JPH081432B2 - Underwater carbon measuring device - Google Patents

Underwater carbon measuring device

Info

Publication number
JPH081432B2
JPH081432B2 JP5051006A JP5100693A JPH081432B2 JP H081432 B2 JPH081432 B2 JP H081432B2 JP 5051006 A JP5051006 A JP 5051006A JP 5100693 A JP5100693 A JP 5100693A JP H081432 B2 JPH081432 B2 JP H081432B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
water
extraction
reaction tube
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5051006A
Other languages
Japanese (ja)
Other versions
JPH06160367A (en
Inventor
仁 岩崎
千秋 前小屋
義昭 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP20651185A external-priority patent/JPS6267452A/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5051006A priority Critical patent/JPH081432B2/en
Publication of JPH06160367A publication Critical patent/JPH06160367A/en
Publication of JPH081432B2 publication Critical patent/JPH081432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】本発明は水中炭素の測定装置に係
り、特に水中の有機炭素を高感度で分析するのに好適な
水中炭素の測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring carbon in water, and more particularly to an apparatus for measuring carbon in water suitable for analyzing organic carbon in water with high sensitivity.

【0002】[0002]

【従来の技術】従来の水中有機炭素の測定装置は、有機
物を酸化して二酸化炭素とする手段と、その二酸化炭素
の検出手段とから構成されている。有機物の酸化法とし
ては、試料水と酸素とを、高温に保持されている全炭素
測定用酸化触媒(固体触媒)充填管に送り込む高温酸化
法(JIS K0102)および試料水と酸化剤との混
合溶液に紫外線を照射するUV酸化法が利用されてい
る。このほかに、試料水と反応試薬を入れたアンプルと
を170℃程度のオートクレーブの中で加熱する湿式酸
化法(JIS K0102)が知られているが、アンプ
ルから生成した二酸化炭素の抽出操作が煩雑になるので
あまり使用されていない。一方、抽出した二酸化炭素の
定量には、赤外分析法、ガスクロマトグラフ法、導電率
測定法等があり、それぞれ使用されている。
2. Description of the Related Art A conventional apparatus for measuring organic carbon in water comprises means for oxidizing organic matter to carbon dioxide and means for detecting the carbon dioxide. Examples of the oxidation method of organic substances include a high temperature oxidation method (JIS K0102) in which sample water and oxygen are fed into an oxidation catalyst (solid catalyst) packed tube for measuring total carbon which is held at high temperature, and a mixture of sample water and an oxidizing agent. A UV oxidation method of irradiating a solution with ultraviolet rays is used. In addition, a wet oxidation method (JIS K0102) in which sample water and an ampoule containing a reaction reagent are heated in an autoclave at about 170 ° C is known, but the extraction operation of carbon dioxide generated from the ampoule is complicated. Is not used so much. On the other hand, for the quantitative determination of the extracted carbon dioxide, there are an infrared analysis method, a gas chromatograph method, a conductivity measurement method and the like, which are used respectively.

【0003】水中有機炭素の測定装置としては、例え
ば、有機物を高温酸化して生成される二酸化炭素を赤外
分析法で検出したり、二酸化炭素をメタンに変換して水
素炎イオン化検出器付ガスクロマトグラフで検出するよ
うにしたもの、また、試料水に紫外線を照射して有機物
を酸化して生成する二酸化炭素を赤外分析法により検出
したり、二酸化炭素を溶液に吸収させて導電率を測定す
るようにしたものなどがある。
As an apparatus for measuring organic carbon in water, for example, carbon dioxide produced by high-temperature oxidation of organic matter is detected by an infrared analysis method, or carbon dioxide is converted into methane and a gas chromatograph with a hydrogen flame ionization detector is used. Infrared analysis method detects carbon dioxide generated by oxidizing organic matter by irradiating sample water with ultraviolet rays, or measuring conductivity by absorbing carbon dioxide in solution There are things I tried to do.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの測定
装置による有機炭素の定量下限は10〜50ppbであ
るので、半導体製造等に用いる超純水のように、さらに
低濃度の有機炭素の定量を必要とする場合は、装置の改
良が必要である。ところで、高温酸化法では、低濃度有
機炭素を定量するために試料供給量を増やすと、酸化触
媒が劣化しやすくなるという問題を生ずる。また、UV
酸化法では、生成された二酸化炭素の抽出率を大きくす
るためには大量の抽出ガスを必要とするので、抽出ガス
中の二酸化炭素の濃度が低くなるという問題がある。こ
の為、固体酸化触媒を使用しないで有機物を酸化し、生
成された二酸化炭素を少ない抽出ガスで抽出するように
して低濃度有機炭素の定量を可能とした測定装置の開発
が強く要望されている。
However, since the lower limit of quantification of organic carbon by these measuring devices is 10 to 50 ppb, it is possible to quantify a lower concentration of organic carbon such as ultrapure water used for semiconductor manufacturing. If necessary, improvement of the device is required. By the way, in the high temperature oxidation method, if the sample supply amount is increased to quantify low-concentration organic carbon, there arises a problem that the oxidation catalyst is easily deteriorated. Also, UV
The oxidation method requires a large amount of extraction gas in order to increase the extraction rate of generated carbon dioxide, and thus has a problem that the concentration of carbon dioxide in the extraction gas becomes low. Therefore, there is a strong demand for the development of a measuring device capable of quantifying low-concentration organic carbon by oxidizing organic matter without using a solid oxidation catalyst and extracting the generated carbon dioxide with a small amount of extraction gas. .

