JPH0959611A - Refrigerant composition - Google Patents

Refrigerant composition

Info

Publication number
JPH0959611A
JPH0959611A JP7218610A JP21861095A JPH0959611A JP H0959611 A JPH0959611 A JP H0959611A JP 7218610 A JP7218610 A JP 7218610A JP 21861095 A JP21861095 A JP 21861095A JP H0959611 A JPH0959611 A JP H0959611A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
compressor
boiling point
refrigerant composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7218610A
Other languages
Japanese (ja)
Inventor
Kazuo Takemasa
一夫 竹政
Norio Sawada
範雄 沢田
Yonezo Ikumi
米造 井汲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7218610A priority Critical patent/JPH0959611A/en
Publication of JPH0959611A publication Critical patent/JPH0959611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerant composition being an azeotropic refrigerant mixture comprising 1,1,1,2-tetrafluoroethane and isobutane and having a boiling point substantially equal to that of a regulated refrigerant, CFC 12 or CFC 500. SOLUTION: This refrigerant composition is obtained by forming an azeotropic mixture comprising 88-71wt.% 1,1,1,2-tetrafluoroethane and 12-29wt.% isobutanc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷凍装置に用いら
れ、且つ、オゾン層を破壊する危険のない冷媒組成物に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant composition used in a refrigeration system and having no danger of destroying the ozone layer.

【0002】[0002]

【従来の技術】従来、冷凍機の冷媒として用いられてい
るものにはR12(ジクロロフルオロメタン)とR50
0(R12とR152a(1,1−ジフルオロエタン)
との共沸混合物)が多い。R12の化学式はCCl2F2
である。又、その沸点は大気圧で−29.65℃で、R
500の沸点は−33.45℃であり通常の冷凍装置に
好適である。更に圧縮機への吸込温度が比較的高くても
吐出温度が圧縮機のオイルスラッジを引き起こす程高く
ならない性質を有している。更に又、R12は鉱物油や
アルキルベンゼン油等の従来の圧縮機のオイルと相溶性
が良く、冷媒回路中のオイルを圧縮機まで引き戻す役割
も果たす。
2. Description of the Related Art R12 (dichlorofluoromethane) and R50 are conventionally used as refrigerants for refrigerators.
0 (R12 and R152a (1,1-difluoroethane)
Azeotropic mixture with) is often found. The chemical formula of R12 is CCl2F2
It is. Also, its boiling point is -29.65 ° C at atmospheric pressure, and R
The boiling point of 500 is −33.45 ° C., which is suitable for ordinary refrigeration equipment. Further, even if the suction temperature into the compressor is relatively high, the discharge temperature does not become high enough to cause oil sludge of the compressor. Furthermore, R12 has good compatibility with oils of conventional compressors such as mineral oil and alkylbenzene oil, and also plays a role of returning oil in the refrigerant circuit to the compressor.

【0003】しかしながら上記各冷媒は、その高いオゾ
ン破壊潜在性により、大気中に放出されて地球上空のオ
ゾン層に到達すると、当該オゾン層を破壊する。このオ
ゾン層の破壊は冷媒中の塩素基(Cl)により引き起こ
されることは判っている。
However, each of the refrigerants, due to its high ozone depletion potential, destroys the ozone layer when it is released into the atmosphere and reaches the ozone layer above the earth. It is known that the destruction of the ozone layer is caused by the chlorine group (Cl) in the refrigerant.

【0004】そこで、この塩素基を含まない冷媒、例え
ばR125(ペンタフルオロエタン)やR134a
(1,1,1,2−テトラフルオロエタン)がこれらの
代替冷媒として考えられている。このR125の沸点は
大気圧で−48℃で、R134aの沸点は−26℃であ
る。
Therefore, this chlorine-free refrigerant, such as R125 (pentafluoroethane) or R134a, is used.
(1,1,1,2-Tetrafluoroethane) is considered as an alternative refrigerant for these. The boiling point of R125 is −48 ° C. at atmospheric pressure, and the boiling point of R134a is −26 ° C.

