes are connected in a cross shape, may be used. The procedure for installing the three-dimensional survey target on the fiducial 11 according to the present invention is as follows. The tip of the plunger 101 is engaged with a hole 11A formed on the top surface of the reference mark 11.
The screw legs 203A, 203B, and 203C are adjusted so that the flat plate 201 is in a substantially horizontal posture while keeping the bottom surface of the holding body 102 in contact with the top surface of the reference mark 11. It is sufficient that the attitude of the flat plate 201 can be set to a state in which the flat plate 201 can be seen to be substantially horizontal.

【0018】水平な姿勢に調整した状態でロックナット
205を締付けネジ脚203A,203B,203Cの
回転をロックする。平板201の姿勢がほぼ水平な姿勢
に設定された後、ネジ脚203A〜203Cの下端を床
面10の上で滑らして平板201の位置を水平方向にず
らし、水準器109が水平を指示するように調整する。
With the horizontal posture adjusted, the lock nut 205 is tightened to lock the rotation of the screw legs 203A, 203B, 203C. After the posture of the flat plate 201 is set to a substantially horizontal posture, the lower ends of the screw legs 203A to 203C are slid on the floor 10 to shift the position of the flat plate 201 in the horizontal direction, and the level 109 indicates the horizontal position. Adjust to

【0019】水準器109が水平を指示すると、鉛直軸
105とプランジャ101の軸芯が鉛直な姿勢に設定さ
れたことになる。この結果、反射ターゲット107はそ
の反射面に描かれた線XとYの交点Pが基準標11の基
準点の真上の位置に設定されたことになる。よってこの
反射ターゲット107を反射面として鉛直角VA,水平
角HA,距離R(図7参照)を計測機によって計測する
ことにより基準点の位置(座標)を正確に算出すること
ができる。従って図6に示したように、各基準標11の
位置を基準にレール12Aと12Bに貼付けたシール状
ターゲットB1,B2 ,B3 ……及びB1 ′,B2 ′,
3 ′……の位置をJ点又はK点に設置した計測機1に
よって測定することによりレール12Aと12Bの敷設
状況を正確に測量することができる。
When the level 109 indicates horizontal, the axis of the vertical shaft 105 and the axis of the plunger 101 are set to the vertical posture. As a result, the reflection target 107 is set such that the intersection point P of the lines X and Y drawn on its reflection surface is set directly above the reference point of the reference mark 11. Therefore, the position (coordinates) of the reference point can be accurately calculated by measuring the vertical angle VA, the horizontal angle HA, and the distance R (see FIG. 7) using the reflection target 107 as a reflection surface by a measuring machine. Therefore, as shown in FIG. 6, the seal-shaped targets B 1 , B 2 , B 3 ... And B 1 ′, B 2 ′, which are attached to the rails 12 A and 12 B with the position of each reference mark 11 as a reference,
By measuring the position of B 3 ′ with the measuring instrument 1 installed at the J point or the K point, the laying state of the rails 12A and 12B can be accurately measured.

【0020】尚、基準標11の標高値とターゲット10
7の標高値との間には一定の高さの差が発生するが、こ
の差の値は一定のバイアス値として除去することができ
る。
The elevation value of the reference mark 11 and the target 10
There is a constant height difference from the altitude value of 7, and this difference value can be removed as a constant bias value.

【0021】[0021]

【発明の効果】上述したように、この発明によれば予め
設置された基準標11に正確に係合して反射ターゲット
107を設置することができるから、三次元測量のため
の基準点を順次移動させても累積誤差が発生することは
ない。従ってレール或は道路のように無限に近い長さを
持つ構造体の測量を正確に行なうことができる利点が得
られる。
As described above, according to the present invention, since the reflection target 107 can be set by accurately engaging with the reference mark 11 set in advance, the reference points for three-dimensional surveying are sequentially set. Even if it is moved, no accumulated error occurs. Therefore, there is an advantage that a structure having a length almost infinite, such as a rail or a road, can be accurately measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による三次元測量用ターゲットの構造
を説明するための側面図。
FIG. 1 is a side view for explaining the structure of a three-dimensional survey target according to the present invention.

【図2】図1の平面図。FIG. 2 is a plan view of FIG.

