JPH08143859A - Non-azeotropic mixed cooling medium and refrigeration - Google Patents

Non-azeotropic mixed cooling medium and refrigeration

Info

Publication number
JPH08143859A
JPH08143859A JP6315625A JP31562594A JPH08143859A JP H08143859 A JPH08143859 A JP H08143859A JP 6315625 A JP6315625 A JP 6315625A JP 31562594 A JP31562594 A JP 31562594A JP H08143859 A JPH08143859 A JP H08143859A
Authority
JP
Japan
Prior art keywords
azeotropic mixed
cooling medium
mixed refrigerant
hfc125
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6315625A
Other languages
Japanese (ja)
Other versions
JP2893164B2 (en
Inventor
Hiroshi Okuda
浩史 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabai Espec Co Ltd
Original Assignee
Tabai Espec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabai Espec Co Ltd filed Critical Tabai Espec Co Ltd
Priority to JP6315625A priority Critical patent/JP2893164B2/en
Publication of JPH08143859A publication Critical patent/JPH08143859A/en
Application granted granted Critical
Publication of JP2893164B2 publication Critical patent/JP2893164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To obtain a non-azeotropic mixed cooling medium replaceable with a conventional non-azeotropic mixed cooling medium which is used for a refrigerator adapting a single-element ultralow temperature system. CONSTITUTION: This is a non-azeotropic mixed cooling medium obtained by mixing normal butane (n-C4 H10 :HC600), propylene (C3 H6 :HC1270) or propane (HC290), pentafluoroethane (C2 HF5 :HF125), and tetrafluoromethane (CF4 :FC14 ). This invention also provides a freezing process applying the non-azeotropic mixed cooling medium to a single-element ultralow temperature system. The cooling medium has zero O.D.P., no undesirable influence upon the ozonosphere and low toxicity and can be applied to a conventional freezing system in a retrofittable manner, which can keep the function without modifying the system. Further, the freezing system using the cooling medium enables the construction of a single-element ultralow temperature system with a gas that does not have an undesirable influence upon the ozonosphere and is harmless on human body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、1元超低温システム冷
凍機器に用いられる非共沸混合冷媒およびそれを用いる
冷凍方法に関し、更に詳しくは生体用冷蔵庫、血液保存
庫等の−20〜−85℃程度の低温を必要とする冷凍機
器に好適に用いられる非共沸混合冷媒およびそれを用い
る冷凍方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-azeotropic mixed refrigerant used in a refrigerating machine for a single-source ultra-low temperature system and a refrigerating method using the same, and more specifically to a living-body refrigerator, a blood storage, etc. The present invention relates to a non-azeotropic mixed refrigerant that is suitably used for refrigeration equipment that requires a low temperature of about ° C and a refrigeration method using the same.

【0002】[0002]

【従来の技術・発明が解決しようとする課題】従来よ
り、生体用冷蔵庫、血液保存庫等の−20〜−85℃程
度の低温を必要とする冷凍機器には、図1のような1元
超低温システム冷凍回路が採用されている。そして、こ
のような1元超低温システムを採用する冷凍機器には、
例えばジクロロモノフルオロメタン(HCFC21)・
モノブロモトリフルオロメタン(ハロン1301)・F
C14の重量組成比0.488:0.512:0.3か
らなる非共沸混合冷媒が用いられてきた。
2. Description of the Related Art Conventionally, a refrigerating device requiring a low temperature of about -20 to -85 ° C., such as a refrigerator for a living body and a blood storage, has been conventionally used as a unit as shown in FIG. An ultra low temperature system refrigeration circuit is used. And refrigeration equipment adopting such a 1-source ultra-low temperature system,
For example, dichloromonofluoromethane (HCFC21)
Monobromotrifluoromethane (Halon 1301) / F
A non-azeotropic mixed refrigerant having a C14 weight composition ratio of 0.488: 0.512: 0.3 has been used.

