JPH08141402A - Catalyst for production of tertiary n-alkenylcarboxylic acid amide and production of tertiary n-alkenylcarboxylic acid amide - Google Patents
Catalyst for production of tertiary n-alkenylcarboxylic acid amide and production of tertiary n-alkenylcarboxylic acid amideInfo
- Publication number
- JPH08141402A JPH08141402A JP7238990A JP23899095A JPH08141402A JP H08141402 A JPH08141402 A JP H08141402A JP 7238990 A JP7238990 A JP 7238990A JP 23899095 A JP23899095 A JP 23899095A JP H08141402 A JPH08141402 A JP H08141402A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- tertiary
- reaction
- mol
- pyrrolidone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Pyrrole Compounds (AREA)
Abstract
Description
【0001】本発明は、3級N−アルケニルカルボン酸
アミド類の製造用触媒及び3級N−アルケニルカルボン
酸アミド類の製造方法に関する。The present invention relates to a catalyst for producing tertiary N-alkenylcarboxylic amides and a method for producing tertiary N-alkenylcarboxylic amides.
【0002】N−アルケニル−N′−アルキル−アミド
化合物及びN−アルケニル−2−ピロリドンは、凝集
剤、試薬、石油採掘剤、繊維処理剤、樹脂添加剤等の原
料として広範な用途のあるポリN−ビニル−アミン類の
原料モノマーとして有用な化合物である。[0002] N-alkenyl-N'-alkyl-amide compounds and N-alkenyl-2-pyrrolidone are widely used as raw materials for flocculants, reagents, petroleum mining agents, fiber treating agents, resin additives and the like. It is a compound useful as a raw material monomer for N-vinyl-amines.
【0003】3級N−アルケニルカルボン酸アミド類の
製造方法として、以下に示す方法が開示されている。The following method is disclosed as a method for producing tertiary N-alkenyl carboxylic acid amides.
【0004】a) N−ビニル−N′−アルキル−アミ
ド化合物の製造方法 N,N′−ジアルキルアミド化合物とアセチレンとを塩
基性触媒の存在下に高温、高圧で反応させることによっ
てN−ビニル−N′−アルキル−アミド化合物を製造す
る方法が良く知られている(レッペ法)。しかし、この
方法は、2モルのN,N′−ジアルキルアミド化合物と
1モルのアセチレンとの反応によるビスエチリデンタイ
プの副生物を生ずるため、概して低収率であり、またア
セチレンの分解爆発の危険を伴う。A) Method for producing N-vinyl-N'-alkyl-amide compound N-vinyl-N-alkyl-amide compound is reacted with acetylene at a high temperature and a high pressure in the presence of a basic catalyst to obtain an N-vinyl-N-alkyl-amide compound. A method for producing an N'-alkyl-amide compound is well known (Reppe method). However, this method generally produces low yields of bisethylidene type by-products from the reaction of 2 moles of N, N'-dialkylamide compound with 1 mole of acetylene, and also has the danger of acetylene decomposition explosion. Accompanied by
【0005】別法としては、N−ハロゲン化エチル−
N′−アルキルアミド化合物の脱ハロゲン化水素反応に
よる方法や、N−アセトキシ化エチル化合物の脱酢酸反
応による方法等が知られている。しかし、これらの方法
は、原料の入手が容易でなく、原料を合成するのに多大
な費用を要する場合もあり、また、N−ビニル化反応の
際に多量の脱離副生成物が生じ、これらの回収、処理に
も多大な労力、費用を要するので、工業的に優れた製造
法でない。[0005] Alternatively, N-ethylhalide-
A method based on a dehydrohalogenation reaction of an N'-alkylamide compound and a method based on a deacetic acid reaction of an N-acetoxylated ethyl compound are known. However, in these methods, the raw materials are not easily available, and in some cases, a large cost is required for synthesizing the raw materials. In addition, a large amount of elimination by-products is generated during the N-vinylation reaction, Since a great deal of labor and cost are required for their recovery and treatment, they are not industrially excellent production methods.