【図3】図1に示したA−A線上の断面図。FIG. 3 is a sectional view taken along the line AA shown in FIG. 1;

【図4】図1に示した実施例に用いた基準標の構造を説
明するための断面図。
FIG. 4 is a sectional view for explaining the structure of a reference mark used in the embodiment shown in FIG. 1;

【図5】図1に示した反射ターゲットの各種のパターン
を説明するための正面図。
FIG. 5 is a front view for explaining various patterns of the reflection target shown in FIG. 1;

【図6】この発明による三次元測量用ターゲットを用い
た測量の方法を説明するための平面図。
FIG. 6 is a plan view for explaining a surveying method using the three-dimensional survey target according to the present invention.

【図7】三次元測量の基本原理を説明するための図。FIG. 7 is a diagram for explaining the basic principle of three-dimensional surveying.

【図8】従来の三次元測量に用いられている回転ターゲ
ットの構造を説明するための斜視図。
FIG. 8 is a perspective view for explaining the structure of a rotary target used in a conventional three-dimensional survey.

【図9】構造体の三次元測量の方法を説明するための平
面図。
FIG. 9 is a plan view for explaining a method of three-dimensional measurement of a structure.

【符号の説明】[Explanation of symbols]

10 床面 11 基準標 101 プランジャ 102 保持体 103 バネ 104 ターゲット支持枠 104A 下辺部材 104B 縦部材 105 鉛直軸 106 ピボット 107 反射ターゲット 108 ターゲット支持部材 109 水準器 200 ターゲット支持具 201 平板 202 貫通孔 203A〜203C ネジ脚 204 ツマミ 205 ロックナット Reference Signs List 10 floor surface 11 reference mark 101 plunger 102 holder 103 spring 104 target support frame 104A lower side member 104B vertical member 105 vertical axis 106 pivot 107 reflection target 108 target support member 109 level 200 target support 201 flat plate 202 through hole 203A to 203C Screw foot 204 Knob 205 Lock nut

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000173784 財団法人鉄道総合技術研究所 東京都国分寺市光町2丁目8番地38 (72)発明者 高橋 浩一 東京都千代田区永田町二丁目14番2号 日 本鉄道建設公団内 (72)発明者 乘田 治己 東京都千代田区永田町二丁目14番2号 日 本鉄道建設公団内 (72)発明者 早瀬 邦仁 東京都千代田区永田町二丁目14番2号 日 本鉄道建設公団内 (72)発明者 金子 慶尚 東京都杉並区善福寺1−24−2 (72)発明者 小林 義夫 東京都八王子市北野台一丁目3番3号 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 000173784 2-8 Mitsumachi, Kokubunji, Tokyo 38 (72) Inventor Koichi Takahashi 2-14-2, Nagatacho, Chiyoda-ku, Tokyo Sun Inside the railway construction public corporation (72) Inventor Haruki Hatada 2-14-2 Nagata-cho, Chiyoda-ku, Tokyo Japan Inside railway construction public corporation (72) Kunihito Hayase 2-14-2 Nagata-cho, Chiyoda-ku, Tokyo Japan (72) Inventor Keisho Kaneko 1-2-24, Zenpukuji, Suginami-ku, Tokyo (72) Inventor Yoshio Kobayashi 1-3-3 Kitanodai, Hachioji, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 A.水平方向に対向して一対のピボット
が配置され、このピボットによって反射面を具備した反
射ターゲットを水平軸を中心に回転自在に支持するター
ゲット支持枠と、 B.このターゲット支持枠の下辺部材に鉛直下向に出入
り自在に突出され、バネによって下向に偏倚力が与えら
れると共に、ターゲット設置点を表わす基準標の基準点
と係合して上記ターゲット支持枠に支持した反射ターゲ
ットに基準点位置を伝達するプランジャと、 C.上記ターゲット支持枠の上辺部材に上記プランジャ
の軸芯と同一の軸芯に揃えられて上向に突出して取付け
られた鉛直軸と、 D.この鉛直軸を貫通させ、鉛直軸にエッジ面で対接す
る貫通孔を具備した平板と、 E.この平板の上記貫通孔の位置からほぼ等距離はなれ
た3点に設けられ、上記平板に垂直方向に螺合した3本
のネジ脚と、 F.このネジ脚を上記平板に締め付けて固定するロック
ナットと、 G.上記鉛直軸の上端に取付けられ、鉛直軸及び上記反
射ターゲット枠の姿勢を鉛直姿勢に設置するための水準
器と、 によって構成した三次元測量用ターゲット。
1. A. First Embodiment B. a pair of pivots opposed to each other in the horizontal direction, and a target support frame that rotatably supports a reflection target having a reflection surface with the pivots around a horizontal axis; The target support frame is vertically projected downwardly from the lower side member, and is biased downward by a spring, and is engaged with the reference point of the reference mark representing the target installation point to the target support frame. A plunger for transmitting a reference point position to a supported reflective target; C. A vertical shaft mounted on the upper side member of the target support frame so as to be aligned with the same axis as the axis of the plunger and project upward. A flat plate having a through hole penetrating through the vertical shaft and having an edge surface facing the vertical shaft; F. three screw legs provided at three points on the flat plate that are substantially equidistant from the position of the through hole and vertically screwed to the flat plate; A lock nut for tightening and fixing the screw leg on the flat plate, and G. A target for three-dimensional surveying, which is attached to the upper end of the vertical axis, and includes a level for setting the vertical axis and the attitude of the reflective target frame in the vertical attitude.
JP6291441A 1994-11-25 1994-11-25 3D survey target Expired - Lifetime JP2627871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6291441A JP2627871B2 (en) 1994-11-25 1994-11-25 3D survey target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6291441A JP2627871B2 (en) 1994-11-25 1994-11-25 3D survey target