【0003】しかしながら、近年フロンによる成層圏の
オゾン層破壊が地球規模の環境問題となっており、この
ためハロン1301、HCFC21のようなO.D.P
(トリクロロフルオロメタンの成層圏オゾン破壊能力を
1としたときの成層圏オゾン破壊能力を示すオゾン破壊
係数)が0より大きい冷媒は、その使用が好ましくな
く、モントリオール議定書に基づき、将来的には使用不
可能となる。更に、HCFC21は Underwriters' Lab
oratories による毒性の分類が4〜5であり、米国産業
衛生監督官会議が定めるTWA(1日8hr、1週40
hrの平常作業で有害物質に繰り返し暴露されても、ほ
とんどすべての作業者に健康障害を招くことがないと考
えられる気中濃度の時間荷重平均限界値)が10ppm
と毒性が高いという問題もある。
However, in recent years, the depletion of the ozone layer in the stratosphere due to CFCs has become a global environmental problem. D. P
Refrigerants with a stratospheric ozone depletion capacity of trichlorofluoromethane of 1 (ozone depletion coefficient indicating the ozone depletion potential of the stratosphere) of greater than 0 are not preferable and will not be usable in the future based on the Montreal Protocol. Becomes Furthermore, HCFC21 is Underwriters' Lab
Toxicity classification by oratories is 4-5, and TWA (8 hr / day, 40 / week) established by the US Council of Industrial Health Supervisors.
Even if repeatedly exposed to harmful substances during normal work of hr, the time-weighted average limit value of the concentration in the air, which is considered not to cause health problems to almost all workers, is 10 ppm.
There is also the problem of high toxicity.

【0004】従って、前記の1元超低温システム冷凍機
器に用いられる冷媒として、上記のような非共沸混合冷
媒と代替可能な冷媒が、当業界では強く要請されてい
た。
Therefore, there has been a strong demand in the art for a refrigerant that can replace the non-azeotropic mixed refrigerant as described above as a refrigerant used in the above-mentioned single-source ultra-low temperature system refrigeration equipment.

【0005】本発明の目的は、上記の課題を解決すべ
く、O.D.Pが0で、かつ毒性が低く、上記の冷凍シ
ステムにレトロフィットして、システムを変更しなくて
もその性能を維持できる、前記冷媒と代替可能な非共沸
混合冷媒を提供することにある。また、本発明の目的
は、当該冷媒を用いる冷凍方法を提供することにある。
The object of the present invention is to solve the above problems. D. (EN) A non-azeotropic mixed refrigerant which is 0, has low toxicity, and is retrofit to the above refrigeration system and can maintain its performance without changing the system, and which can replace the refrigerant. . Moreover, the objective of this invention is providing the freezing method using the said refrigerant | coolant.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の目
的を達成するため鋭意検討した結果、ノルマルブタン、
プロピレン又はプロパン、ペンタフルオロエタンおよび
テトラフルオロメタンを混合してなる非共沸混合冷媒
が、上記の課題を解決しうることを見出し、本発明を完
成するに至った。
Means for Solving the Problems As a result of earnest studies to achieve the above-mentioned object, the present inventors have found that normal butane
The inventors have found that a non-azeotropic mixed refrigerant prepared by mixing propylene or propane, pentafluoroethane and tetrafluoromethane can solve the above problems, and have completed the present invention.

