JPH06160367A - Measuring device for carbon in water - Google Patents

Measuring device for carbon in water

Info

Publication number
JPH06160367A
JPH06160367A JP5051006A JP5100693A JPH06160367A JP H06160367 A JPH06160367 A JP H06160367A JP 5051006 A JP5051006 A JP 5051006A JP 5100693 A JP5100693 A JP 5100693A JP H06160367 A JPH06160367 A JP H06160367A
Authority
JP
Japan
Prior art keywords
carbon dioxide
water
carbon
extraction
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5051006A
Other languages
Japanese (ja)
Other versions
JPH081432B2 (en
Inventor
Hitoshi Iwasaki
仁 岩崎
Chiaki Maekoya
千秋 前小屋
Yoshiaki Okajima
義昭 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP20651185A external-priority patent/JPS6267452A/en
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5051006A priority Critical patent/JPH081432B2/en
Publication of JPH06160367A publication Critical patent/JPH06160367A/en
Publication of JPH081432B2 publication Critical patent/JPH081432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To provide a measuring device for organic carbon under water which allows precision measurement of low-concentration organic carbon in water. CONSTITUTION:An organic substance in sample water is converted into carbon dioxide with oxidizer in a hollow reaction tube 3, and then it is introduced, as hot water containing water vapor, into the intermediate part of a carbon dioxide extractor 8 provided with a cooling means, and while the water content is condensed in the carbon dioxide extractor 8, the carbon dioxide is extracted by extraction gas d-2 introduced from the bottom part of the extractor, so that the carbon dioxide in the extracted gas is detected by a detector 11, thus organic carbon in water measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】本発明は水中炭素の測定装置に係
り、特に水中の有機炭素を高感度で分析するのに好適な
水中炭素の測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring carbon in water, and more particularly to an apparatus for measuring carbon in water suitable for analyzing organic carbon in water with high sensitivity.

【0002】[0002]

【従来の技術】従来の水中有機炭素の測定装置は、有機
物を酸化して二酸化炭素とする手段と、その二酸化炭素
の検出手段とから構成されている。有機物の酸化法とし
ては、試料水と酸素とを、高温に保持されている全炭素
測定用酸化触媒(固体触媒)充填管に送り込む高温酸化
法(JIS K0102)および試料水と酸化剤との混
合溶液に紫外線を照射するUV酸化法が利用されてい
る。このほかに、試料水と反応試薬を入れたアンプルと
を170℃程度のオートクレーブの中で加熱する湿式酸
化法(JIS K0102)が知られているが、アンプ
ルから生成した二酸化炭素の抽出操作が煩雑になるので
あまり使用されていない。一方、抽出した二酸化炭素の
定量には、赤外分析法、ガスクロマトグラフ法、導電率
測定法等があり、それぞれ使用されている。
2. Description of the Related Art A conventional apparatus for measuring organic carbon in water comprises means for oxidizing organic matter to carbon dioxide and means for detecting the carbon dioxide. Examples of the oxidation method of organic substances include a high temperature oxidation method (JIS K0102) in which sample water and oxygen are fed into an oxidation catalyst (solid catalyst) packed tube for measuring total carbon which is held at high temperature, and a mixture of sample water and an oxidizing agent. A UV oxidation method of irradiating a solution with ultraviolet rays is used. In addition, a wet oxidation method (JIS K0102) in which sample water and an ampoule containing a reaction reagent are heated in an autoclave at about 170 ° C is known, but the extraction operation of carbon dioxide generated from the ampoule is complicated. Is not used so much. On the other hand, for the quantitative determination of the extracted carbon dioxide, there are an infrared analysis method, a gas chromatograph method, a conductivity measurement method and the like, which are used respectively.

【0003】水中有機炭素の測定装置としては、例え
ば、有機物を高温酸化して生成される二酸化炭素を赤外
分析法で検出したり、二酸化炭素をメタンに変換して水
素炎イオン化検出器付ガスクロマトグラフで検出するよ
うにしたもの、また、試料水に紫外線を照射して有機物
を酸化して生成する二酸化炭素を赤外分析法により検出
したり、二酸化炭素を溶液に吸収させて導電率を測定す
るようにしたものなどがある。
As an apparatus for measuring organic carbon in water, for example, carbon dioxide produced by high-temperature oxidation of organic matter is detected by an infrared analysis method, or carbon dioxide is converted into methane and a gas chromatograph with a hydrogen flame ionization detector is used. Infrared analysis method detects carbon dioxide generated by oxidizing organic matter by irradiating sample water with ultraviolet rays, or measuring conductivity by absorbing carbon dioxide in solution There are things I tried to do.

