JPH08144211A - Heat-conductive pavement material - Google Patents

Heat-conductive pavement material

Info

Publication number
JPH08144211A
JPH08144211A JP28536694A JP28536694A JPH08144211A JP H08144211 A JPH08144211 A JP H08144211A JP 28536694 A JP28536694 A JP 28536694A JP 28536694 A JP28536694 A JP 28536694A JP H08144211 A JPH08144211 A JP H08144211A
Authority
JP
Japan
Prior art keywords
graphite
asphalt
pavement
asphalt mixture
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28536694A
Other languages
Japanese (ja)
Other versions
JP2598887B2 (en
Inventor
Norio Kabetani
紀郎 壁谷
Hideji Ebisawa
秀治 海老沢
Yuichi Kawahara
雄一 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Road Co Ltd
Original Assignee
Kajima Road Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Road Co Ltd filed Critical Kajima Road Co Ltd
Priority to JP6285366A priority Critical patent/JP2598887B2/en
Publication of JPH08144211A publication Critical patent/JPH08144211A/en
Application granted granted Critical
Publication of JP2598887B2 publication Critical patent/JP2598887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Road Paving Structures (AREA)

Abstract

PURPOSE: To improve the heat conductivity of pavement by using graphite as a high heat-conductive material, replacing pts.wt. within a specific range in the specific pts.wt. of an asphalt mixture with graphite and dispersing graphite to the whole. CONSTITUTION: Graphite is employed as a high heat-conductive material, 3-30 pts.wt. in a 100 pts.wt. asphalt mixture is replaced with graphite and graphite is dispersed to the whole. Naturally produced graphite, artificially manufactured or fibrous one is used as graphite. A 5-10 pts.wt. asphalt improving material is employed to the 100 pts.wt. asphalt mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無散水融雪舗装用のア
スファルトコンクリート及び舗装の凍結や積雪を抑制す
る熱伝導性舗装材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to asphalt concrete for water-free snow-melting pavement and a thermally conductive pavement material for suppressing freezing and snow accumulation of the pavement.

【0002】[0002]

【従来の技術】従来、融雪及び凍結を防止する方法とし
て、アスファルト混合物層に電気ヒータを埋め込むロー
ドヒーティング、又は、融雪用パイプを埋め込み地下水
を汲み上げ循環させて融雪する地下水利用方式や、路面
に消雪パイプより散水して融雪する方式などがある。そ
のうち、例えばロードヒーティング方式は、熱伝導率が
小さく融雪までに長時間を要するため、必要とするエネ
ルギが大きい。また、地下水利用方式は、大量の地下水
を利用するため、地下水の枯渇や地盤沈下の悪影響が懸
念される。
2. Description of the Related Art Conventionally, as a method for preventing snow melting and freezing, road heating in which an electric heater is buried in an asphalt mixture layer, or a snow melting pipe in which a snow melting pipe is buried and groundwater is circulated to melt snow by using a groundwater method. There is a method of spraying water from a snow-melting pipe to melt snow. Among them, for example, a road heating method has a low thermal conductivity and requires a long time to melt snow, and thus requires a large amount of energy. In addition, since the groundwater utilization method uses a large amount of groundwater, there is a concern that depletion of groundwater and adverse effects of land subsidence may occur.

【0003】他方、熱伝導性舗装材料としては、次のも
のが知られている。 (1) アスファルトコンクリート、セメントコンクリ
ート舗装材製造時に、鉄、アルミニュウム等を混入した
もの(特開昭59−185204号公報)。 (2) フェライトとバインダとの混合物(特開平2−
210103号公報)。 (3) アスファルトコンクリート、セメントコンクリ
ートに、フェライトを調合したもの(特開平4−222
702号公報)。 (4) 透水性コンクリート及び透水性アスファルトコ
ンクリートに、粗酸化鉄粉末を10〜20部分散したも
の(特開平5−118006号公報)。しかし、これら
の熱伝導性舗装材料の熱伝導率は、大きいもので2.9
Kcal/m・h・℃程度で満足できるものではない。
On the other hand, the following are known as heat conductive pavement materials. (1) Asphalt concrete and cement concrete pavement materials produced by mixing iron, aluminum and the like (Japanese Patent Application Laid-Open No. 59-185204). (2) Mixture of ferrite and binder
210103 publication). (3) Asphalt concrete, cement concrete mixed with ferrite (JP-A-4-222)
702). (4) Dispersion of 10 to 20 parts of coarse iron oxide powder in permeable concrete and permeable asphalt concrete (JP-A-5-118006). However, the thermal conductivity of these thermally conductive pavement materials is as high as 2.9.
Kcal / m · h · ° C is not satisfactory.