【0005】本発明の目的は、水中の低濃度の有機炭素
を高精度で測定することができる水中有機炭素の測定装
置を提供することにある。
An object of the present invention is to provide an apparatus for measuring organic carbon in water, which can measure low concentration organic carbon in water with high accuracy.

【0006】[0006]

【課題を解決するための手段】本発明は、水中の有機炭
素を酸化したときに生成される二酸化炭素をできるだけ
少ない抽出ガスで抽出して二酸化炭素の濃度が低下しな
いようにすることが、低濃度の有機炭素の測定には重要
であり、二酸化炭素を抽出ガスで抽出する場合、水中の
二酸化炭素を抽出するよりも、水蒸気中の二酸化炭素を
抽出する方が、抽出ガスを少なくしても抽出率が減少し
ないことに着目してなされたものである。
According to the present invention, it is possible to reduce the concentration of carbon dioxide by extracting carbon dioxide produced when oxidizing organic carbon in water with as little extraction gas as possible. It is important to measure the concentration of organic carbon, and when extracting carbon dioxide with an extraction gas, it is better to extract carbon dioxide in water vapor than to extract carbon dioxide in water, even if the amount of extraction gas is reduced. This was done focusing on the fact that the extraction rate does not decrease.

【0007】そこで、本発明に係る水中有機炭素の測定
装置は、酸化剤としての反応液又は試料水を送液する送
液ポンプと、送液ポンプより送液された試料水及び反応
液の混合液を導入して試料水中の有機物を酸化する反応
管と、反応管の温度を保つ恒温槽と、恒温槽の温度を調
節する温度調節器と、反応管内の圧力を水蒸気圧以上に
調節する圧力調節器と、圧力調節器からの水蒸気を含む
熱水を導入し、抽出ガスを用いて二酸化炭素を抽出する
二酸化炭素抽出器と、二酸化炭素抽出器に導入された水
蒸気を含む熱水を冷却する冷却水循環器と、二酸化炭素
抽出器で二酸化炭素を抽出した抽出ガスから、水分を分
離する水分分離器と、抽出ガス中の二酸化炭素を検出す
る二酸化炭素検出手段と、を有することを特徴とする。
Therefore, the apparatus for measuring organic carbon in water according to the present invention comprises a liquid feed pump for feeding a reaction liquid or sample water as an oxidant, and a mixture of the sample water and the reaction liquid fed from the liquid feed pump. A reaction tube that introduces a liquid to oxidize organic substances in the sample water, a thermostat that keeps the temperature of the reaction tube, a temperature controller that adjusts the temperature of the thermostat, and a pressure that adjusts the pressure in the reaction tube above the water vapor pressure. The controller and the hot water containing steam from the pressure controller are introduced, and the carbon dioxide extractor for extracting carbon dioxide using the extraction gas and the hot water containing steam introduced into the carbon dioxide extractor are cooled. A cooling water circulator, a water separator for separating water from an extracted gas obtained by extracting carbon dioxide with a carbon dioxide extractor, and a carbon dioxide detecting means for detecting carbon dioxide in the extracted gas. .

【0008】[0008]