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの測定
装置による有機炭素の定量下限は10〜50ppbであ
るので、半導体製造等に用いる超純水のように、さらに
低濃度の有機炭素の定量を必要とする場合は、装置の改
良が必要である。ところで、高温酸化法では、低濃度有
機炭素を定量するために試料供給量を増やすと、酸化触
媒が劣化しやすくなるという問題を生ずる。また、UV
酸化法では、生成された二酸化炭素の抽出率を大きくす
るためには大量の抽出ガスを必要とするので、抽出ガス
中の二酸化炭素の濃度が低くなるという問題がある。こ
の為、固体酸化触媒を使用しないで有機物を酸化し、生
成された二酸化炭素を少ない抽出ガスで抽出するように
して低濃度有機炭素の定量を可能とした測定装置の開発
が強く要望されている。
However, since the lower limit of quantification of organic carbon by these measuring devices is 10 to 50 ppb, it is possible to quantify a lower concentration of organic carbon such as ultrapure water used for semiconductor manufacturing. If necessary, improvement of the device is required. By the way, in the high temperature oxidation method, if the sample supply amount is increased to quantify low-concentration organic carbon, there arises a problem that the oxidation catalyst is easily deteriorated. Also UV
The oxidation method requires a large amount of extraction gas in order to increase the extraction rate of generated carbon dioxide, and thus has a problem that the concentration of carbon dioxide in the extraction gas becomes low. Therefore, there is a strong demand for the development of a measuring device capable of quantifying low-concentration organic carbon by oxidizing an organic substance without using a solid oxidation catalyst and extracting generated carbon dioxide with a small amount of extraction gas. .

【0005】本発明の目的は、水中の低濃度の有機炭素
を高精度で測定することができる水中有機炭素の測定装
置を提供することにある。
An object of the present invention is to provide an apparatus for measuring organic carbon in water, which can measure low concentration organic carbon in water with high accuracy.

【0006】[0006]

【課題を解決するための手段】本発明は、水中の有機炭
素を酸化したときに生成される二酸化炭素をできるだけ
少ない抽出ガスで抽出して二酸化炭素の濃度が低下しな
いようにすることが、低濃度の有機炭素の測定には重要
であり、二酸化炭素を抽出ガスで抽出する場合、水中の
二酸化炭素を抽出するよりも、水蒸気中の二酸化炭素を
抽出する方が、抽出ガスを少なくしても抽出率が減少し
ないことに着目してなされたものである。
According to the present invention, it is possible to reduce the concentration of carbon dioxide by extracting carbon dioxide produced when oxidizing organic carbon in water with as little extraction gas as possible. It is important to measure the concentration of organic carbon, and when extracting carbon dioxide with an extraction gas, it is better to extract carbon dioxide in water vapor than to extract carbon dioxide in water, even if the amount of extraction gas is reduced. This was done focusing on the fact that the extraction rate does not decrease.

【0007】そこで、本発明に係る水中有機炭素の測定
装置は、酸化剤としての反応液又は試料水を送液する送
液ポンプと、送液ポンプより送液された試料水及び反応
液の混合液中の炭酸ガスを除去する脱炭酸器と、脱炭酸
器からの混合液を導入し、試料水中の有機物を酸化する
反応管と、反応管の温度を保つ恒温槽と、恒温槽の温度
を調節する温度調節器と、反応管内の圧力を水蒸気圧以
上に調節する圧力調節器と、圧力調節器からの水蒸気を
含む熱水を導入し、抽出ガスを用いて二酸化炭素を抽出
する二酸化炭素抽出器と、二酸化炭素抽出器に導入され
た水蒸気を含む熱水を冷却する冷却水循環器と、二酸化
炭素抽出器で二酸化炭素を抽出した抽出ガスから、水分
を分離する水分分離器と、抽出ガス中の二酸化炭素を検
出する二酸化炭素検出手段と、を有することを特徴とす
る。
Therefore, the apparatus for measuring organic carbon in water according to the present invention comprises a liquid feed pump for feeding a reaction liquid or sample water as an oxidant, and a mixture of the sample water and the reaction liquid fed from the liquid feed pump. The decarbonator for removing carbon dioxide in the liquid, the reaction tube for introducing the mixed solution from the decarbonator to oxidize the organic matter in the sample water, the thermostat for keeping the temperature of the reaction tube, and the temperature of the thermostat Carbon dioxide extraction that adjusts the temperature controller, pressure controller that adjusts the pressure inside the reaction tube to above the water vapor pressure, and hot water containing steam from the pressure controller and extract carbon dioxide using the extracted gas Water, a cooling water circulator that cools the hot water containing steam introduced into the carbon dioxide extractor, a water separator that separates the water from the extracted gas from which carbon dioxide has been extracted by the carbon dioxide extractor, and the extracted gas Carbon dioxide to detect the carbon dioxide of Characterized in that it comprises means out, the.