【0004】[0004]

【発明が解決しようとする課題】本発明は、舗装体の中
に放熱管、電熱線等を埋設した無散水融雪舗装の熱伝導
率を向上する熱伝導性舗装材料を提供することを目的と
している。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thermally conductive pavement material for improving the thermal conductivity of a non-sprinkling snow-melting pavement in which a radiation pipe, a heating wire and the like are embedded in a pavement. I have.

【0005】[0005]

【課題を解決するための手段】本発明によれば、アスフ
ァルト混合物に高熱伝導性材料を混入し熱伝導率を向上
して無散水融雪舗装に用いる熱伝導性舗装材料におい
て、前記高熱伝導性材料にグラファイトを用い、前記ア
スファルト混合物100重量部中、3〜30重量部を前
記グラファイトで置き換え全体に分散させている。
According to the present invention, there is provided a heat-conductive pavement material for use in a non-water-spraying snow melting pavement in which a high heat-conductive material is mixed in an asphalt mixture to improve the heat conductivity, and the high heat-conductive material is used. Graphite is used, and 3 to 30 parts by weight of 100 parts by weight of the asphalt mixture is replaced with the graphite and dispersed throughout.

【0006】さらに本発明によれば、グラファイトに、
天然に産出するもの、人工的に製造するもの及び繊維状
のものを用いている。
Further in accordance with the present invention, graphite is
We use natural products, artificial products and fibrous products.

【0007】さらに本発明によれば、アスファルト混合
物100重量部に対し5〜10重量部のアスファルト改
質材を用いている。
Further in accordance with the present invention, 5 to 10 parts by weight of asphalt modifier are used per 100 parts by weight of the asphalt mixture.

【0008】[0008]

【作用】上記のように構成された熱伝導性舗装材料にお
いて、グラファイトは、高熱伝導性なのでアスファルト
コンクリートの熱伝導性は向上される。その際、グラフ
ァイトの置換重量が、3重量部以下では、アスファルト
混合物への分散が悪く熱伝導の効果が充分でなく、30
重量部以上では、グラファイトが持つ脆弱性が舗装体に
影響を及ぼし、かつ、不経済である。
In the thermally conductive pavement material constructed as described above, graphite has high thermal conductivity, so that the thermal conductivity of asphalt concrete is improved. At this time, if the replacement weight of graphite is 3 parts by weight or less, the dispersion in the asphalt mixture is poor, and the effect of heat conduction is not sufficient.
Above the parts by weight, the fragility of graphite affects the pavement and is uneconomical.

【0009】また、アスファルト混合物を車道部に使用
する場合は、流動・摩耗対策としてアスファルト改質材
を用いる。
When the asphalt mixture is used in the roadway, an asphalt modifier is used as a measure against flow and wear.

【0010】[0010]

【実施例】以下図面を参照して本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】本発明で置換分散されるグラファイトに
は、天然に産出するもの、人工的に製造するもの及び繊
維状のもの(カーボンファイバ)が用いられる。
As the graphite to be substituted and dispersed in the present invention, those produced naturally, those artificially produced, and fibers (carbon fibers) are used.

【0012】表1には、使用したグラファイトの粒度分
布が示されている。
Table 1 shows the particle size distribution of the graphite used.