Publications (2)

Publication Number Publication Date
JPH08145679A true JPH08145679A (en) 1996-06-07
JP2627871B2 JP2627871B2 (en) 1997-07-09

Family

ID=17768913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6291441A Expired - Lifetime JP2627871B2 (en) 1994-11-25 1994-11-25 3D survey target

Country Status (1)

Country Link
JP (1) JP2627871B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005926A1 (en) * 1996-08-07 1998-02-12 Komatsu Ltd. Automatic collimation method and automatic collimation apparatus
JP2008089361A (en) * 2006-09-29 2008-04-17 Taisei Kanri Kaihatsu Kk Target for station and target for reference point used for photogrammetry
CN103471573A (en) * 2013-10-06 2013-12-25 中国二十二冶集团有限公司 Leveling reflector device and horizontal line quick releasing method thereof
CN104215183A (en) * 2014-09-19 2014-12-17 中国一冶集团有限公司 Continuous casting machine fan-shaped section saddle installation detecting method and device
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
DE112012000795B4 (en) * 2011-02-14 2015-06-11 Faro Technologies Inc. Cube corner retroreflector for measuring six degrees of freedom
US9146094B2 (en) 2010-04-21 2015-09-29 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9151830B2 (en) 2011-04-15 2015-10-06 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote structured-light scanner
US9164173B2 (en) 2011-04-15 2015-10-20 Faro Technologies, Inc. Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit
US9400170B2 (en) 2010-04-21 2016-07-26 Faro Technologies, Inc. Automatic measurement of dimensional data within an acceptance region by a laser tracker
US9453913B2 (en) 2008-11-17 2016-09-27 Faro Technologies, Inc. Target apparatus for three-dimensional measurement system
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
JP2017172978A (en) * 2016-03-18 2017-09-28 株式会社パスコ Traverse survey result display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0164086U (en) * 1987-10-16 1989-04-25
JPH05240616A (en) * 1992-03-02 1993-09-17 Nippon Tetsudo Kensetsu Kodan Alignment measuring instrument for rail and fitting jig for fixing it to reverence instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0164086U (en) * 1987-10-16 1989-04-25
JPH05240616A (en) * 1992-03-02 1993-09-17 Nippon Tetsudo Kensetsu Kodan Alignment measuring instrument for rail and fitting jig for fixing it to reverence instrument