【0008】[0008]

【実施例】【Example】

〔実施例1〕図1は本発明の水中有機炭素の測定装置の
構成図で、1−a、1−b、1−c、1−d及び1−e
は送液ポンプ、2は試料水にとけている炭酸ガスを除去
する脱炭酸器、3は試料水a中の有機物を酸化する反応
管、4は反応管3を一定温度に保つ恒温槽、5は恒温槽
4の温度調節器、6は反応管3の内圧を監視する圧力
計、7は反応管3の温度を高くしたときでも水が蒸気に
ならないように管内の圧力を水の水蒸気圧以上に調節す
る圧力調節器、8は有機物を酸化したときに生成する二
酸化炭素を抽出するための二酸化炭素抽出器、9は二酸
化炭素抽出器8に流入する水蒸気を含む熱水を冷却する
冷却水の冷却水循環器、10は抽出ガス中の水分を除去
するために過塩素酸マグネシウムが充填されているU字
管からなる水分分離器、11は抽出ガス中の二酸化炭素
を検出するガスクロマトグラフ、aは試料水、bは有機
物を酸化するための酸化剤としての過硫酸カリウム溶液
からなる反応液、cは水中の二酸化炭素の溶解度を減少
させるための希硫酸、d−1は試料水中の二酸化炭素を
追い出すためのヘリウムからなるバブリングガス、d−
2は生成した炭酸ガスを抽出するためのヘリウムからな
る抽出ガス、eはドレン、f−1及びf−2は排ガスで
ある。
Example 1 FIG. 1 is a block diagram of an apparatus for measuring organic carbon in water according to the present invention. 1-a, 1-b, 1-c, 1-d and 1-e.
Is a liquid feed pump, 2 is a decarbonator for removing carbon dioxide gas dissolved in the sample water, 3 is a reaction tube for oxidizing organic substances in the sample water a, 4 is a thermostatic bath for keeping the reaction tube 3 at a constant temperature, 5 Is a temperature controller of the constant temperature bath 4, 6 is a pressure gauge for monitoring the internal pressure of the reaction tube 3, and 7 is the pressure inside the tube not less than the water vapor pressure of water so that water does not become steam even when the temperature of the reaction tube 3 is raised. A pressure controller 8 for controlling the temperature, 8 a carbon dioxide extractor for extracting carbon dioxide produced when an organic substance is oxidized, and 9 a cooling water for cooling hot water containing steam flowing into the carbon dioxide extractor 8. A cooling water circulator, 10 is a water separator consisting of a U-shaped tube filled with magnesium perchlorate to remove water in the extracted gas, 11 is a gas chromatograph for detecting carbon dioxide in the extracted gas, and a is Sample water, b is for oxidizing organic substances The reaction solution, bubbling gas c is dilute sulfuric acid to reduce the solubility of carbon dioxide in water, d-1 is composed of helium to drive off carbon dioxide water sample consisting of potassium persulfate solution as agent, d-
2 is an extraction gas composed of helium for extracting the generated carbon dioxide gas, e is a drain, and f-1 and f-2 are exhaust gases.

【0009】送液ポンプ1−aで送液した試料水aと送
液ポンプ1−bで送られた過硫酸カリウム溶液からなる
反応液bと送液ポンプ1−cで送られた希硫酸を混合し
て、脱炭酸器2に連続的に送り、ヘリウムからなるバブ
リングガスd−1をバブリングして混合液中の二酸化炭
素をヘリウムガスと共に排ガスf−1として排出して除
去する。炭酸ガスが除去された混合液を送液ポンプ1−
dで圧力調節器7および恒温槽4によって一定の圧力、
温度に保たれている反応管3に送り、試料水aの中の有
機物を過硫酸カリウムで酸化する。その後水蒸気を含む
加熱されている混合液と一定流量のヘリウムからなる抽
出ガスd−2とを二酸化炭素抽出器8の中で混合して水
蒸気を含む加熱されている混合液を冷却水で冷却しなが
ら分離し、生成された二酸化炭素をヘリウム中に抽出す
る。このとき、図1に示すように、水蒸気を含む熱水は
二酸化炭素抽出器8の中間部に導入され、抽出ガスは下
部から導入される。また、二酸化炭素を抽出したヘリウ
ムは二酸化炭素抽出器の上部から導出される。二酸化炭
素を抽出したヘリウム中の水分を水分分離器10で分離
し、二酸化炭素を抽出したヘリウムを検出器11に送
り、ヘリウム中の二酸化炭素の濃度から試料水a中の有
機炭素の濃度を測定する。
The sample water a sent by the solution sending pump 1-a, the reaction solution b consisting of the potassium persulfate solution sent by the solution sending pump 1-b, and the dilute sulfuric acid sent by the solution sending pump 1-c. The mixture is mixed and continuously sent to the decarbonator 2, and the bubbling gas d-1 made of helium is bubbled to discharge the carbon dioxide in the mixed liquid together with the helium gas as the exhaust gas f-1 to be removed. Liquid mixture pump from which carbon dioxide has been removed 1-
At d, a constant pressure by the pressure regulator 7 and the constant temperature bath 4,
It is sent to the reaction tube 3 kept at the temperature, and the organic matter in the sample water a is oxidized with potassium persulfate. Thereafter, the heated mixed solution containing steam and the extraction gas d-2 composed of helium at a constant flow rate are mixed in the carbon dioxide extractor 8 to cool the heated mixed solution containing steam with cooling water. While separating, the carbon dioxide produced is extracted into helium. At this time, as shown in FIG. 1, hot water containing steam is introduced into the middle part of the carbon dioxide extractor 8, and the extracted gas is introduced from the lower part. The helium from which carbon dioxide has been extracted is led out from the upper part of the carbon dioxide extractor. Water in helium from which carbon dioxide has been extracted is separated by a water separator 10, helium from which carbon dioxide has been extracted is sent to a detector 11, and the concentration of organic carbon in sample water a is measured from the concentration of carbon dioxide in helium. To do.