【0013】 実験に使用した混合物「密粒度ギャップアスファルト混
合物(13F)」とし、グラファイトの添加量は、アス
ファルトを除く全骨材100重量部の内5、10、1
5、20、30、40重量部(表1に示す3種類を単独
あるいは組合せて使用し、それぞれをA〜Fの配合名称
とする)とし、従来品に使用している7号砕石あるいは
細目砂と置き換えた。
[0013] The mixture used in the experiment was "Dense Grain Gap Asphalt Mixture (13F)", and the addition amount of graphite was 5, 10, 1 out of 100 parts by weight of the total aggregate excluding asphalt.
5, 20, 30, 40 parts by weight (the three types shown in Table 1 are used alone or in combination, each of which is referred to as a compound name of A to F), and the No. 7 crushed stone or fine sand used in the conventional product Was replaced with

【0014】表2には、使用材料の配合割合が示されて
いる。
Table 2 shows the proportions of the materials used.

【0015】 熱伝導率の測定には、表3に示す装置(プローブ法)を
用いた。
[0015] The apparatus shown in Table 3 (probe method) was used for measuring the thermal conductivity.

【0016】 熱電導測定用試料には、熱電導率測定用アスファルト混
合物は、前記表2に示す骨材の配合割合およびアスファ
ルト量で作製した直径101.6mm、厚さ63.5m
mの試料(マーシャル供試体)を用いて測定した。
[0016] In the sample for measurement of thermal conductivity, the asphalt mixture for measurement of thermal conductivity was 101.6 mm in diameter and 63.5 m in thickness, which was prepared based on the mixing ratio of the aggregate and the amount of asphalt shown in Table 2 above.
The measurement was performed using m samples (Marshall specimens).

【0017】なお、試料の作製方法は従来のアスファル
ト混合物の作製方法と同様である。
The method for preparing the sample is the same as the method for preparing a conventional asphalt mixture.

【0018】熱伝導率を測定した結果を表4に示す。Table 4 shows the results of the measurement of the thermal conductivity.

【0019】 アスファルト混合物の耐摩耗性(すりへり抵抗又は脆弱
性)の試験を「舗装試験法便覧(社団法人日本道路協
会)」の「ラベリング試験方法」に基づいて行った。使
用したアスファルト混合物は、前記の熱伝導率測定用ア
スファルト混合物である。そして、一般的なアスファル
ト混合物と同様に加熱・混合したグラファイト入りアス
ファルト混合物を幅15cm、長さ40cm、厚さ5c
mの鋼製型枠に投入し、所定の密度(前記表4に示す試
料密度の99%〜101%)が得られるようにローラコ
ンパクタおよび圧縮試験機で充分に締固めた。
[0019] The abrasion resistance (rubbing resistance or brittleness) of the asphalt mixture was tested based on "Labeling test method" in "Handbook of Pavement Test Methods (Japan Road Association)". The asphalt mixture used was the above-described asphalt mixture for measuring thermal conductivity. A graphite-containing asphalt mixture heated and mixed in the same manner as a general asphalt mixture is 15 cm in width, 40 cm in length, and 5 c in thickness.
m, and was sufficiently compacted with a roller compactor and a compression tester so as to obtain a predetermined density (99% to 101% of the sample density shown in Table 4 above).

【0020】表5には、測定条件が示されている。Table 5 shows the measurement conditions.

【0021】 耐摩耗性(すり減り抵抗性)は、供試体表面のすり減り
量(断面積)を算出して判断し、その値が小さくなるほ
どすり減り抵抗性に優れているといえる。
[0021] The wear resistance (abrasion resistance) is judged by calculating the amount of abrasion (cross-sectional area) on the surface of the specimen, and it can be said that the smaller the value, the better the abrasion resistance.

【0022】表6には、すり減り量の測定結果が示され
ている。
Table 6 shows the measurement results of the wear amount.