【0007】すなわち、本発明の要旨は、(1) ノル
マルブタン(n−C4 10:HC600)、プロピレン
(C3 6:HC1270)、ペンタフルオロエタン
(C2 HF5 :HFC125)およびテトラフルオロメ
タン(CF4 :FC14)を混合してなる非共沸混合冷
媒、(2) 混合の重量比が、HC600:HC127
0:HFC125:FC14=(34.2〜38.
3):(9.0〜10.0):(25.4〜29.
0):(24.2〜30.4)である前記(1)記載の
非共沸混合冷媒、(3) 混合の重量比が、HC60
0:HC1270:HFC125:FC14=37.
3:9.1:26.0:27.6である前記(1)記載
の非共沸混合冷媒、(4) ノルマルブタン(n−C4
10:HC600)、プロパン(HC290)、ペンタ
フルオロエタン(C2 HF5 :HFC125)およびテ
トラフルオロメタン(CF4 :FC14)を混合してな
る非共沸混合冷媒、(5) 混合の重量比が、HC60
0:HC290:HFC125:FC14=(24.5
〜36.4):(5.2〜6.7):(29.4〜3
6.9):(27.2〜33.4)である前記(4)記
載の非共沸混合冷媒、並びに(6) 一組の凝縮器、蒸
発器及び圧縮機と、多段に設けた熱交換器及び気液分離
器により実質的に構成される1元超低温システムを採用
する冷凍方法において、前記(1)〜(5)いずれか記
載の非共沸混合冷媒を用いることを特徴とする冷凍方
法、に関する。
[0007] That is, the gist of the present invention, (1) normal butane (n-C 4 H 10: HC600), propylene (C 3 H 6: HC1270) , pentafluoroethane (C 2 HF 5: HFC125) and tetra fluoromethane (CF 4: FC14) comprising a mixture of non-azeotropic refrigerant, (2) the weight ratio of mixing, HC600: HC127
0: HFC125: FC14 = (34.2 to 38.
3): (9.0 to 10.0): (25.4 to 29.
0): (24.2-30.4), the non-azeotropic mixed refrigerant according to (1) above, and (3) the weight ratio of the mixture is HC60.
0: HC1270: HFC125: FC14 = 37.
3: 9.1: 26.0: wherein is 27.6 (1) non-azeotropic refrigerant mixture according, (4) normal butane (n-C 4
H 10 : HC600), propane (HC290), pentafluoroethane (C 2 HF 5 : HFC125) and tetrafluoromethane (CF 4 : FC14), a non-azeotropic refrigerant mixture, (5) Weight ratio of mixture But HC60
0: HC290: HFC125: FC14 = (24.5
~ 36.4): (5.2-6.7): (29.4-3)
6.9): The non-azeotropic mixed refrigerant according to (4) above, which is (27.2 to 33.4), and (6) a set of a condenser, an evaporator, and a compressor, and heat provided in multiple stages. A refrigeration method adopting a one-source ultra-low temperature system substantially constituted by an exchanger and a gas-liquid separator, characterized by using the non-azeotropic mixed refrigerant according to any one of (1) to (5) above. About the method.

【0008】本発明の非共沸混合冷媒には、プロピレン
(C3 6 :HC1270)を使用する第1の態様とプ
ロパン(HC290)を使用する第2の態様が存在す
る。即ち、第1の態様はノルマルブタン(n−C
4 10:HC600)、プロピレン(C3 6 :HC1
270)、ペンタフルオロエタン(C2 HF5 :HFC
125)およびテトラフルオロメタン(CF4 :FC1
4)を混合してなる非共沸混合冷媒であり、第2の態様
はノルマルブタン(n−C4 10:HC600)、プロ
パン(HC290)、ペンタフルオロエタン(C2 HF
5 :HFC125)およびテトラフルオロメタン(CF
4 :FC14)を混合してなる非共沸混合冷媒である。
The non-azeotropic mixed refrigerant of the present invention has a first mode using propylene (C 3 H 6 : HC1270) and a second mode using propane (HC290). That is, the first mode is normal butane (nC
4 H 10: HC600), propylene (C 3 H 6: HC1
270), pentafluoroethane (C 2 HF 5 : HFC
125) and tetrafluoromethane (CF 4 : FC1)
4) a non-azeotropic refrigerant mixture comprising a mixture of the second aspect normal butane (n-C 4 H 10: HC600), propane (HC290), pentafluoroethane (C 2 HF
5 : HFC125) and tetrafluoromethane (CF
4 : Non-azeotropic mixed refrigerant prepared by mixing FC14).

【0009】以下、各成分、組成について説明する。ノ
ルマルブタンは、化学式n−C4 10で表される化合物
であり、標準沸点は−0.50℃であり、それ自身の
O.D.Pは0である。
Each component and composition will be described below. Normal butane is a compound represented by the formula n-C 4 H 10, the normal boiling point is -0.50 ° C., its own O. D. P is 0.