【実施例】〔参考例〕 図1は本発明者らによる水中有機炭素の測定装置の参考
例の構成図で、1−a、1−b、1−c、1−d及び1
−eは送液ポンプ、2は試料水にとけている炭酸ガスを
除去する脱炭酸器、3は試料水a中の有機物を酸化する
反応管、4は反応管3を一定温度に保つ恒温槽、5は恒
温槽4の温度調節器、6は反応管3の内圧を監視する圧
力計、7は反応管3の温度を高くしたときでも水が蒸気
にならないように管内の圧力を水の水蒸気圧以上に調節
する圧力調節器、8は有機物を酸化したときに生成する
二酸化炭素を抽出するための二酸化炭素抽出器、9は二
酸化炭素抽出器8に流入する水蒸気を含む熱水を冷却す
る冷却水の冷却水循環器、10は抽出ガス中の水分を除
去するために過塩素酸マグネシウムが充填されているU
字管からなる水分分離器、11は抽出ガス中の二酸化炭
素を検出するガスクロマトグラフ、aは試料水、bは有
機物を酸化するための酸化剤としての過硫酸カリウム溶
液からなる反応液、cは水中の二酸化炭素の溶解度を減
少させるための希硫酸、d−1は試料水中の二酸化炭素
を追い出すためのヘリウムからなるバブリングガス、d
−2は生成した炭酸ガスを抽出するためのヘリウムから
なる抽出ガス、eはドレン、f−1及びf−2は排ガス
である。
EXAMPLES [Reference Example] FIG. 1 is a block diagram of a reference example of an apparatus for measuring organic carbon in water by the present inventors. 1-a, 1-b, 1-c, 1-d and 1
-E is a liquid feed pump, 2 is a decarbonator for removing carbon dioxide dissolved in the sample water, 3 is a reaction tube for oxidizing organic substances in the sample water a, and 4 is a thermostatic chamber for keeping the reaction tube 3 at a constant temperature. Reference numeral 5 is a temperature controller of the constant temperature bath 4, 6 is a pressure gauge for monitoring the internal pressure of the reaction tube 3, and 7 is the pressure inside the tube so that water does not become steam even when the temperature of the reaction tube 3 is raised. A pressure controller for adjusting the pressure to a pressure or higher, 8 a carbon dioxide extractor for extracting carbon dioxide produced when an organic substance is oxidized, and 9 a cooling for cooling hot water containing steam flowing into the carbon dioxide extractor 8. Water cooling water circulator 10 is filled with magnesium perchlorate to remove water in the extracted gas U
A water separator consisting of a character tube, 11 is a gas chromatograph for detecting carbon dioxide in the extracted gas, a is sample water, b is a reaction solution consisting of potassium persulfate solution as an oxidant for oxidizing organic substances, and c is Dilute sulfuric acid for reducing the solubility of carbon dioxide in water, d-1 is a bubbling gas consisting of helium for expelling carbon dioxide in sample water, d-1
-2 is an extraction gas composed of helium for extracting the generated carbon dioxide gas, e is a drain, and f-1 and f-2 are exhaust gases.

【0009】送液ポンプ1−aで送液した試料水aと送
液ポンプ1−bで送られた過硫酸カリウム溶液からなる
反応液bと送液ポンプ1−cで送られた希硫酸を混合し
て、脱炭酸器2に連続的に送り、ヘリウムからなるバブ
リングガスd−1をバブリングして混合液中の二酸化炭
素をヘリウムガスと共に排ガスf−1として排出して除
去する。炭酸ガスが除去された混合液を送液ポンプ1−
dで圧力調節器7および恒温槽4によって一定の圧力、
温度に保たれている反応管3に送り、試料水aの中の有
機物を過硫酸カリウムで酸化する。その後水蒸気を含む
加熱されている混合液と一定流量のヘリウムからなる抽
出ガスd−2とを二酸化炭素抽出器8の中で混合して水
蒸気を含む加熱されている混合液を冷却水で冷却しなが
ら分離し、生成された二酸化炭素をヘリウム中に抽出す
る。このとき、図1に示すように、水蒸気を含む熱水は
二酸化炭素抽出器8の中間部に導入され、抽出ガスは下
部から導入される。また、二酸化炭素を抽出したヘリウ
ムは二酸化炭素抽出器の上部から導出される。二酸化炭
素を抽出したヘリウム中の水分を水分分離器10で分離
し、二酸化炭素を抽出したヘリウムを検出器11に送
り、ヘリウム中の二酸化炭素の濃度から試料水a中の有
機炭素の濃度を測定する。
The sample water a sent by the solution sending pump 1-a, the reaction solution b consisting of the potassium persulfate solution sent by the solution sending pump 1-b, and the dilute sulfuric acid sent by the solution sending pump 1-c. The mixture is mixed and continuously sent to the decarbonator 2, and the bubbling gas d-1 made of helium is bubbled to discharge the carbon dioxide in the mixed liquid together with the helium gas as the exhaust gas f-1 to be removed. Liquid mixture pump from which carbon dioxide has been removed 1-
At d, a constant pressure by the pressure regulator 7 and the constant temperature bath 4,
It is sent to the reaction tube 3 kept at the temperature, and the organic matter in the sample water a is oxidized with potassium persulfate. Thereafter, the heated mixed solution containing steam and the extraction gas d-2 composed of helium at a constant flow rate are mixed in the carbon dioxide extractor 8 to cool the heated mixed solution containing steam with cooling water. While separating, the carbon dioxide produced is extracted into helium. At this time, as shown in FIG. 1, hot water containing steam is introduced into the middle part of the carbon dioxide extractor 8, and the extracted gas is introduced from the lower part. The helium from which carbon dioxide has been extracted is led out from the upper part of the carbon dioxide extractor. Water in helium from which carbon dioxide has been extracted is separated by a water separator 10, helium from which carbon dioxide has been extracted is sent to a detector 11, and the concentration of organic carbon in sample water a is measured from the concentration of carbon dioxide in helium. To do.