【0023】 図1は、表4及び表6をまとめて示したものである。図
から、グラファイトの混入量が多いほど、熱伝導率の改
善効果が高く、最高では従来の2.9Kcal/m・h
・℃に対し、4.33Kcal/m・h・℃と略1.5
倍に改善される。しかし、混入量が40%になると、す
り減り量が極端に低下する。したがって、グラファイト
混入量は30%が上限である。また、3%以下では、ア
スファルト混合物への分散が悪く熱伝導率が2Kcal
/m・h・℃以下と従来より小さくなる。したがって、
グラファイト混入量は、3%が下限である。
[0023] FIG. 1 shows Tables 4 and 6 collectively. From the figure, the larger the amount of graphite mixed, the higher the effect of improving the thermal conductivity, and the maximum is 2.9 Kcal / m · h of the conventional type
・ Approximately 1.5 with respect to ℃ 4.33Kcal / m ・ h ・ ℃
Be doubled. However, when the mixing amount becomes 40%, the amount of wear decreases extremely. Therefore, the upper limit of the amount of mixed graphite is 30%. If it is 3% or less, the dispersion in the asphalt mixture is poor, and the thermal conductivity is 2 Kcal.
/ M · h · ° C. or less. Therefore,
The lower limit of the amount of graphite mixed is 3%.

【0024】融雪速度の測定には、図2に示す装置を用
い、グラファイト置換率30%のものについて行った。
The snow melting rate was measured using the apparatus shown in FIG. 2 and having a graphite substitution rate of 30%.

【0025】図2において、1はダイヤルゲージ、2は
氷でΦ=10cm、500gである。3は3cmの密粒
度アスファルトコンクリート版で、カーボン置換及び通
常アスコンである。4は2cmの細粒度アスファルトコ
ンクリート版、5は3cmの細粒度アスファルトコンク
リート版、6は発泡スチロール版(断熱材)で厚さ:1
0cm、7は40wの発熱体(発熱線)、8は冷凍庫で
ある。各舗装版の大きさは、40×40cmである。
In FIG. 2, 1 is a dial gauge, 2 is ice, and Φ = 10 cm and 500 g. 3 is a 3 cm dense grain asphalt concrete slab, carbon substituted and usually ascon. 4 is a 2 cm fine-grained asphalt concrete plate, 5 is a 3 cm fine-grained asphalt concrete plate, 6 is a styrofoam plate (insulation material), thickness: 1
0 cm, 7 is a 40 w heating element (heating wire), and 8 is a freezer. The size of each paving slab is 40 × 40 cm.

【0026】図3には、測定結果が示されている。図か
ら通電時間600分では、従来に比べて融雪効果が約2
倍向上しているのが判る。
FIG. 3 shows the measurement results. From the figure, when the energization time is 600 minutes, the snow melting effect is about 2 compared to the conventional one.
You can see that it has improved twice.

【0027】他方、アスファルト混合物に使用するバイ
ンダは、歩道の場合は流動や摩耗を考慮する必要がない
ため、通常のストレートアスファルトを使用するが、車
道部の場合は、流動・摩耗対策として、アスファルト改
質材を使用する。改質材としては、天然ゴム(NR)あ
るいはスチレンブタジエン共重合体(SBR)あるいは
ポリクロロプレン(CR)あるいはスチレンブタジエン
スチレン共重合体(SBS)あるいはスチレンイソプレ
ンスチレン共重合体(SIS)あるいはエチレン酢酸ビ
ニル共重合体(EVA)あるいはエチレンエチルアクリ
レート共重合体(EEA)あるいはエポキシ樹脂(E
T)あるいはポリウレタン樹脂(PU)が用いられる。
On the other hand, as for the binder used for the asphalt mixture, ordinary straight asphalt is used because there is no need to consider the flow and wear in the case of a sidewalk. However, in the case of a roadway, asphalt is used as a measure against flow and wear. Use a modifier. As the modifier, natural rubber (NR), styrene butadiene copolymer (SBR), polychloroprene (CR), styrene butadiene styrene copolymer (SBS), styrene isoprene styrene copolymer (SIS), or ethylene vinyl acetate Copolymer (EVA) or ethylene ethyl acrylate copolymer (EEA) or epoxy resin (E
T) or polyurethane resin (PU) is used.