【0010】第1の態様で用いられるプロピレンは、化
学式C3 6 で表される化合物であり、標準沸点は−4
7.0℃であり、それ自身のO.D.Pは0である。第
2の態様で用いられるプロパンは、化学式C3 8 で表
される化合物であり、標準沸点は−42.07℃であ
り、それ自身のO.D.Pは0である。本発明では、こ
れらプロピレン又はプロパンのいずれをも用いることが
できるが、後述の1元超低温システム冷凍回路に用いた
場合に、冷却槽内をより低温に冷却することができる点
から、プロピレンを用いること、即ち第1の態様がより
好ましい。
The propylene used in the first embodiment is a compound represented by the chemical formula C 3 H 6 and has a normal boiling point of -4.
7.0 ° C. and its own O.V. D. P is 0. The propane used in the second embodiment is a compound represented by the chemical formula C 3 H 8 , has a normal boiling point of −42.07 ° C., and has an O.C. D. P is 0. In the present invention, either propylene or propane can be used, but when used in a one-way ultra-low temperature system refrigeration circuit described later, propylene is used because the inside of the cooling tank can be cooled to a lower temperature. That is, the first aspect is more preferable.

【0011】ペンタフルオロエタンは、化学式C2 HF
5 で表される化合物であり、標準沸点は−48.5℃で
あり、それ自身のO.D.Pは0である。
Pentafluoroethane has the chemical formula C 2 HF.
5 , which has a normal boiling point of −48.5 ° C. and its own O.V. D. P is 0.

【0012】テトラフルオロメタンは、化学式CF4
表される化合物であり、標準沸点は−128.0℃であ
り、それ自身のO.D.Pは0である。
Tetrafluoromethane is a compound represented by the chemical formula CF 4 , has a normal boiling point of -128.0 ° C., and has an O.V. D. P is 0.

【0013】従って、以上の化合物の混合物である本発
明の非共沸混合冷媒も、トータルのO.D.Pが0とな
り、オゾン層に悪影響を与えないものである。
Therefore, the non-azeotropic mixed refrigerant of the present invention, which is a mixture of the above compounds, also has a total O.V. D. P is 0, which does not adversely affect the ozone layer.

【0014】第1の態様における上記化合物の混合の重
量比は、HC600:HC1270:HFC125:F
C14=(34.2〜38.3):(9.0〜10.
0):(25.4〜29.0):(24.2〜30.
4)であることが好ましい。この範囲内であると、特に
後述の1元超低温システム冷凍回路に用いた場合に、周
囲温度30℃、電源周波数50Hzにおいて冷却槽内を
−85℃以下の低温に冷却することができる。
The weight ratio of the mixture of the above compounds in the first embodiment is HC600: HC1270: HFC125: F.
C14 = (34.2-38.3): (9.0-10.
0): (25.4 to 29.0): (24.2 to 30.).
4) is preferable. Within this range, particularly when used in a one-source ultra-low temperature system refrigeration circuit described later, the inside of the cooling tank can be cooled to a low temperature of −85 ° C. or lower at an ambient temperature of 30 ° C. and a power supply frequency of 50 Hz.

【0015】また、第1の態様における上記化合物の混
合の重量比は、HC600:HC1270:HFC12
5:FC14=37.3:9.1:26.0:27.6
であることが最も好ましい。この重量比であると、特に
後述の1元超低温システム冷凍回路に用いた場合に、周
囲温度30℃、電源周波数50Hzにおいて冷却槽内を
最も低温(約−89℃)に冷却することができる。
The weight ratio of the mixture of the above compounds in the first embodiment is HC600: HC1270: HFC12.
5: FC14 = 37.3: 9.1: 26.0: 27.6
Is most preferable. With this weight ratio, when used in a one-source ultra-low temperature system refrigeration circuit described later, the inside of the cooling tank can be cooled to the lowest temperature (about −89 ° C.) at an ambient temperature of 30 ° C. and a power supply frequency of 50 Hz.