【0005】又、R22(クロロジフルオロメタン)は
塩素基(Cl)を含むものであるが、水素基(H)を有
しているため、オゾン層に到達する以前に活性分解され
るので、オゾン層を破壊する係数がR12に比べて小さ
い。このR22の沸点は大気圧で−40.75℃であ
る。
Further, R22 (chlorodifluoromethane) contains a chlorine group (Cl), but since it has a hydrogen group (H), it is actively decomposed before reaching the ozone layer. The coefficient of destruction is smaller than that of R12. The boiling point of R22 is −40.75 ° C. at atmospheric pressure.

【0006】これらは、先行する米国特許第48104
03号明細書においても述べられており、これらの冷媒
を使用したオゾン層を破壊しないブレンドの例がいくつ
か示されている。
These are described in the prior US Pat. No. 48104.
No. 03 is also mentioned and some examples of blends using these refrigerants which do not destroy the ozone layer are shown.

【0007】[0007]

【発明が解決しようとする課題】前記米国特許明細書に
は、オゾン層を破壊しない複数の冷媒のブレンドによっ
て前述のR12(ジクロロフルオロメタン)と同等の冷
凍能力を発揮する例がいくつか示されており、塩素基
(Cl)を含まないものとしては前述のR125他がま
た、塩素基(Cl)と水素基(H)を含む冷媒としてR
22やR142b他によるブレンドは示されている。
The above-mentioned U.S. Pat. No. 5,837,058 discloses some examples in which a refrigerating capacity equivalent to that of R12 (dichlorofluoromethane) is exhibited by blending a plurality of refrigerants that do not destroy the ozone layer. In addition, R125, etc., which do not contain a chlorine group (Cl), can also be used as a refrigerant containing a chlorine group (Cl) and a hydrogen group (H).
22 and blends by R142b et al. Are shown.

【0008】しかしながら、係る先行技術に示されるよ
うな冷媒ブレンドでは以下に示す不都合が生じる。即
ち、上記塩素基(Cl)を含まない冷媒、R125及び
R134aは冷凍サイクルの圧縮機に従来使用されてい
る鉱物油やアルキルベンゼン油等のオイルとの相溶性が
極度に悪い。これは、オイルとの相溶性が塩素基(C
l)の存在に依っているからである。又、R22も塩素
基(Cl)を有するもののオイルとの相溶性は良好では
ない。
However, the following disadvantages occur in the refrigerant blend as shown in the related art. That is, the refrigerants containing no chlorine group (Cl), R125 and R134a, have extremely poor compatibility with oils such as mineral oils and alkylbenzene oils conventionally used in compressors of refrigeration cycles. It has a chlorine group (C
This is because it depends on the existence of l). Further, although R22 also has a chlorine group (Cl), its compatibility with oil is not good.

【0009】圧縮機のオイルが冷媒に溶けない場合、冷
媒回路の蒸発器中で二相分離(オイルと冷媒の分離)が
発生し、圧縮機にオイルが戻されずに圧縮機の軸受摺動
部が焼付いてしまう危険性がある。
When the oil of the compressor does not dissolve in the refrigerant, two-phase separation (separation of oil and refrigerant) occurs in the evaporator of the refrigerant circuit, the oil is not returned to the compressor, and the bearing sliding portion of the compressor is not returned. There is a risk of burning.

【0010】本発明は係る先行技術が有する種々の課題
を解決することを目的とする。
An object of the present invention is to solve various problems of the prior art.

【0011】[0011]

【課題を解決するための手段】請求項1の発明は、1,
1,1,2−テトラフルオロエタンとイソブタンとの共
沸混合物からなる冷媒組成物を構成し,それぞれの単独
の沸点より低い沸点にしたものである。
According to the invention of claim 1,
The refrigerant composition is composed of an azeotropic mixture of 1,1,2-tetrafluoroethane and isobutane, and has a boiling point lower than the boiling point of each of them.

【0012】請求項2の発明は、1,1,1,2−テト
ラフルオロエタンを88重量%から71重量%とイソブ
タンを12重量%から29重量%との共沸混合物からな
る冷媒組成物を構成し、沸点を−33.7℃にさせら
れ、R12やR500の代替冷媒として十分な冷凍能力
を発揮できるとともに、従来の鉱物油やアルキルベンゼ
ン油等を冷凍機油とした圧縮機にもそのまま使用できる
ようにしたものである。
The invention of claim 2 provides a refrigerant composition comprising an azeotropic mixture of 1,1,1,2-tetrafluoroethane of 88% by weight to 71% by weight and isobutane of 12% by weight to 29% by weight. It has a boiling point of −33.7 ° C. and can exhibit sufficient refrigerating capacity as an alternative refrigerant for R12 and R500, and can be used as it is for a compressor using conventional mineral oil or alkylbenzene oil as refrigerating machine oil. It was done like this.