【0010】上記した測定装置によれば、反応管の外部
に圧力調節器を設けることにより試料を水蒸気を含む熱
水として二酸化炭素抽出器に導入しているため、大部分
の二酸化炭素は二酸化炭素抽出器に導入された時すでに
気相にあり少量のヘリウムで抽出可能である。したがっ
て、抽出ガス中の二酸化炭素濃度を高くすることができ
る。また、同伴されている大量の水蒸気は、冷却水によ
って二酸化炭素抽出器内で凝縮除去されるので、後段の
水分分離器にかかる負担が少なくなると共に微量分析を
高精度で行うことが可能となる。
According to the above measuring apparatus, since a sample is introduced into the carbon dioxide extractor as hot water containing steam by providing a pressure regulator outside the reaction tube, most of carbon dioxide is carbon dioxide. It is already in the gas phase when introduced into the extractor and can be extracted with a small amount of helium. Therefore, the carbon dioxide concentration in the extracted gas can be increased. In addition, since a large amount of water vapor entrained is condensed and removed in the carbon dioxide extractor by the cooling water, the load on the moisture separator in the subsequent stage is reduced and the trace analysis can be performed with high accuracy. .

【0011】もし、大量の水蒸気を含む抽出ガスをその
まま水分分離器に通すと、水分分離器に大量の水分が保
持され、そこでCO2 の再吸収が起こる。水分分離器中
で起こるこのCO2 の再吸収を一定に制御することは困
難なので、結果的に試料経路中に不安定要素を抱えるこ
とになって微量分析を高精度に行うことができなくな
る。
If the extracted gas containing a large amount of steam is passed through the moisture separator as it is, a large amount of moisture is retained in the moisture separator, and CO 2 is reabsorbed there. Since it is difficult to constantly control the reabsorption of CO 2 that occurs in the water separator, as a result, an unstable element is held in the sample path, which makes it impossible to perform microanalysis with high accuracy.

【0012】水蒸気を含む熱水を二酸化炭素抽出器の中
間部に導入するようにしたのは、このような二酸化炭素
の抽出と水蒸気の除去を二酸化炭素抽出器内で効果的に
行うためである。本参考例の装置により分析した抽出ガ
スのクロマトグラムを図3に示す。図3は試料水aとし
てイオン交換水を表1の分析条件で分析したときのクロ
マトグラムである。保持時間が1.5分間のところに二
酸化炭素が検出されており、約40ppbの有機炭素濃
度に相当する。図3から低濃度有機炭素の分析装置とし
て有効であることが判る。
The hot water containing steam is introduced into the middle part of the carbon dioxide extractor in order to effectively perform such extraction of carbon dioxide and removal of steam in the carbon dioxide extractor. . A chromatogram of the extracted gas analyzed by the apparatus of this reference example is shown in FIG. FIG. 3 is a chromatogram when ion-exchanged water as sample water a is analyzed under the analysis conditions shown in Table 1. Carbon dioxide was detected at a retention time of 1.5 minutes, which corresponds to an organic carbon concentration of about 40 ppb. It can be seen from FIG. 3 that it is effective as an analyzer for low-concentration organic carbon.

【0013】本参考例の分析装置で第1表に示す分析条
件により分析したときの検量線図を図4に示す。検量線
を作成するためには有機炭素が混入していない水で標準
液を調製する必要がある。有機炭素濃度が高い純水では
ppbレベルの検量線を作成することができないので、
水を精製して使用することにした。本参考例の分析装置
では純水中の有機物を酸化しているので、二酸化炭素抽
出器8からのドレンには有機物が混入していないはずで
あるので、この水に有機炭素の標準物質として一般的な
フタル酸水素カリウムの一定量を添加し、有機炭素濃度
が5〜100ppbになるような標準液を調製した。こ
の標準液を第1表の測定条件により分析した。検量線は
100ppbまでは直線性を示した。この種の分析法と
しては良好なものである。本参考例の測定装置によれば
1〜100ppbの純水中の有機炭素が精度よく分析で
きることが判る。
FIG. 4 shows a calibration curve diagram when analyzed under the analysis conditions shown in Table 1 by the analyzer of this reference example. In order to create a calibration curve, it is necessary to prepare a standard solution with water that is not mixed with organic carbon. Since it is not possible to create a ppb level calibration curve with pure water having a high organic carbon concentration,
It was decided to purify the water before use. Since the organic substance in pure water is oxidized in the analyzer of this reference example, the drain from the carbon dioxide extractor 8 should not contain the organic substance. Therefore, this water is generally used as a standard substance for organic carbon. A standard solution having an organic carbon concentration of 5 to 100 ppb was prepared by adding a constant amount of potassium hydrogen phthalate. This standard solution was analyzed under the measurement conditions shown in Table 1. The calibration curve showed linearity up to 100 ppb. It is a good analytical method of this kind. It can be seen that the measuring apparatus of this reference example can accurately analyze organic carbon in pure water of 1 to 100 ppb.