【0010】上記した本発明の実施例によれば、反応管
の外部に圧力調節器を設けることにより試料を水蒸気を
含む熱水として二酸化炭素抽出器に導入しているため、
大部分の二酸化炭素は二酸化炭素抽出器に導入された時
すでに気相にあり少量のヘリウムで抽出可能である。し
たがって、抽出ガス中の二酸化炭素濃度を高くすること
ができる。また、同伴されている大量の水蒸気は、冷却
水によって二酸化炭素抽出器内で凝縮除去されるので、
後段の水分分離器にかかる負担が少なくなると共に微量
分析を高精度で行うことが可能となる。
According to the above-described embodiment of the present invention, since the pressure regulator is provided outside the reaction tube, the sample is introduced into the carbon dioxide extractor as hot water containing steam.
Most of the carbon dioxide is already in the gas phase when introduced into the carbon dioxide extractor and can be extracted with a small amount of helium. Therefore, the carbon dioxide concentration in the extracted gas can be increased. Also, since a large amount of water vapor entrained is condensed and removed in the carbon dioxide extractor by the cooling water,
The load on the water separator in the subsequent stage is reduced, and the microanalysis can be performed with high accuracy.

【0011】もし、大量の水蒸気を含む抽出ガスをその
まま水分分離器に通すと、水分分離器に大量の水分が保
持され、そこでCO2 の再吸収が起こる。水分分離器中
で起こるこのCO2 の再吸収を一定に制御することは困
難なので、結果的に試料経路中に不安定要素を抱えるこ
とになって微量分析を高精度に行うことができなくな
る。
If the extracted gas containing a large amount of steam is passed through the moisture separator as it is, a large amount of moisture is retained in the moisture separator, and CO 2 is reabsorbed there. Since it is difficult to constantly control the reabsorption of CO 2 that occurs in the water separator, as a result, an unstable element is held in the sample path, which makes it impossible to perform microanalysis with high accuracy.

【0012】本発明で、水蒸気を含む熱水を二酸化炭素
抽出器の中間部に導入するようにしたのは、このような
二酸化炭素の抽出と水蒸気の除去を二酸化炭素抽出器内
で効果的に行うためである。本実施例の装置により分析
した抽出ガスのクロマトグラムを図3に示す。図3は試
料水aとしてイオン交換水を表1の分析条件で分析した
ときのクロマトグラムである。保持時間が1.5分間の
ところに二酸化炭素が検出されており、約40ppbの
有機炭素濃度に相当する。本実施例から低濃度有機炭素
の分析装置として有効であることが判る。
In the present invention, the hot water containing steam is introduced into the middle part of the carbon dioxide extractor because the extraction of carbon dioxide and the removal of steam are effectively performed in the carbon dioxide extractor. This is to do it. A chromatogram of the extracted gas analyzed by the apparatus of this example is shown in FIG. FIG. 3 is a chromatogram when ion-exchanged water as sample water a is analyzed under the analysis conditions shown in Table 1. Carbon dioxide was detected at a retention time of 1.5 minutes, which corresponds to an organic carbon concentration of about 40 ppb. From this example, it can be seen that it is effective as an analyzer for low-concentration organic carbon.

【0013】本実施例の分析装置で第1表に示す分析条
件により分析したときの検量線図を図4に示す。検量線
を作成するためには有機炭素が混入していない水で標準
液を調製する必要がある。有機炭素濃度が高い純水では
ppbレベルの検量線を作成することができないので、
水を精製して使用することにした。本実施例の分析装置
では純水中の有機物を酸化しているので、二酸化炭素抽
出器8からのドレンには有機物が混入していないはずで
あるので、この水に有機炭素の標準物質として一般的な
フタル酸水素カリウムの一定量を添加し、有機炭素濃度
が5〜100ppbになるような標準液を調製した。こ
の標準液を第1表の測定条件により分析した。検量線は
100ppbまでは直線性を示した。この種の分析法と
しては良好なものである。本実施例によれば1〜100
ppbの純水中の有機炭素が精度よく分析できることが
判る。
FIG. 4 shows a calibration curve diagram when analyzed under the analysis conditions shown in Table 1 by the analyzer of this example. In order to create a calibration curve, it is necessary to prepare a standard solution with water that is not mixed with organic carbon. Since it is not possible to create a ppb level calibration curve with pure water having a high organic carbon concentration,
It was decided to purify the water before use. Since the organic matter in pure water is oxidized in the analyzer of this embodiment, the drainage from the carbon dioxide extractor 8 should not contain any organic matter. Therefore, this water is generally used as a standard substance for organic carbon. A standard solution having an organic carbon concentration of 5 to 100 ppb was prepared by adding a constant amount of potassium hydrogen phthalate. This standard solution was analyzed under the measurement conditions shown in Table 1. The calibration curve showed linearity up to 100 ppb. It is a good analytical method of this kind. According to the present embodiment, 1 to 100
It can be seen that organic carbon in ppb pure water can be accurately analyzed.