【0016】第2の態様における上記化合物の混合の重
量比は、HC600:HC290:HFC125:FC
14=(24.5〜36.4):(5.2〜6.7):
(29.4〜36.9):(27.2〜33.4)であ
ることが好ましい。この範囲内であると、特に後述の1
元超低温システム冷凍回路に用いた場合に、周囲温度3
0℃、電源周波数50Hzにおいて冷却槽内を−74℃
以下の低温に冷却することができる。
The weight ratio of the mixture of the above compounds in the second embodiment is HC600: HC290: HFC125: FC.
14 = (24.5 to 36.4): (5.2 to 6.7):
(29.4 to 36.9): (27.2 to 33.4) is preferable. Within this range, in particular 1
Ambient temperature 3 when used in the original ultra low temperature system refrigeration circuit
-74 ℃ in the cooling tank at 0 ℃, power supply frequency 50Hz
It can be cooled to the following low temperatures.

【0017】本発明の非共沸混合冷媒によると、従来の
1元超低温システムの冷凍回路を変更することなく、第
1の態様では−82〜−89℃、第2の態様では−8
4.4℃までの槽内温度を得ることができる。また、本
発明の非共沸混合冷媒は、可燃性ガスを含有するが、図
1の冷凍回路において、2基の気液分離器から液体とし
て熱交換器に供給される冷媒の漏れガスは可燃性である
が、発泡ウレタン内であるので、外部に放出されるおそ
れは無い。そして、それ以外の領域からの漏れガスは初
期は不燃性のFC14を主体とするガスであるため危険
性はない。従って、前記の1元超低温システムを採用す
る冷凍機器に用いられる冷媒として、従来の非共沸混合
冷媒と代替可能な冷媒を提供することができる。
According to the non-azeotropic mixed refrigerant of the present invention, without changing the refrigeration circuit of the conventional one-source ultra-low temperature system, -82 to -89 ° C in the first mode and -8 in the second mode.
It is possible to obtain a temperature in the bath up to 4.4 ° C. Further, the non-azeotropic mixed refrigerant of the present invention contains a combustible gas, but in the refrigeration circuit of FIG. 1, the leakage gas of the refrigerant supplied as liquid from the two gas-liquid separators to the heat exchanger is combustible. However, since it is in urethane foam, there is no risk of it being released to the outside. The leakage gas from the other regions is initially incombustible and is not dangerous because it is mainly composed of FC14. Therefore, it is possible to provide a refrigerant that can replace the conventional non-azeotropic mixed refrigerant as the refrigerant used in the refrigeration equipment adopting the above-mentioned one-source ultra-low temperature system.

【0018】本発明の冷凍方法は、一組の凝縮器、蒸発
器及び圧縮機と、多段に設けた熱交換器及び気液分離器
により実質的に構成される1元超低温システムを採用す
る冷凍方法において、以上の非共沸混合冷媒を用いるこ
とを特徴とするものである。本発明における1元超低温
システム冷凍回路の一例を図1に示すが、本発明の冷凍
方法はこれに限定されるものではなく、同様の原理に基
づくあらゆる冷凍回路に適用できる。
The refrigeration method of the present invention employs a refrigeration system that employs a single-source ultra-low temperature system that is substantially composed of a set of condenser, evaporator and compressor, and heat exchangers and gas-liquid separators arranged in multiple stages. In the method, the above non-azeotropic mixed refrigerant is used. An example of the one-source ultra-low temperature system refrigerating circuit in the present invention is shown in FIG. 1, but the refrigerating method of the present invention is not limited to this and can be applied to any refrigerating circuit based on the same principle.

【0019】このような1元超低温システムでは、非共
沸混合冷媒を使用することにより、単一の圧縮機で構成
された冷凍装置で超低温を達成することができる。本発
明によると、かかる非共沸混合冷媒として、前記の冷媒
を用いることにより、オゾン層に悪影響を与えず、かつ
人体に無害なガスで、1元超低温システムを構成するこ
とができる。
In such a one-source ultra-low temperature system, by using a non-azeotropic mixed refrigerant, it is possible to achieve an ultra-low temperature with a refrigerating apparatus composed of a single compressor. According to the present invention, by using the above-mentioned refrigerant as such a non-azeotropic mixed refrigerant, it is possible to configure a one-source ultra-low temperature system with a gas that does not adversely affect the ozone layer and is harmless to the human body.