【0014】[0014]

【表1】 [Table 1]

【0015】本参考例の分析装置で第1表の分析条件に
より分析したときの、各種有機物を含む試料の分析結果
(各有機物の回収率)を第2表に示す。図4の検量線は
フタル酸水素カリウムを標準にしたものであるが、実際
の純水には種々の種類の有機物が混合しているので、有
機物の種類によって検量線の勾配が異なることが考えら
れる。そこで二酸化炭素抽出器8のドレンに水溶性の各
種有機物を添加して有機炭素濃度が既知の試料水を調製
し、この試料を分析し、有機炭素の回収率を求めた。な
お、有機炭素の添加濃度と、二酸化炭素の検出濃度を図
4の検量線図から求めた有機炭素濃度(検出濃度)との
割合を回収率とした。それぞれの有機物の回収率は95
〜106%と有機物の種類にかかわらずほぼ一定の値を
示し、種々の有機物が混在している試料でも図4の検出
線で分析可能であることがわかる。
Table 2 shows the analysis results (recovery rate of each organic substance) of samples containing various organic substances when analyzed by the analyzer of this reference example under the analysis conditions shown in Table 1. The calibration curve in Fig. 4 is based on potassium hydrogen phthalate as a standard, but since various kinds of organic substances are mixed in actual pure water, it is possible that the slope of the calibration curve may differ depending on the type of organic substance. To be Therefore, various water-soluble organic substances were added to the drain of the carbon dioxide extractor 8 to prepare sample water having a known organic carbon concentration, and this sample was analyzed to obtain the recovery rate of organic carbon. The ratio between the concentration of organic carbon added and the concentration of carbon dioxide detected (concentration detected) from the calibration curve of FIG. 4 was defined as the recovery rate. The recovery rate of each organic substance is 95
It shows that the value is ˜106%, which is almost constant regardless of the type of organic matter, and that even a sample in which various organic matter are mixed can be analyzed by the detection line in FIG.

【0016】[0016]

【表2】 [Table 2]

【0017】本参考例の分析装置で第1表の分析条件に
より分析したときの生成する二酸化酸素濃度に対する反
応温度の影響を調べた結果を図5に示す。反応管内の圧
力は高温にしても水が蒸発しないように各温度における
水の飽和水蒸気圧よりも10kg/cm2 高い圧力とし
た。試料水はイオン交換水を使用したものであるが、生
成CO2 濃度は120℃ではほぼ一定の値を示し、反応
が完結しており、この装置は純水中の有機物を酸化して
二酸化炭素に変換する装置として有効であることが明ら
かである。
FIG. 5 shows the results of examining the influence of the reaction temperature on the concentration of oxygen dioxide produced when analyzed under the analysis conditions shown in Table 1 by the analyzer of this reference example. The pressure in the reaction tube was 10 kg / cm 2 higher than the saturated vapor pressure of water at each temperature so that the water would not evaporate even at high temperatures. The sample water used was ion-exchanged water, but the produced CO 2 concentration showed a substantially constant value at 120 ° C., and the reaction was completed. This equipment oxidizes organic substances in pure water to produce carbon dioxide. It is clear that it is effective as a device for converting to.