【0006】従って、工業的に入手容易な有機カルボン
酸或いはそのエステル化合物と2−アルキルアミノ−1
−エタノール化合物との反応、または、N−N′−ジア
ルキルアミド化合物とオキシランまたはエチレンカーボ
ネート類との反応、によって容易に製造できるN−(2
−ヒドロキシエチル)−N′−アルキル−アミド化合物
を原料として用い、分子内脱水反応によって高収率でN
−ビニル−N′−アルキル−アミド化合物を製造できた
ならば、それは低コスト、省労力型で工業的に優れたN
−ビニル−N′−アルキル−アミド化合物の製造方法に
なり得る。Accordingly, an industrially available organic carboxylic acid or its ester compound and 2-alkylamino-1
N- (2) which can be easily produced by a reaction with an ethanol compound or a reaction between an NN'-dialkylamide compound and an oxirane or ethylene carbonate.
-Hydroxyethyl) -N'-alkyl-amide compound as a raw material and high yield of N
If a vinyl-N'-alkyl-amide compound could be prepared, it would be a low cost, labor-saving and industrially superior N
-A method for producing a vinyl-N'-alkyl-amide compound.
【0007】b) N−ビニル−2−ピロリドンの製造
方法 現在、N−ビニル−2−ピロリドンは、下記反応式
(7)に示した2−ピロリドンとアセチレンとを触媒の
存在下に反応する方法(レッペ法)により工業生産され
ている。B) Method for producing N-vinyl-2-pyrrolidone At present, N-vinyl-2-pyrrolidone is prepared by reacting 2-pyrrolidone and acetylene shown in the following reaction formula (7) in the presence of a catalyst. It is manufactured industrially by the Reppe method.
【0008】[0008]
【化9】 [Chemical 9]
【0009】この方法は、加圧下にアルカリ触媒を用い
て液相反応で実施されているが、欠点として、アセチレ
ンが高圧下で分解爆発を起こす危険があること、反応収
率の低下を防ぐために、触媒調製工程や、2−ピロリド
ン転化率の制御などのような反応制御が複雑であるこ
と、などの問題を有する。This method is carried out in a liquid phase reaction using an alkali catalyst under pressure. However, disadvantages are that acetylene may decompose and explode under high pressure, and that the reaction yield may be reduced. And the control of the reaction such as the catalyst preparation step and the control of the conversion of 2-pyrrolidone are complicated.
【0010】これに対して、アセチレンを用いないN−
ビニル−2−ピロリドン製造法として、γ−ブチロラク
トンとモノエタノールアミンとの反応によって収率よく
得られるN−(2−ヒドロキシエチル)−2−ピロリド
ンを原料として用いる各種の方法が試みられている。On the other hand, N-
As a method for producing vinyl-2-pyrrolidone, various methods using N- (2-hydroxyethyl) -2-pyrrolidone obtained as a raw material by a reaction between γ-butyrolactone and monoethanolamine in a high yield have been attempted.
【0011】下記反応式(8)に示した方法、すなわ
ち、N−(2−ヒドロキシエチル)−2−ピロリドンと
チオニルクロライドとの反応によって得られるN−(2
−クロロエチル)−2−ピロリドンを脱塩化水素する方
法(USP2,775,599号公報)や、下記反応式
(9)に示した方法、すなわちN−(2−ヒドロキシエ
チル)−2−ピロリドンと無水酢酸との反応によつて得
られる酢酸エステル中間体を脱酢酸する方法などが提案
されている。しかし、これらの中間体を経由する方法で
は、N−(2−ヒドロキシエチル)−2−ピロリドンと
当量の副原料が必要である上に、中間体製造費用も多大
であり、しかも副原料由来の副生成物が多量に発生する
という問題があるので、これらは、工業的な観点から、
優れた製造方法でない。The method shown in the following reaction formula (8), that is, N- (2) obtained by reacting N- (2-hydroxyethyl) -2-pyrrolidone with thionyl chloride.