【0020】[0020]

【実施例】以下、実施例及び比較例により本発明をさら
に詳しく説明するが、本発明はこれらの実施例等により
なんら限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0021】実施例1〜25(プロピレン使用) 図1に示す1元超低温システム冷凍回路を採用した超低
温保存庫BFH−110(タバイエスペック(株)製)
に、表1〜3に示す組成の本発明の非共沸混合冷媒を充
填し、下記の条件で操作を行った。 電源周波数:表中*1は60Hz、他は50Hz 槽内温度は設定値を低温側に振り切らせて運転し、充分
に安定した時に測定した。そのときの槽内温度と外気温
度の値を表1〜3に示す。なお、槽内温度は内槽の幾何
学的中心温度である。
Examples 1 to 25 (Using Propylene) Ultra Low Temperature Storage Cabinet BFH-110 (manufactured by Tabai Espec Co., Ltd.) adopting the one-source ultra low temperature system refrigeration circuit shown in FIG.
Was filled with the non-azeotropic mixed refrigerant of the present invention having the composition shown in Tables 1 to 3, and the operation was performed under the following conditions. Power supply frequency: * 1 in the table is 60 Hz, other is 50 Hz. The temperature inside the tank was measured by operating it with the set value shaken off to the low temperature side. The values of the temperature inside the tank and the outside air at that time are shown in Tables 1 to 3. The temperature in the tank is the geometric center temperature of the inner tank.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】実施例26〜50(プロパン使用) 実施例1において、表4〜6に示す組成の本発明の非共
沸混合冷媒を充填する以外は、実施例1と同様の条件で
操作を行った。そのときの槽内温度の値を表4〜6に示
す。なお、外気温度はいずれも30℃であった。この
時、電源周波数は50Hzであった。
Examples 26 to 50 (Propane is used) In Example 1, operation is performed under the same conditions as in Example 1 except that the non-azeotropic mixed refrigerant of the present invention having the composition shown in Tables 4 to 6 is charged. It was The values of the bath temperature at that time are shown in Tables 4 to 6. The outside air temperature was 30 ° C in all cases. At this time, the power supply frequency was 50 Hz.

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【表6】 [Table 6]

【0029】比較例1 実施例1において本発明の非共沸混合冷媒の代わりに、
表7に示す組成の従来の非共沸混合冷媒を充填する以外
は、実施例1と同様の条件で操作を行った。そのときの
槽内温度と外気温度の値を表7に示す。この時、電源周
波数は50Hzであった。
Comparative Example 1 Instead of the non-azeotropic mixed refrigerant of the present invention in Example 1,
The operation was performed under the same conditions as in Example 1 except that the conventional non-azeotropic mixed refrigerant having the composition shown in Table 7 was charged. Table 7 shows the values of the temperature inside the tank and the outside air temperature at that time. At this time, the power supply frequency was 50 Hz.

【0030】[0030]

【表7】 [Table 7]

【0031】実施例の非共沸混合冷媒によると、従来の
冷凍回路を変更することなく、従来の冷媒を用いた比較
例と同等の槽内温度(実施例1〜25は−82〜−89
℃,実施例26〜50は−71〜−84℃)を得ること
ができた。特に、混合の重量比が、HC600:HC1
270:HFC125:FC14=37.3:9.1:
26.0:27.6である実施例1の場合に、−89.
3℃という最も低い温度が得られた。
According to the non-azeotropic mixed refrigerant of the embodiment, the temperature in the tank is the same as that of the comparative example using the conventional refrigerant (-82 to -89 in the embodiments 1 to 25) without changing the conventional refrigeration circuit.
C., Examples 26 to 50 were −71 to −84 ° C.). In particular, the mixing weight ratio is HC600: HC1.
270: HFC125: FC14 = 37.3: 9.1:
In the case of Example 1 which is 26.0: 27.6, -89.
The lowest temperature of 3 ° C was obtained.