【0018】本参考例の分析装置で第1表の分析条件に
より分析したときの実験で、繰り返し精度を調べた結果
を第3表に示す。有機炭素濃度の平均値が5.36及び
57.04ppbのときの繰り返し精度は相対標準偏差
で3.5及び1.6%であった。一方、5ppb以下の試
料を得ることができなかったので、5ppb以下の繰り
返し精度がどの程度かを実験的に確めることができなか
った。しかし1ppbのときの標準偏差が5ppbのと
きと同程度と考えられるのでその変動係数は19%と見
積ることができる。本参考例により、純水中の1ppb
の有機炭素が分析精度20%以内で定量可能であること
が判る。
Table 3 shows the results of examination of the repeatability in the experiment when the analysis apparatus of this reference example was analyzed under the analysis conditions of Table 1. When the average value of the organic carbon concentration was 5.36 and 57.04 ppb, the repeatability was 3.5 and 1.6% in relative standard deviation. On the other hand, since it was not possible to obtain a sample of 5 ppb or less, it was not possible to confirm experimentally what the repeatability of 5 ppb or less was. However, since the standard deviation at 1 ppb is considered to be about the same as that at 5 ppb, its coefficient of variation can be estimated to be 19%. According to this reference example, 1 ppb in pure water
It can be seen that the organic carbon of can be quantified within the analysis accuracy of 20%.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【0021】〔実施例〕 図2は本発明による水中有機炭素の測定装置の実施例の
構成図である。図2の測定装置は図1における脱炭酸器
2及び送液ポンプ1−dを取りはずしたものである。送
液ポンプ1−aで送液した試料水aと送液ポンプ1−c
で送液した希硫酸cとの混合液に送液ポンプ1−bで送
液した過硫酸カリウム溶液bを一定時間毎に混合した溶
液を、圧力調節器7および恒温槽4によって一定の圧
力、温度に保たれている反応管3に送り、試料水aの中
の有機物を過硫酸カリウムで酸化する。その後水蒸気を
含む加熱されている混合液と一定流量のヘリウムからな
る抽出ガスd−2を二酸化炭素抽出器8の中で混合して
水蒸気を含む加熱されている混合液を冷却水で冷却しな
がら分離し生成された二酸化炭素をヘリウム中に抽出す
る。二酸化炭素を抽出したヘリウム中の水分を水分分離
器10で分離し、二酸化炭素を抽出したヘリウムをガス
クロマトグラフ11に送り、反応液bを送液したときの
抽出ガス中の二酸化炭素の濃度の差から試料水a中の有
機炭素の濃度を測定する。
Example FIG. 2 is a block diagram of an example of the apparatus for measuring organic carbon in water according to the present invention. The measuring apparatus shown in FIG. 2 is obtained by removing the decarbonator 2 and the liquid feed pump 1-d shown in FIG. Sample water a sent by the liquid sending pump 1-a and the liquid sending pump 1-c
The solution prepared by mixing the potassium persulfate solution b sent by the solution sending pump 1-b with the mixed solution with the dilute sulfuric acid c sent by (1) at a constant time by the pressure controller 7 and the constant temperature bath 4, It is sent to the reaction tube 3 kept at the temperature, and the organic matter in the sample water a is oxidized with potassium persulfate. Thereafter, the heated mixed solution containing water vapor and the extraction gas d-2 composed of helium at a constant flow rate are mixed in the carbon dioxide extractor 8 to cool the heated mixed solution containing water vapor with cooling water. The separated carbon dioxide produced is extracted into helium. Moisture in helium from which carbon dioxide was extracted is separated by a water separator 10, helium from which carbon dioxide has been extracted is sent to a gas chromatograph 11, and the difference in carbon dioxide concentration in the extracted gas when the reaction liquid b is sent. To measure the concentration of organic carbon in the sample water a.

【0022】本実施例によれば反応液b中の過硫酸カリ
ウムを送液したときの抽出ガス中の二酸化炭素の濃度
は、試料水a中の有機炭素及び無機炭素(CO2 )の濃
度に相当し、反応液bを送液しないときの抽出ガス中の
二酸化炭素の濃度は試料水a中の無機炭素の濃度に相当
するので、前者から試料水a中の全炭素濃度を求めるこ
とができると共に、両者の差を求めることにより、試料
水a中の有機炭素濃度を求めることができる。本実施例
によれば、脱炭酸器がないので分析時間が短いこと及び
バブリングをしないのでヘリウムを節約できる効果があ
り、無機炭素濃度が低い試料に対して有効である。
According to the present embodiment, the concentration of carbon dioxide in the extracted gas when the potassium persulfate in the reaction liquid b was fed was adjusted to the concentration of organic carbon and inorganic carbon (CO 2 ) in the sample water a. Correspondingly, since the concentration of carbon dioxide in the extraction gas when the reaction liquid b is not fed corresponds to the concentration of inorganic carbon in the sample water a, the total carbon concentration in the sample water a can be obtained from the former. At the same time, the organic carbon concentration in the sample water a can be obtained by obtaining the difference between the two. According to this example, since there is no decarbonator, the analysis time is short, and bubbling is not performed, so that helium can be saved, which is effective for a sample having a low inorganic carbon concentration.