【0014】[0014]

【表1】 [Table 1]

【0015】本実施例の分析装置で第1表の分析条件に
より分析したときの、各種有機物を含む試料の分析結果
(各有機物の回収率)を第2表に示す。図4の検量線は
フタル酸水素カリウムを標準にしたものであるが、実際
の純水には種々の種類の有機物が混合しているので、有
機物の種類によって検量線の勾配が異なることが考えら
れる。そこで二酸化炭素抽出器8のドレンに水溶性の各
種有機物を添加して有機炭素濃度が既知の試料水を調製
し、この試料を分析し、有機炭素の回収率を求めた。な
お、有機炭素の添加濃度と、二酸化炭素の検出濃度を図
4の検量線図から求めた有機炭素濃度(検出濃度)との
割合を回収率とした。それぞれの有機物の回収率は95
〜106%と有機物の種類にかかわらずほぼ一定の値を
示し、種々の有機物が混在している試料でも図4の検出
線で分析可能であることがわかる。
Table 2 shows the analysis results (recovery rate of each organic substance) of the samples containing various organic substances when analyzed under the analysis conditions shown in Table 1 by the analyzer of this example. The calibration curve in Fig. 4 is based on potassium hydrogen phthalate as a standard, but since various kinds of organic substances are mixed in actual pure water, it is possible that the slope of the calibration curve may differ depending on the type of organic substance. To be Therefore, various water-soluble organic substances were added to the drain of the carbon dioxide extractor 8 to prepare sample water having a known organic carbon concentration, and this sample was analyzed to obtain the recovery rate of organic carbon. The ratio between the concentration of organic carbon added and the concentration of carbon dioxide detected (concentration detected) from the calibration curve of FIG. 4 was defined as the recovery rate. The recovery rate of each organic substance is 95
It shows that the value is ˜106%, which is almost constant regardless of the type of organic matter, and that even a sample in which various organic matter are mixed can be analyzed by the detection line in FIG.

【0016】[0016]

【表2】 [Table 2]

【0017】本実施例の分析装置で第1表の分析条件に
より分析したときの生成する二酸化酸素濃度に対する反
応温度の影響を調べた結果を第5表に示す。反応管内の
圧力は高温にしても水が蒸発しないように各温度におけ
る水の飽和水蒸気圧よりも10kg/cm2 高い圧力と
した。試料水はイオン交換水を使用したものであるが、
生成CO2 濃度は120℃ではほぼ一定の値を示し、反
応が完結しており、本発明の装置は純水中の有機物を酸
化して二酸化炭素に変換する方法として有効であること
が明らかである。
Table 5 shows the results of examining the influence of the reaction temperature on the concentration of oxygen dioxide produced when analyzed by the analysis apparatus of this example under the analysis conditions shown in Table 1. The pressure in the reaction tube was 10 kg / cm 2 higher than the saturated vapor pressure of water at each temperature so that the water would not evaporate even at high temperatures. Although the sample water uses ion-exchanged water,
The produced CO 2 concentration shows a substantially constant value at 120 ° C. and the reaction is completed, and it is clear that the apparatus of the present invention is effective as a method for oxidizing organic matter in pure water to convert it to carbon dioxide. is there.

【0018】本実施例の分析装置で第1表の分析条件に
より分析したときの実験で、繰り返し精度を調べた結果
を第3表に示す。有機炭素濃度の平均値が5.36及び
57.04ppbのときの繰り返し精度は相対標準偏差
で3.5及び1.6%であった。一方、5ppb以下の
試料を得ることができなかったので、5ppb以下の繰
り返し精度がどの程度かを実験的に確めることができな
かった。しかし1ppbのときの標準偏差が5ppbの
ときと同程度と考えられるのでその変動係数は19%と
見積ることができる。本実施例により、純水中の1pp
bの有機炭素が分析精度20%以内で定量可能であるこ
とが判る。
Table 3 shows the results of examining the repeatability in the experiment when the analysis apparatus of this embodiment was used under the analysis conditions shown in Table 1. When the average value of the organic carbon concentration was 5.36 and 57.04 ppb, the relative accuracy was 3.5 and 1.6% in relative standard deviation. On the other hand, since it was not possible to obtain a sample of 5 ppb or less, it was not possible to confirm experimentally what the repeatability of 5 ppb or less was. However, since the standard deviation at 1 ppb is considered to be about the same as that at 5 ppb, its coefficient of variation can be estimated to be 19%. According to this embodiment, 1 pp in pure water
It can be seen that the organic carbon of b can be quantified within the analysis accuracy of 20%.