【0028】そのアスファルト改質材の添加量は、スト
レートアスファルト100重量部に対して5〜10重量
部を標準とするが、目標とする耐流動性、耐摩耗性ある
いは施工性・作業性を満足する範囲で添加する。
The standard amount of the asphalt modifier added is 5 to 10 parts by weight per 100 parts by weight of the straight asphalt, but the desired flow resistance, abrasion resistance, workability and workability are satisfied. Add within the range.

【0029】[0029]

【発明の効果】本発明は、以上説明したように構成され
ているので、舗装の熱伝導率を、従来品の約150%に
改善し、無散水で融雪効果を大幅に向上することができ
る。
Since the present invention is constructed as described above, the thermal conductivity of pavement can be improved to about 150% of that of the conventional product, and the snow melting effect can be greatly improved without sprinkling water. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による測定結果を示すグラファイト混入
量と熱伝導率・すり減り量特性図。
FIG. 1 is a graph showing characteristics of the amount of mixed graphite and the thermal conductivity / abrasion amount showing measurement results according to the present invention.

【図2】融雪測定装置を示す側断面図。FIG. 2 is a side sectional view showing a snow melting measuring device.

【図3】本発明による融雪測定結果を示す通電時間と氷
の高さ特性図。
FIG. 3 is a graph showing the relationship between energization time and ice height, showing the results of snow melting measurement according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・ダイヤルゲージ 2・・・氷 3・・・密粒度アスファルトコンクリート版 4・・・細粒度アスファルトコンクリート版 5・・・細粒度アスファルトコンクリート版 6・・・発泡スチロール版 7・・・発熱体 8・・・冷凍庫 DESCRIPTION OF SYMBOLS 1 ... Dial gauge 2 ... Ice 3 ... Dense grain asphalt concrete plate 4 ... Fine grain asphalt concrete plate 5 ... Fine grain asphalt concrete plate 6 ... Styrofoam plate 7 ... Heating element 8 ... Freezer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アスファルト混合物に高熱伝導性材料を
混入し熱伝導率を向上して無散水融雪舗装に用いる熱伝
導性舗装材料において、前記高熱伝導性材料にグラファ
イトを用い、前記アスファルト混合物100重量部中、
3〜30重量部を前記グラファイトで置き換え全体に分
散させたことを特徴とする熱伝導性舗装材料。
1. A thermally conductive pavement material for use in a non-water-spraying snow melting pavement in which a highly thermally conductive material is mixed into an asphalt mixture to be used for non-water-spraying snow melting pavement, wherein graphite is used as the highly thermally conductive material, and 100 parts by weight of the asphalt mixture is used. Part of
A thermally conductive pavement material, wherein 3 to 30 parts by weight are replaced with the graphite and dispersed throughout.
【請求項2】 グラファイトに、天然に産出するもの、
人工的に製造するもの及び繊維状のものを用いることを
特徴とする請求項1記載の熱伝導性舗装材料。
2. A graphite naturally produced,
The heat conductive pavement material according to claim 1, wherein an artificially manufactured material and a fibrous material are used.
【請求項3】 アスファルト混合物100重量部に対し
5〜10重量部のアスファルト改質材を用いたことを特
徴とする請求項1記載の熱伝導性舗装材料。
3. The heat conductive pavement material according to claim 1, wherein 5 to 10 parts by weight of the asphalt modifier is used with respect to 100 parts by weight of the asphalt mixture.
JP6285366A 1994-11-18 1994-11-18 Thermal conductive pavement material Expired - Lifetime JP2598887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6285366A JP2598887B2 (en) 1994-11-18 1994-11-18 Thermal conductive pavement material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6285366A JP2598887B2 (en) 1994-11-18 1994-11-18 Thermal conductive pavement material

Publications (2)

Publication Number Publication Date
JPH08144211A true JPH08144211A (en) 1996-06-04
JP2598887B2 JP2598887B2 (en) 1997-04-09

Family

ID=17690627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6285366A Expired - Lifetime JP2598887B2 (en) 1994-11-18 1994-11-18 Thermal conductive pavement material