【0032】[0032]

【発明の効果】本発明の非共沸混合冷媒は、1元超低温
システムを採用する冷凍機器に用いられる、従来の非共
沸混合冷媒と代替可能である。即ち、O.D.Pが0で
オゾン層に悪影響を与えず、かつ毒性も低く、従来の冷
凍システムにレトロフィットして、システムを変更しな
くてもその性能を維持することができる。またこの冷媒
を用いた本発明の冷凍方法によると、オゾン層に悪影響
を与えず、かつ人体に無害なガスで、1元超低温システ
ムを構成することができる。
The non-azeotropic mixed refrigerant of the present invention can replace the conventional non-azeotropic mixed refrigerant used in refrigeration equipment adopting the one-source ultra-low temperature system. That is, O. D. When P is 0, it does not adversely affect the ozone layer, has low toxicity, and can retrofit to a conventional refrigeration system to maintain its performance without changing the system. Further, according to the refrigerating method of the present invention using this refrigerant, it is possible to configure a one-way ultra-low temperature system with a gas that does not adversely affect the ozone layer and is harmless to the human body.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例で用いた装置が採用する1元超
低温システムの冷凍回路の概略図である。
FIG. 1 is a schematic diagram of a refrigeration circuit of a one-source ultra-low temperature system adopted by an apparatus used in an example.

【符号の説明】[Explanation of symbols]

1 圧縮器 2 蒸発器 3 凝縮器 4 気液分離器 5 リリーフタンク 6 ドライヤー 7 熱交換器 8 キャピラリーチューブ 1 Compressor 2 Evaporator 3 Condenser 4 Gas-liquid separator 5 Relief tank 6 Dryer 7 Heat exchanger 8 Capillary tube

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ノルマルブタン(n−C4 10:HC6
00)、プロピレン(C3 6 :HC1270)、ペン
タフルオロエタン(C2 HF5 :HFC125)および
テトラフルオロメタン(CF4 :FC14)を混合して
なる非共沸混合冷媒。
1. A normal butane (n-C 4 H 10: HC6
00), propylene (C 3 H 6: HC1270) , pentafluoroethane (C 2 HF 5: HFC125) and tetrafluoromethane (CF 4: FC14) comprising a mixture of non-azeotropic refrigerant.
【請求項2】 混合の重量比が、HC600:HC12
70:HFC125:FC14=(34.2〜38.
3):(9.0〜10.0):(25.4〜29.
0):(24.2〜30.4)である請求項1記載の非
共沸混合冷媒。
2. The weight ratio of the mixture is HC600: HC12.
70: HFC125: FC14 = (34.2-38.
3): (9.0 to 10.0): (25.4 to 29.
0): (24.2-30.4), The non-azeotropic mixed refrigerant according to claim 1.
【請求項3】 混合の重量比が、HC600:HC12
70:HFC125:FC14=37.3:9.1:2
6.0:27.6である請求項1記載の非共沸混合冷
媒。
3. The weight ratio of the mixture is HC600: HC12.
70: HFC125: FC14 = 37.3: 9.1: 2
The non-azeotropic mixed refrigerant according to claim 1, which has a ratio of 6.0: 27.6.
【請求項4】 ノルマルブタン(n−C4 10:HC6
00)、プロパン(HC290)、ペンタフルオロエタ
ン(C2 HF5 :HFC125)およびテトラフルオロ
メタン(CF4 :FC14)を混合してなる非共沸混合
冷媒。
4. A normal butane (n-C 4 H 10: HC6
00), propane (HC290), pentafluoroethane (C 2 HF 5 : HFC125) and tetrafluoromethane (CF 4 : FC14).
【請求項5】 混合の重量比が、HC600:HC29
0:HFC125:FC14=(24.5〜36.
4):(5.2〜6.7):(29.4〜36.9):
(27.2〜33.4)である請求項4記載の非共沸混
合冷媒。
5. The weight ratio of the mixture is HC600: HC29.
0: HFC125: FC14 = (24.5-36.
4): (5.2 to 6.7): (29.4 to 36.9):
The non-azeotropic mixed refrigerant according to claim 4, which is (27.2 to 33.4).
【請求項6】 一組の凝縮器、蒸発器及び圧縮機と、多
段に設けた熱交換器及び気液分離器により実質的に構成
される1元超低温システムを採用する冷凍方法におい
て、請求項1〜5いずれか記載の非共沸混合冷媒を用い
ることを特徴とする冷凍方法。
6. A refrigeration method employing a one-source ultra-low temperature system substantially constituted by a set of a condenser, an evaporator and a compressor, and a heat exchanger and a gas-liquid separator provided in multiple stages. A refrigerating method using the non-azeotropic mixed refrigerant according to any one of 1 to 5.
JP6315625A 1994-11-25 1994-11-25 Non-azeotropic mixed refrigerant and refrigeration method Expired - Lifetime JP2893164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6315625A JP2893164B2 (en) 1994-11-25 1994-11-25 Non-azeotropic mixed refrigerant and refrigeration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6315625A JP2893164B2 (en) 1994-11-25 1994-11-25 Non-azeotropic mixed refrigerant and refrigeration method