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【表4】 [Table 4]

【0021】〔実施例2〕図2は本発明の水中有機炭素
の測定装置の別の構成図である。図2の測定装置は図1
における脱炭酸器2及び送液ポンプ1−dを取りはずし
たものである。送液ポンプ1−aで送液した試料水aと
送液ポンプ1−cで送液した希硫酸cとの混合液に送液
ポンプ1−bで送液した過硫酸カリウム溶液bを一定時
間毎に混合した溶液を、圧力調節器7および恒温槽4に
よって一定の圧力、温度に保たれている反応管3に送
り、試料水aの中の有機物を過硫酸カリウムで酸化す
る。その後水蒸気を含む加熱されている混合液と一定流
量のヘリウムからなる抽出ガスd−2を二酸化炭素抽出
器8の中で混合して水蒸気を含む加熱されている混合液
を冷却水で冷却しながら分離し生成された二酸化炭素を
ヘリウム中に抽出する。二酸化炭素を抽出したヘリウム
中の水分を水分分離器10で分離し、二酸化炭素を抽出
したヘリウムをガスクロマトグラフ11に送り、反応液
bを送液したときの抽出ガス中の二酸化炭素の濃度の差
から試料水a中の有機炭素の濃度を測定する。
[Embodiment 2] FIG. 2 is another structural view of the apparatus for measuring organic carbon in water according to the present invention. The measuring device of FIG. 2 is shown in FIG.
The decarbonator 2 and the liquid feed pump 1-d in FIG. The potassium persulfate solution b sent by the solution sending pump 1-b is added to the mixed solution of the sample water a sent by the solution sending pump 1-a and the dilute sulfuric acid c sent by the solution sending pump 1-c for a certain period of time. The solution mixed for each is sent to the reaction tube 3 which is kept at a constant pressure and temperature by the pressure controller 7 and the thermostat 4, and the organic matter in the sample water a is oxidized with potassium persulfate. Thereafter, the heated mixed solution containing water vapor and the extraction gas d-2 composed of helium at a constant flow rate are mixed in the carbon dioxide extractor 8 to cool the heated mixed solution containing water vapor with cooling water. The separated carbon dioxide produced is extracted into helium. Moisture in helium from which carbon dioxide has been extracted is separated by a water separator 10, helium from which carbon dioxide has been extracted is sent to a gas chromatograph 11, and the difference in carbon dioxide concentration in the extracted gas when the reaction liquid b is sent. To measure the concentration of organic carbon in the sample water a.

【0022】本実施例によれば反応液b中の過硫酸カリ
ウムを送液したときの抽出ガス中の二酸化炭素の濃度
は、試料水a中の有機炭素及び無機炭素(CO2 )の濃
度に相当し、反応液bを送液しないときの抽出ガス中の
二酸化炭素の濃度は試料水a中の無機炭素の濃度に相当
するので、前者から試料水a中の全炭素濃度を求めるこ
とができると共に、両者の差を求めることにより、試料
水a中の有機炭素濃度を求めることができる。本実施例
によれば、脱炭酸器がないので分析時間が短いこと及び
バブリングをしないのでヘリウムを節約できる効果があ
り、無機炭素濃度が低い試料に対して有効である。
According to the present embodiment, the concentration of carbon dioxide in the extracted gas when the potassium persulfate in the reaction liquid b was fed was adjusted to the concentration of organic carbon and inorganic carbon (CO 2 ) in the sample water a. Correspondingly, since the concentration of carbon dioxide in the extraction gas when the reaction liquid b is not fed corresponds to the concentration of inorganic carbon in the sample water a, the total carbon concentration in the sample water a can be obtained from the former. At the same time, the organic carbon concentration in the sample water a can be obtained by obtaining the difference between the two. According to this example, since there is no decarbonator, the analysis time is short, and bubbling is not performed, so that helium can be saved, which is effective for a sample having a low inorganic carbon concentration.