Country Status (1)

Country Link
JP (1) JP2598887B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096740A (en) * 2001-09-25 2003-04-03 Ishikawajima Harima Heavy Ind Co Ltd Snow melting system
JP2005305692A (en) * 2004-04-19 2005-11-04 Tama Tlo Kk Fiber reinforced plastic preform, fiber reinforced plastic material and roll
CN102815893A (en) * 2012-09-04 2012-12-12 深圳市科中大交通建材有限公司 Asphalt mixture with ice and snow removing function and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112918A (en) * 1991-10-24 1993-05-07 Iwata Kensetsu Kk Snow melting disposal equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112918A (en) * 1991-10-24 1993-05-07 Iwata Kensetsu Kk Snow melting disposal equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096740A (en) * 2001-09-25 2003-04-03 Ishikawajima Harima Heavy Ind Co Ltd Snow melting system
JP4496694B2 (en) * 2001-09-25 2010-07-07 株式会社Ihi Snow melting road construction method
JP2005305692A (en) * 2004-04-19 2005-11-04 Tama Tlo Kk Fiber reinforced plastic preform, fiber reinforced plastic material and roll
JP4672280B2 (en) * 2004-04-19 2011-04-20 敏夫 谷本 roll
CN102815893A (en) * 2012-09-04 2012-12-12 深圳市科中大交通建材有限公司 Asphalt mixture with ice and snow removing function and preparation method thereof

Also Published As

Publication number Publication date
JP2598887B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
Wu et al. Three-phase composite conductive concrete for pavement deicing
Zhong et al. Performance evaluation of high-elastic/salt-storage asphalt mixture modified with Mafilon and rubber particles
US3626149A (en) Thermally conductive concrete with heating means
Won et al. Thermal characteristics of a conductive cement-based composite for a snow-melting heated pavement system
Gopalakrishnan et al. Electrically conductive mortar characterization for self-heating airfield concrete pavement mix design
Li et al. Novel conductive wearing course using a graphite, carbon fiber, and epoxy resin mixture for active de-icing of asphalt concrete pavement
Liu et al. Electric induced curing of graphene/cement-based composites for structural strength formation in deep-freeze low temperature
Ma et al. Experimental study of high-performance deicing asphalt mixture for mechanical performance and anti-icing effectiveness
Liu et al. Induction heating performance of asphalt pavements incorporating electrically conductive and magnetically absorbing layers
Rao et al. Models for estimating the thermal properties of electric heating concrete containing steel fiber and graphite
Kandhal et al. Critical review of voids in mineral aggregate requirements in Superpave
Tan et al. Investigation on preparation and properties of carbon fiber graphite tailings conductive asphalt mixture: A new approach of graphite tailings application
Luan et al. Mechanical property evaluation for steel slag in asphalt mixture with different skeleton structures using modified marshall mix design methodology
JP2598887B2 (en) Thermal conductive pavement material
Park et al. Controlling conductivity of asphalt concrete with graphite.
CN104003657A (en) Thermal conductive SMA (stone mastic asphalt) asphalt concrete used for electric snow melting asphalt pavement
Marks et al. The Effects of Crushed Particles in Asphalt Mixtures
Shu et al. Road performance, thermal conductivity, and temperature distribution of steel slag rubber asphalt surface layer
Abdi Kordani et al. The effect of different deicing solutions on the moisture susceptibility of asphalt mixture
KR102266604B1 (en) High Performance Asphalt Mixture
Fu et al. Comprehensive evaluation of thermally conductive functional layer on snow-melting performance for electric heating bridge system
Gupta et al. Study to Assess the Behaviour of Cement Grouted Bituminous Mix Prepared Using Pozzolanic Grouting Material
JP5898350B1 (en) Paving material
Doukani et al. Grain Size Correction of Pavement Unbound Granular Material Using Recycled Glass Aggregate
Gürer et al. Investigation the Carbon Fiber Based Conductive Asphalt Mixtures for Anti-icing