Publications (2)

Publication Number Publication Date
JPH08143859A true JPH08143859A (en) 1996-06-04
JP2893164B2 JP2893164B2 (en) 1999-05-17

Family

ID=18067620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6315625A Expired - Lifetime JP2893164B2 (en) 1994-11-25 1994-11-25 Non-azeotropic mixed refrigerant and refrigeration method

Country Status (1)

Country Link
JP (1) JP2893164B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023494A1 (en) 1999-09-28 2001-04-05 Sanyo Electric Co., Ltd. Refrigerant composition and refrigerating circuit employing the same
JP2003013050A (en) * 2001-07-03 2003-01-15 Nihon Freezer Kk Three component-based refrigerant for ultra low temperature
JP2003013049A (en) * 2001-07-03 2003-01-15 Nihon Freezer Kk Three component-based refrigerant for ultra low temperature
JP2003342557A (en) * 2003-03-17 2003-12-03 Toshiba Kyaria Kk Refrigerant, refrigerant compressor and refrigeration unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023494A1 (en) 1999-09-28 2001-04-05 Sanyo Electric Co., Ltd. Refrigerant composition and refrigerating circuit employing the same
US6652769B1 (en) 1999-09-28 2003-11-25 Sanyo Electric Co., Ltd. Refrigerant composition and refrigerating circuit employing the same
JP4651255B2 (en) * 1999-09-28 2011-03-16 三洋電機株式会社 Refrigerant composition and refrigeration circuit using the same
JP2003013050A (en) * 2001-07-03 2003-01-15 Nihon Freezer Kk Three component-based refrigerant for ultra low temperature
JP2003013049A (en) * 2001-07-03 2003-01-15 Nihon Freezer Kk Three component-based refrigerant for ultra low temperature
JP2003342557A (en) * 2003-03-17 2003-12-03 Toshiba Kyaria Kk Refrigerant, refrigerant compressor and refrigeration unit

Also Published As

Publication number Publication date
JP2893164B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
ES2594182T5 (en) Compositions comprising tetrafluoropropene and carbon dioxide
JP2869038B2 (en) Heat pump device using ternary mixed refrigerant
US8246851B2 (en) Chiller refrigerants
JPH04350471A (en) Refrigerator
EP0314978A1 (en) Refrigerants
EP0509673A1 (en) Refrigerant compositions
JPH08277389A (en) Mixed working fluid and heat pump device using the same
US7238299B2 (en) Heat transfer fluid comprising difluoromethane and carbon dioxide
JPH0418484A (en) Refrigerant composition
JPH07173462A (en) Refrigerant composition
JPH0959612A (en) Mixed working fluid containing trifluoroiodomethane and refrigeration cycle equipment
JPH08143859A (en) Non-azeotropic mixed cooling medium and refrigeration
JPH0959609A (en) Mixed working fluid containing trifluoroiodomethane and refrigeration cycle equipment
JPH08170074A (en) Working fluid
JPH0925480A (en) Hydraulic fluid
JPH11199863A (en) Mixed working fluid
JPH03170594A (en) Working fluid
JP3571296B2 (en) Ultra low temperature refrigerant
JPH0867870A (en) Refrigerant composition
JPH0959611A (en) Refrigerant composition
JPH0418485A (en) Refrigerant composition
JPH09221664A (en) Working fluid
JPH09111231A (en) Mixed working fluid containing trifluoroiodomethane and refrigeration cycle apparatus using the fluid
JPH03170586A (en) Working fluid
JPH09208941A (en) Hydraulic fluid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term