【0023】実施例1及び実施例2の分析装置で分析し
たときの分析結果の比較で、結果を第4表に示す。両者
ともよく一致しており、実施例1及び実施例2とも低濃
度の有機炭素分析法として有効であることが判る。実施
例2の分析装置において分析したときの抽出ガス中の水
素、酸素、窒素のクロマトグラムを図6に示す。この結
果はガスクロマトグラフの充填剤としてモレキュラシー
ブ5A(内径3mm、外径4mm、長さ2m)を使用し
たときの結果である。このことより、実施例2の分析装
置は水中の水素、酸素、窒素の分析装置としても有効で
あることが判る。
Table 4 shows a comparison of the analysis results when analyzed by the analyzers of Example 1 and Example 2. Both are in good agreement, and it can be seen that both Example 1 and Example 2 are effective as a low-concentration organic carbon analysis method. FIG. 6 shows a chromatogram of hydrogen, oxygen and nitrogen in the extracted gas when analyzed by the analyzer of Example 2. This result is the result when the molecular sieve 5A (inner diameter 3 mm, outer diameter 4 mm, length 2 m) was used as a packing material for the gas chromatograph. From this, it can be seen that the analyzer of Example 2 is effective as an analyzer for hydrogen, oxygen, and nitrogen in water.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
水中の低濃度の有機炭素を高精度で測定することがで
き、超純水の有機炭素の測定装置として好適であるとい
う効果がある。
As described above, according to the present invention,
It is possible to measure low-concentration organic carbon in water with high accuracy, and there is an effect that it is suitable as an apparatus for measuring organic carbon in ultrapure water.

【図面の簡単な説明】[Brief description of drawings]

【図1】 水中有機炭素の測定装置の一実施例を示す構
成図。
FIG. 1 is a configuration diagram showing an embodiment of an apparatus for measuring organic carbon in water.

【図2】 水中有機炭素の測定装置の別の実施例を示す
構成図。
FIG. 2 is a configuration diagram showing another embodiment of the apparatus for measuring organic carbon in water.

【図3】 抽出ガスのクロマトグラム。FIG. 3 is a chromatogram of the extracted gas.

【図4】 検量線図。FIG. 4 is a calibration curve diagram.

【図5】 酸化反応に対する温度依存性を示す図。FIG. 5 is a graph showing temperature dependence on an oxidation reaction.

【図6】 水素、酸素、窒素のクロマトグラム線図。FIG. 6 is a chromatogram diagram of hydrogen, oxygen, and nitrogen.

【符号の説明】[Explanation of symbols]

1−a〜1−e…送液ポンプ、2…脱炭酸器、3…反応
管、4…恒温槽、5…温度調節器、6…圧力計、7…圧
力調節器、8…二酸化炭素抽出器、9…冷却水循環器、
10…水分分離器、11…ガスクロマトグラフ、a…試
料水、b…過硫酸カリウム溶液、c…希硫酸、d−1〜
d−2…ヘリウムガス、e…ドレン、f−1〜f−2…
排ガス。
1-a to 1-e ... liquid feeding pump, 2 ... decarbonator, 3 ... reaction tube, 4 ... thermostat, 5 ... temperature controller, 6 ... pressure gauge, 7 ... pressure controller, 8 ... carbon dioxide extraction Vessel, 9 ... Cooling water circulator,
10 ... Water separator, 11 ... Gas chromatograph, a ... Sample water, b ... Potassium persulfate solution, c ... Dilute sulfuric acid, d-1 to d-1.
d-2 ... Helium gas, e ... Drain, f-1 to f-2 ...
Exhaust gas.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料水及び酸化剤を送液する送液ポンプ
と、前記試料水と酸化剤との混合液を導入して試料水中
の有機物を酸化する中空の反応管と、前記反応管の温度
を一定に保つ恒温槽と、前記反応管の出口部と後記二酸
化炭素抽出手段の間に設けられ前記反応管内の圧力を反
応管温度における飽和水蒸気圧以上に調節する圧力調節
手段と、前記圧力調節手段からの水蒸気を含む熱水を導
入し抽出ガスによって二酸化炭素を抽出する二酸化炭素
抽出手段と、前記二酸化炭素抽出手段から導出された抽
出ガスから水分を分離する水分分離手段と、前記水分分
離手段から導出された抽出ガス中の二酸化炭素を検出す
る二酸化炭素検出手段とを含み、 前記二酸化炭素抽出手段は、下部に抽出ガスを導入する
ための第1の導入管が接続され、中間部に前記圧力調整
手段からの水蒸気を含む熱水を導入するための第2の導
入管が接続され、上部に二酸化炭素抽出後の抽出ガスを
前記水分分離手段に導出するための導出管が接続される
と共に、周囲に冷却手段が配設された容器からなり、前
記第2の導入管から容器内に導入された水蒸気を含む熱
水を冷却して水分を凝縮させながら二酸化炭素を抽出ガ
ス中に抽出するものであることを特徴とする水中炭素の
測定装置。
1. A liquid feed pump for feeding sample water and an oxidizing agent, a hollow reaction tube for introducing a mixed solution of the sample water and the oxidizing agent to oxidize organic substances in the sample water, and a reaction tube for the reaction tube. A constant temperature bath to keep the temperature constant, a pressure adjusting means provided between the outlet of the reaction tube and the carbon dioxide extracting means described later to adjust the pressure in the reaction tube to be equal to or higher than the saturated steam pressure at the reaction tube temperature, and the pressure. Carbon dioxide extraction means for introducing hot water containing water vapor from the adjusting means and extracting carbon dioxide with the extraction gas, water separation means for separating water from the extraction gas derived from the carbon dioxide extraction means, and water separation Carbon dioxide detection means for detecting carbon dioxide in the extraction gas derived from the means, wherein the carbon dioxide extraction means is connected to the first introduction pipe for introducing the extraction gas in the lower part, the middle part A second introducing pipe for introducing hot water containing water vapor from the pressure adjusting means is connected, and an outlet pipe for leading the extracted gas after carbon dioxide extraction to the moisture separating means is connected to the upper portion. At the same time, it is composed of a container around which cooling means is arranged, and the hot water containing steam introduced into the container from the second introduction pipe is cooled to extract carbon dioxide into the extraction gas while condensing water. An apparatus for measuring carbon in water, which is characterized by being
JP5051006A 1985-09-20 1993-03-11 Underwater carbon measuring device Expired - Lifetime JPH081432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5051006A JPH081432B2 (en) 1985-09-20 1993-03-11 Underwater carbon measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20651185A JPS6267452A (en) 1985-09-20 1985-09-20 Apparatus for measuring organic carbon in water
JP5051006A JPH081432B2 (en) 1985-09-20 1993-03-11 Underwater carbon measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20651185A Division JPS6267452A (en) 1985-09-20 1985-09-20 Apparatus for measuring organic carbon in water