【0013】[0013]

【発明の実施の形態】以下この発明を図に基づいて説明
する。図1は通常の冷凍サイクルの冷媒回路図である。
図2はこの発明の共沸冷媒混合物の特性図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a normal refrigeration cycle.
FIG. 2 is a characteristic diagram of the azeotropic refrigerant mixture of the present invention.

【0014】1は電動機によって駆動される圧縮機、2
は凝縮器、3はキャピラリチューブ、4は蒸発器であ
り、これらは順次接続されている。圧縮機1内には鉱物
油やアルキルベンゼン油等の従来の冷凍機油が充填され
ている。また、冷媒回路内には化学式に塩素基(Cl)
を含まない冷媒1,1,1,2−テトラフルオロエタン
(以下R134aという)とイソブタン(以下R600
aという)との共沸混合物が充填されている。その組成
はR134aが88重量%から71重量%、R600a
が12重量%から29重量%である。
1 is a compressor driven by an electric motor, 2
Is a condenser, 3 is a capillary tube, 4 is an evaporator, and these are sequentially connected. The compressor 1 is filled with a conventional refrigerating machine oil such as mineral oil or alkylbenzene oil. In addition, the chemical formula in the refrigerant circuit is chlorine group (Cl)
Refrigerant not containing 1,1,1,2-tetrafluoroethane (hereinafter referred to as R134a) and isobutane (hereinafter referred to as R600)
a)) azeotrope. Its composition is 88 to 71 wt% R134a, R600a
Is 12 to 29% by weight.

【0015】図1における冷媒回路中の冷媒の動作を説
明する。圧縮機1から吐出された高温高圧ガス状の共沸
混合物は凝縮器2に流入して放熱し、キャピラリチュー
ブ3で減圧されて蒸発器4に流入し、そこで蒸発して冷
却能力を発揮し、圧縮機1に帰還する。共沸混合物を形
成するR134aはHFC冷媒であるため、従来の冷凍
機油である鉱物油やアルキルベンゼン油と溶け合わない
が、R600aは従来の冷凍機油と相溶性があり、圧縮
機1から吐出冷凍機油を溶け込ませてこの圧縮機1に帰
還させる。これによって冷媒回路中の冷凍機油は停滞す
ることなく圧縮機1へ回収される。
The operation of the refrigerant in the refrigerant circuit in FIG. 1 will be described. The high-temperature high-pressure gaseous azeotrope discharged from the compressor 1 flows into the condenser 2 to radiate heat, is decompressed by the capillary tube 3 and flows into the evaporator 4, where it evaporates and exerts cooling capacity, Return to the compressor 1. Since R134a that forms an azeotrope is an HFC refrigerant, it does not mix with the conventional refrigerating machine oil such as mineral oil or alkylbenzene oil, but R600a is compatible with the conventional refrigerating machine oil and discharges from the compressor 1 Is melted and returned to the compressor 1. Thereby, the refrigerating machine oil in the refrigerant circuit is collected in the compressor 1 without stagnation.

【0016】また、HFC冷媒であるR134aは従来
の冷凍機油に溶け合わないが、エステル油との相溶性が
良く、この冷媒R600aとの共沸混合物は鉱物油、ア
ルキルベンゼン油及びエステル油等の空調、冷凍用の圧
縮機の冷凍機油として使用できるようにされている。
Further, R134a, which is an HFC refrigerant, does not dissolve in conventional refrigerating machine oil, but has good compatibility with ester oil, and an azeotropic mixture with this refrigerant R600a is used for air conditioning of mineral oil, alkylbenzene oil, ester oil, etc. , Can be used as refrigerating machine oil for refrigeration compressors.