【0023】参考例及び実施例の分析装置で分析した分
析結果の比較を第4表に示す。両者ともよく一致してお
り、参考例及び実施例とも低濃度の有機炭素分析法とし
て有効であることが判る。実施例の分析装置において分
析したときの抽出ガス中の水素、酸素、窒素のクロマト
グラムを図6に示す。この結果はガスクロマトグラフの
充填剤としてモレキュラシーブ5A(内径3mm、外径
4mm、長さ2m)を使用したときの結果である。この
ことより、実施例の分析装置は水中の水素、酸素、窒素
の分析装置としても有効であることが判る。
Table 4 shows a comparison of the analysis results analyzed by the analyzers of Reference Example and Example. Both are in good agreement, and it can be seen that both the reference example and the example are effective as low-concentration organic carbon analysis methods. FIG. 6 shows a chromatogram of hydrogen, oxygen and nitrogen in the extracted gas when analyzed by the analyzer of the example. This result is the result when the molecular sieve 5A (inner diameter 3 mm, outer diameter 4 mm, length 2 m) was used as a packing material for the gas chromatograph. From this, it is understood that the analyzer of the embodiment is effective as an analyzer for hydrogen, oxygen and nitrogen in water.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
水中の低濃度の有機炭素を高精度で測定することがで
き、超純水の有機炭素の測定装置として好適であるとい
う効果がある。
As described above, according to the present invention,
It is possible to measure low-concentration organic carbon in water with high accuracy, and there is an effect that it is suitable as an apparatus for measuring organic carbon in ultrapure water.

【図面の簡単な説明】[Brief description of drawings]

【図1】 水中有機炭素の測定装置の参考例を示す構成
図。
FIG. 1 is a block diagram showing a reference example of an apparatus for measuring organic carbon in water.

【図2】 水中有機炭素の測定装置の実施例を示す構成
図。
FIG. 2 is a configuration diagram showing an embodiment of an apparatus for measuring organic carbon in water.

【図3】 抽出ガスのクロマトグラム。FIG. 3 is a chromatogram of the extracted gas.

【図4】 検量線図。FIG. 4 is a calibration curve diagram.

【図5】 酸化反応に対する温度依存性を示す図。FIG. 5 is a graph showing temperature dependence on an oxidation reaction.

【図6】 水素、酸素、窒素のクロマトグラム線図。FIG. 6 is a chromatogram diagram of hydrogen, oxygen, and nitrogen.

【符号の説明】[Explanation of symbols]

1−a〜1−e…送液ポンプ、2…脱炭酸器、3…反応
管、4…恒温槽、5…温度調節器、6…圧力計、7…圧
力調節器、8…二酸化炭素抽出器、9…冷却水循環器、
10…水分分離器、11…ガスクロマトグラフ、a…試
料水、b…過硫酸カリウム溶液、c…希硫酸、d−1〜
d−2…ヘリウムガス、e…ドレン、f−1〜f−2…
排ガス。
1-a to 1-e ... liquid feeding pump, 2 ... decarbonator, 3 ... reaction tube, 4 ... thermostat, 5 ... temperature controller, 6 ... pressure gauge, 7 ... pressure controller, 8 ... carbon dioxide extraction Vessel, 9 ... Cooling water circulator,
10 ... Water separator, 11 ... Gas chromatograph, a ... Sample water, b ... Potassium persulfate solution, c ... Dilute sulfuric acid, d-1 to d-1.
d-2 ... Helium gas, e ... Drain, f-1 to f-2 ...
Exhaust gas.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料水及び酸化剤を送液する送液ポンプ
と、前記試料水と酸化剤との混合液を導入して試料水中
の有機物を酸化する中空の反応管と、前記反応管の温度
を一定に保つ恒温槽と、前記反応管の出口部と後記二酸
化炭素抽出手段の間に設けられ前記反応管内の圧力を反
応管温度における飽和水蒸気圧以上に調節する圧力調節
手段と、前記圧力調節手段からの水蒸気を含む熱水を導
入し抽出ガスによって二酸化炭素を抽出する二酸化炭素
抽出手段と、前記二酸化炭素抽出手段から導出された抽
出ガスから水分を分離する水分分離手段と、前記水分分
離手段から導出された抽出ガス中の二酸化炭素を検出す
る二酸化炭素検出手段とを含み、 前記二酸化炭素抽出手段は、下部に抽出ガスを導入する
ための第1の導入管が接続され、中間部に前記圧力調整
手段からの水蒸気を含む熱水を導入するための第2の導
入管が接続され、上部に二酸化炭素抽出後の抽出ガスを
前記水分分離手段に導出するための導出管が接続される
と共に、周囲に冷却手段が配設された容器からなり、前
記第2の導入管から容器内に導入された水蒸気を含む熱
水を冷却して水分を凝縮させながら二酸化炭素を抽出ガ
ス中に抽出するものであることを特徴とする水中炭素の
測定装置。
1. A liquid feed pump for feeding sample water and an oxidizing agent, a hollow reaction tube for introducing a mixed solution of the sample water and the oxidizing agent to oxidize organic substances in the sample water, and a reaction tube for the reaction tube. A constant temperature bath to keep the temperature constant, a pressure adjusting means provided between the outlet of the reaction tube and the carbon dioxide extracting means described later to adjust the pressure in the reaction tube to be equal to or higher than the saturated steam pressure at the reaction tube temperature, and the pressure. Carbon dioxide extraction means for introducing hot water containing water vapor from the adjusting means and extracting carbon dioxide with the extraction gas, water separation means for separating water from the extraction gas derived from the carbon dioxide extraction means, and water separation Carbon dioxide detection means for detecting carbon dioxide in the extraction gas derived from the means, wherein the carbon dioxide extraction means is connected to the first introduction pipe for introducing the extraction gas in the lower part, the middle part A second introducing pipe for introducing hot water containing water vapor from the pressure adjusting means is connected, and an outlet pipe for leading the extracted gas after carbon dioxide extraction to the moisture separating means is connected to the upper portion. At the same time, it is composed of a container around which cooling means is arranged, and the hot water containing steam introduced into the container from the second introduction pipe is cooled to condense water and extract carbon dioxide into the extraction gas. An apparatus for measuring carbon in water, which is characterized by being
JP5051006A 1985-09-20 1993-03-11 Underwater carbon measuring device Expired - Lifetime JPH081432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5051006A JPH081432B2 (en) 1985-09-20 1993-03-11 Underwater carbon measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20651185A JPS6267452A (en) 1985-09-20 1985-09-20 Apparatus for measuring organic carbon in water
JP5051006A JPH081432B2 (en) 1985-09-20 1993-03-11 Underwater carbon measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20651185A Division JPS6267452A (en) 1985-09-20 1985-09-20 Apparatus for measuring organic carbon in water