Publications (2)

Publication Number Publication Date
JPH06160367A true JPH06160367A (en) 1994-06-07
JPH081432B2 JPH081432B2 (en) 1996-01-10

Family

ID=26391516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5051006A Expired - Lifetime JPH081432B2 (en) 1985-09-20 1993-03-11 Underwater carbon measuring device

Country Status (1)

Country Link
JP (1) JPH081432B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102331484A (en) * 2011-06-21 2012-01-25 中国科学院南京土壤研究所 Method for measuring discharged quantities of greenhouse gases of flowing water body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127776U (en) * 1982-02-22 1983-08-30 株式会社東芝 Remote control unit mounting device
JPS59154239U (en) * 1983-04-01 1984-10-16 日東工器株式会社 Compressed air generator for pneumatic pine surge equipment with noise reduction function
JPH063354U (en) * 1992-06-19 1994-01-18 小川ポンプ工業株式会社 Tilt correction mechanism of swivel platform for aerial work vehicle
JPH0621635U (en) * 1992-08-26 1994-03-22 東京電気株式会社 Massaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127776U (en) * 1982-02-22 1983-08-30 株式会社東芝 Remote control unit mounting device
JPS59154239U (en) * 1983-04-01 1984-10-16 日東工器株式会社 Compressed air generator for pneumatic pine surge equipment with noise reduction function
JPH063354U (en) * 1992-06-19 1994-01-18 小川ポンプ工業株式会社 Tilt correction mechanism of swivel platform for aerial work vehicle
JPH0621635U (en) * 1992-08-26 1994-03-22 東京電気株式会社 Massaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102331484A (en) * 2011-06-21 2012-01-25 中国科学院南京土壤研究所 Method for measuring discharged quantities of greenhouse gases of flowing water body

Also Published As

Publication number Publication date
JPH081432B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
US9791430B2 (en) Measurement of total organic carbon
US5798271A (en) Apparatus for the measurement of dissolved carbon in deionized water
RU2291229C2 (en) Water electrolysis method and apparatus for determining content of stable isotopes of hydrogen and oxygen
US5559036A (en) Fluid analysis
JPH0581859B2 (en)
CA1117403A (en) Process for the quantitative determination of the carbon of organic compounds in water
JPH06160367A (en) Measuring device for carbon in water
Wong et al. Trace level analysis of volatile and semi-volatile organic compounds in water using a membrane/jet separator interfaced to an ion trap mass spectrometer
JPS60207057A (en) Apparatus for measuring organic carbon in water
JPH021264B2 (en)
JP2000097852A (en) Ammonia measuring device
JP7400978B2 (en) Inspection equipment
US6368559B1 (en) Device for analyzing organic compounds particularly in aqueous and gaseous samples
JP2003302376A (en) Apparatus and method for continuously measuring volatile organic compound
Levanov et al. Photometric determination of chlorine in a gas flow in the presence of ozone
JP7234202B2 (en) Apparatus and method for continuous analysis of dissolved inorganic carbon (DIC) concentration and its isotopic carbon and oxygen composition
JP2597180B2 (en) Aerial aldehyde capture device
JP2022191892A (en) Flow analysis method and flow analyzer
JP3672144B2 (en) Method and apparatus for analyzing germanium
JPH06273407A (en) Carbon measuring apparatus
SU193777A1 (en)
JPH0645883Y2 (en) Carbon content measuring device
Neumann-Spallart Determination of trace amounts of hydrogen and its isotopes in methane
JPH0812186B2 (en) Continuous analyzer for trihalomethane
SU1048380A1 (en) Method of determination of general nitrogen content in organic specimens