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005926A1 (en) * 1996-08-07 1998-02-12 Komatsu Ltd. Automatic collimation method and automatic collimation apparatus
JP2008089361A (en) * 2006-09-29 2008-04-17 Taisei Kanri Kaihatsu Kk Target for station and target for reference point used for photogrammetry
US9453913B2 (en) 2008-11-17 2016-09-27 Faro Technologies, Inc. Target apparatus for three-dimensional measurement system
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US9400170B2 (en) 2010-04-21 2016-07-26 Faro Technologies, Inc. Automatic measurement of dimensional data within an acceptance region by a laser tracker
US9146094B2 (en) 2010-04-21 2015-09-29 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US10480929B2 (en) 2010-04-21 2019-11-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US10209059B2 (en) 2010-04-21 2019-02-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
DE112012000795B4 (en) * 2011-02-14 2015-06-11 Faro Technologies Inc. Cube corner retroreflector for measuring six degrees of freedom
US9164173B2 (en) 2011-04-15 2015-10-20 Faro Technologies, Inc. Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
US9453717B2 (en) 2011-04-15 2016-09-27 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns
US9207309B2 (en) 2011-04-15 2015-12-08 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote line scanner
US10578423B2 (en) 2011-04-15 2020-03-03 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9448059B2 (en) 2011-04-15 2016-09-20 Faro Technologies, Inc. Three-dimensional scanner with external tactical probe and illuminated guidance
US9157987B2 (en) 2011-04-15 2015-10-13 Faro Technologies, Inc. Absolute distance meter based on an undersampling method
US9482746B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9151830B2 (en) 2011-04-15 2015-10-06 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote structured-light scanner
US10119805B2 (en) 2011-04-15 2018-11-06 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US10267619B2 (en) 2011-04-15 2019-04-23 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9494412B2 (en) 2011-04-15 2016-11-15 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using automated repositioning
US10302413B2 (en) 2011-04-15 2019-05-28 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9482514B2 (en) 2013-03-15 2016-11-01 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners by directed probing
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
CN103471573B (en) * 2013-10-06 2016-03-02 中国二十二冶集团有限公司 Anping mirror apparatus and the method for horizontal line high speed payout thereof
CN103471573A (en) * 2013-10-06 2013-12-25 中国二十二冶集团有限公司 Leveling reflector device and horizontal line quick releasing method thereof
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit
CN104215183A (en) * 2014-09-19 2014-12-17 中国一冶集团有限公司 Continuous casting machine fan-shaped section saddle installation detecting method and device
JP2017172978A (en) * 2016-03-18 2017-09-28 株式会社パスコ Traverse survey result display device

Also Published As

Publication number Publication date
JP2627871B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
JP2627871B2 (en) 3D survey target
US6202312B1 (en) Laser tool for generating perpendicular lines of light on floor
US6453568B1 (en) Laser protractor
US4912851A (en) Level/plumb indicator with tilt compensation
US4852265A (en) Level/plumb indicator with tilt compensation
CN1071898C (en) Measuring ball reflector
US7987605B2 (en) Reflector target tripod for survey system with light emitter and pivoting bracket for enhanced ground marking accuracy
JP2846950B2 (en) Apparatus for forming or defining the position of a measuring point
EP0543954A4 (en) Spatial positioning system
JPH04220514A (en) Apparatus for obtaining center of ground measuring instrument with respect to specified measuring point of ground surface
US20020078578A1 (en) Position and angle indicating tool
US6966387B2 (en) Universal optical adapter for a three dimensional earthgrading system
JP2509123B2 (en) Measuring device according to the reference point
GB2277150A (en) A portable measuring device for determining the versines of a railway track
JPH05215550A (en) Elevator tripod for survey instrument
JPH06281461A (en) Prism support device for light wave distance meter
CN113532334A (en) Device and method for measuring toe-in angle and camber angle of vehicle
JPH07270157A (en) Setting method of reference device for installing railway and measuring apparatus used therefor
JP2503052Y2 (en) Reflective mirror fixing device
JP3031832U (en) Cylindrical target
JP3092302B2 (en) Lightwave ranging system
JP3481324B2 (en) Method of measuring mechanical height of surveying instrument and measuring instrument
JPH10253357A (en) Method and apparatus for measuring machine height of range finding gonioscope
JP2689266B2 (en) Three-dimensional position measuring device
JPH03180669A (en) Vertical plumbing method for building member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 17

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term