【0017】R134aとR600aとの共沸混合物は
蒸発器4で得られる−33.7℃の冷却温度が得られる
ため、R12やR500の代替冷媒として使用でき、通
常の冷凍用のショーケース等に使用できるようにされて
いる。
The azeotropic mixture of R134a and R600a can be used as an alternative refrigerant for R12 and R500 because it can obtain a cooling temperature of -33.7 ° C. obtained in the evaporator 4, and can be used as a normal freezing showcase or the like. Has been made available.

【0018】また、R600aは沸点が高く、可燃性で
あるため、混合比が大き過ぎると蒸発器4において所要
の冷却温度が得られなくなり、且つ爆発の危険性が出て
くるが、逆に小さ過ぎればオイル戻しの機能が発揮でき
なくなる。実験によれば以上のいずれの場合にもR60
0aは全体の12重量%から29重量%が好適であり、
望ましくは22、2重量%である。
Also, since R600a has a high boiling point and is flammable, if the mixing ratio is too large, the required cooling temperature cannot be obtained in the evaporator 4 and there is a risk of explosion, but on the contrary, it is small. If it passes, the oil return function will not work. Experiments show that R60
0a is preferably 12 to 29% by weight of the whole,
It is preferably 22 and 2% by weight.

【0019】更に、R134aとR600aとは一般化
された冷媒であり、入手も容易である。
Further, R134a and R600a are generalized refrigerants and are easily available.

【0020】[0020]

【発明の効果】本発明の冷媒組成物によればオゾン層を
破壊する危険性がなく、更に、鉱物油やアルキルベンゼ
ン油等の従来の圧縮機オイルとの相溶性の良いR600
aによって冷媒回路中のオイルが圧縮機に帰還せしめら
れるので、圧縮機の焼き付きを防止できる。
EFFECT OF THE INVENTION According to the refrigerant composition of the present invention, there is no risk of depleting the ozone layer, and the compatibility with conventional compressor oils such as mineral oil and alkylbenzene oil is excellent.
Since oil in the refrigerant circuit is returned to the compressor by a, it is possible to prevent seizure of the compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of the present invention.

【図2】この発明の共沸冷媒混合物の特性図である。FIG. 2 is a characteristic diagram of the azeotropic refrigerant mixture of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 キャピラリチューブ 4 蒸発器 1 Compressor 2 Condenser 3 Capillary tube 4 Evaporator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1,1,1,2−テトラフルオロエタン
とイソブタンとの共沸混合物からなる冷媒組成物。
1. A refrigerant composition comprising an azeotropic mixture of 1,1,1,2-tetrafluoroethane and isobutane.
【請求項2】 1,1,1,2−テトラフルオロエタン
を88重量%から71重量%とイソブタンを12重量%
から29重量%との共沸混合物からなる冷媒組成物。
2. 88% by weight to 71% by weight of 1,1,1,2-tetrafluoroethane and 12% by weight of isobutane.
To 29% by weight of an azeotropic mixture.
JP7218610A 1995-08-28 1995-08-28 Refrigerant composition Pending JPH0959611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7218610A JPH0959611A (en) 1995-08-28 1995-08-28 Refrigerant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7218610A JPH0959611A (en) 1995-08-28 1995-08-28 Refrigerant composition

Publications (1)

Publication Number Publication Date
JPH0959611A true JPH0959611A (en) 1997-03-04

Family

ID=16722659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7218610A Pending JPH0959611A (en) 1995-08-28 1995-08-28 Refrigerant composition

Country Status (1)

Country Link
JP (1) JPH0959611A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414762B1 (en) * 2000-12-01 2004-01-13 에이씨엠텍(주) The composition of refrigerant mixtures for alternating refrigerant r-500
US6692653B2 (en) 2001-02-16 2004-02-17 Korea Institute Of Science And Technology Refrigerant composition
KR100492174B1 (en) * 2004-08-25 2005-06-02 함윤식 R12 or r22 substitute mixed refrigerant and refrigeration system using thereof
WO2006038766A1 (en) * 2004-08-25 2006-04-13 Yoon-Sik Ham R502, r12 or r22 substitute mixed refrigerant and refrigeration system using thereof
US7229567B2 (en) 1997-07-15 2007-06-12 E.I. Dupont De Nemours And Company Refrigerant compositions
US7258813B2 (en) 1999-07-12 2007-08-21 E.I. Du Pont De Nemours And Company Refrigerant composition
US7276176B2 (en) 2002-10-11 2007-10-02 E. I. Du Pont De Nemours And Company Refrigerant compositions
CN100415847C (en) * 2003-12-08 2008-09-03 西安交通大学 Mixing cryogen containing 1,1,2,2-tetrafluoroethane
US7641810B2 (en) 2002-11-29 2010-01-05 Neil Andre Roberts Refrigerant compositions