Publications (2)

Publication Number Publication Date
JPH06160367A JPH06160367A (en) 1994-06-07
JPH081432B2 true JPH081432B2 (en) 1996-01-10

Family

ID=26391516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5051006A Expired - Lifetime JPH081432B2 (en) 1985-09-20 1993-03-11 Underwater carbon measuring device

Country Status (1)

Country Link
JP (1) JPH081432B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102331484A (en) * 2011-06-21 2012-01-25 中国科学院南京土壤研究所 Method for measuring discharged quantities of greenhouse gases of flowing water body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127776U (en) * 1982-02-22 1983-08-30 株式会社東芝 Remote control unit mounting device
JPS59154239U (en) * 1983-04-01 1984-10-16 日東工器株式会社 Compressed air generator for pneumatic pine surge equipment with noise reduction function
JP2544323Y2 (en) * 1992-06-19 1997-08-20 小川ポンプ工業株式会社 Inclination correction mechanism of the swivel platform for aerial work vehicles
JPH0621635U (en) * 1992-08-26 1994-03-22 東京電気株式会社 Massaging device

Also Published As

Publication number Publication date
JPH06160367A (en) 1994-06-07

Similar Documents

Publication Publication Date Title
US9791430B2 (en) Measurement of total organic carbon
US5032721A (en) Acid gas monitor based on ion mobility spectrometry
EP0509171B1 (en) Method and apparatus for improving the specificity of an ion mobility spectrometer utilizing sulfur dioxide dopant chemistry
RU2291229C2 (en) Water electrolysis method and apparatus for determining content of stable isotopes of hydrogen and oxygen
WO1997038304A1 (en) Method and apparatus for the measurement of dissolved carbon in deionized water
CN110621991B (en) SP3 substituted carbon electrode TOC analysis using metal catalysts
KR101030405B1 (en) Analytical sensitivity enhancement by catalytic transformation
US3930798A (en) Method and apparatus for testing aqueous samples
US5559036A (en) Fluid analysis
JPH0581859B2 (en)
JPH081432B2 (en) Underwater carbon measuring device
CA1117403A (en) Process for the quantitative determination of the carbon of organic compounds in water
JP3339962B2 (en) Method and apparatus for analyzing impurity gas in fluorine gas
JPS60207057A (en) Apparatus for measuring organic carbon in water
CN211627469U (en) Carbon-hydrogen nitrogen element analysis system based on chromatographic separation
DesJardin et al. Better understanding of plant and pilot plant operations using on-line mass spectrometry
JP7368027B1 (en) Flow analysis device and flow analysis method
FI59172C (en) FOERFARANDE FOER KVANTITATIV BESTAEMNING AV I VAETSKOR LOESTA GASER OCH VID FOER FOERFARANDET ANVAENDBAR GASSEPARERINGSANORDNING
JP2000097852A (en) Ammonia measuring device
JP3304547B2 (en) Method for determination of ultra-trace phosphorus in chlorosilanes
JP2022191892A (en) Flow analysis method and flow analyzer
JP7234202B2 (en) Apparatus and method for continuous analysis of dissolved inorganic carbon (DIC) concentration and its isotopic carbon and oxygen composition
JP2003302376A (en) Apparatus and method for continuously measuring volatile organic compound
US6368559B1 (en) Device for analyzing organic compounds particularly in aqueous and gaseous samples
SU193777A1 (en)