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229567B2 (en) 1997-07-15 2007-06-12 E.I. Dupont De Nemours And Company Refrigerant compositions
US7258813B2 (en) 1999-07-12 2007-08-21 E.I. Du Pont De Nemours And Company Refrigerant composition
KR100414762B1 (en) * 2000-12-01 2004-01-13 에이씨엠텍(주) The composition of refrigerant mixtures for alternating refrigerant r-500
US6692653B2 (en) 2001-02-16 2004-02-17 Korea Institute Of Science And Technology Refrigerant composition
US7648642B2 (en) 2002-10-11 2010-01-19 E.I. Du Pont De Nemours And Company Refrigerant compositions
US7837894B2 (en) 2002-10-11 2010-11-23 E. I. Du Pont De Nemours And Company Refrigerant compositions
US7799240B1 (en) 2002-10-11 2010-09-21 E.I. Du Pont De Nemours And Company Refrigerant compositions
US7276176B2 (en) 2002-10-11 2007-10-02 E. I. Du Pont De Nemours And Company Refrigerant compositions
US7410595B2 (en) 2002-10-11 2008-08-12 E.I. Du Pont De Nemours And Company Refrigerant compositions
US7771610B2 (en) 2002-11-29 2010-08-10 E.I. Du Pont De Nemours And Company Refrigerant compositions
US7641810B2 (en) 2002-11-29 2010-01-05 Neil Andre Roberts Refrigerant compositions
US7713434B2 (en) 2002-11-29 2010-05-11 E.I. Du Pont De Nemours And Company Refrigerant compositions
US8246851B2 (en) 2002-11-29 2012-08-21 Roberts Neil Andre Chiller refrigerants
CN100415847C (en) * 2003-12-08 2008-09-03 西安交通大学 Mixing cryogen containing 1,1,2,2-tetrafluoroethane
WO2006038766A1 (en) * 2004-08-25 2006-04-13 Yoon-Sik Ham R502, r12 or r22 substitute mixed refrigerant and refrigeration system using thereof
KR100492174B1 (en) * 2004-08-25 2005-06-02 함윤식 R12 or r22 substitute mixed refrigerant and refrigeration system using thereof

Similar Documents

Publication Publication Date Title
US6363741B2 (en) Refrigerant composition and refrigerating apparatus
US6606868B1 (en) R 22 replacement refrigerant
EP0509673A1 (en) Refrigerant compositions
JP2584337B2 (en) Refrigerant composition
AU769199B2 (en) R 22 replacement refrigerant
JPH07173462A (en) Refrigerant composition
US7459101B2 (en) Environmentally friendly alternative refrigerant for HCFC-22
JPH09208940A (en) Freezer
JPH0959611A (en) Refrigerant composition
WO2008065331A2 (en) Refrigerant extenders for hcfc22
JPH06220430A (en) Refrigerant composition
US20030178597A1 (en) Refrigerant mixture for low back pressure condition
JPH09208939A (en) Difluoromethane/hydrocarbon-mixed refrigerant and refrigeration cycle apparatus using the same
JPH0418485A (en) Refrigerant composition
JPH0925480A (en) Hydraulic fluid
JP3469587B2 (en) Refrigerant composition
JPH07502774A (en) Compositions useful as refrigerants
JPH10306289A (en) Cycling refrigerator
JP3433197B2 (en) Refrigerant circuit
JP2859154B2 (en) Refrigeration equipment
JPH0959610A (en) Refrigerant composition
JP2001072966A (en) Mixed coolant and refrigeration cycle device using it
JPH09221664A (en) Working fluid
JP2003139423A (en) Refrigerant circuit
JPH07173461A (en) Refrigerant composition