-Chloroethyl) -2-pyrrolidone is dehydrochlorinated (USP 2,775,599) or the method shown in the following reaction formula (9), that is, N- (2-hydroxyethyl) -2-pyrrolidone and anhydrous A method of deaceticating the acetic acid ester intermediate obtained by the reaction with acetic acid has been proposed. However, the method via these intermediates requires an auxiliary material equivalent to N- (2-hydroxyethyl) -2-pyrrolidone, requires a large production cost of the intermediate, and furthermore, originates from the auxiliary material. Since there is a problem that a large amount of by-products are generated, these are, from an industrial viewpoint,
Not a good manufacturing method.
【0012】[0012]
【化10】 [Chemical 10]
【0013】この様な問題点を解消する方法として、下
記反応式(10)で表される方法、すなわち、N−(2
−ヒドロキシエチル)−2−ピロリドンを気相で触媒存
在下に分子内脱水反応させてN−ビニル−2−ピロリド
ンを製造する方法が提案されている。As a method for solving such a problem, a method represented by the following reaction formula (10), that is, N- (2
A method for producing N-vinyl-2-pyrrolidone by performing an intramolecular dehydration reaction of (-hydroxyethyl) -2-pyrrolidone in the gas phase in the presence of a catalyst has been proposed.
【0014】[0014]
【化11】 [Chemical 11]
【0015】この方法では、用いる触媒が高い活性及び
高い選択性を発揮することに加えて経時的に安定な触媒
活性を維持することが重要である。この反応の触媒とし
ては、米国特許第2,669,570号に活性アルミナ
が、特開昭47−18862号公報に酸化セリウム、酸
化亜鉛、酸化クロムなどが、特公昭47−40792号
公報に酸化ジルコニウム、酸化トリウム、特開昭48−
44251号公報に酸化ランタン、酸化ネオジムなど
が、特開平6−256306号公報にIIb族(亜鉛、
カドミウム、水銀)、IIIb族(スカンジウム、イッ
トリウム)、IVb族(チタン、ジルコニウム、ハフニ
ウム)、VIb族(クロム、モリブデン、タングステ
ン)の金属の酸化物以外の酸性不均質触媒が、それぞれ
開示されている。In this method, it is important that the catalyst used exhibits high activity and high selectivity, as well as maintaining stable catalytic activity over time. As a catalyst for this reaction, activated alumina is disclosed in U.S. Pat. No. 2,669,570, cerium oxide, zinc oxide, chromium oxide and the like are disclosed in JP-A-47-18882 and JP-B-47-40792. Zirconium, thorium oxide, JP-A-48-
No. 44251 discloses lanthanum oxide, neodymium oxide and the like, and JP-A-6-256306 discloses IIb group (zinc,
Disclosed are acidic heterogeneous catalysts other than oxides of metals of cadmium, mercury), group IIIb (scandium, yttrium), group IVb (titanium, zirconium, hafnium), and group VIb (chromium, molybdenum, tungsten). .
【0016】しかし、米国特許第2,669,570号に
開示の活性アルミナを用いる方法は、特公昭47−40
792号公報の参考例によると、N−(2−ヒドロキシ
エチル)−2−ピロリドンの反応率(転化率)が31.
7モル%という低い値であり、反応したN−(2−ヒド
ロキシエチル)−2−ピロリドンに対するN−ビニル−
2−ピロリドンの収率(選択率)が62.8モル%とい
う低い値であり、重合物の副生率が22.8モル%とい
う高い値であるので、経済性及び生成物の分離精製など
の工業的な観点からは、優れた方法でない。その他の触
媒では、酸化ジルコニウムが最も高性能であり、特公昭
47−40792号公報の実施例6には、N−(2−ヒ
ドロキシエチル)−2−ピロリドンの転化率88.6モ
ル%において、N−ビニル−2−ピロリドンが選択率9
2.6モル%で、2−ピロリドンが選択率5.6モル%
で、得られることが開示されている。この触媒性能は比
較的高水準であるが、工業的に効率的な製造方法として
は、より高い選択率で経時的に安定した活性を発揮する
触媒の開発が望まれる。尚、上記発明の反応条件下で酸
化ジルコニウムを触媒として用いて行った本発明者らの
実験では、後述の比較例2に示す通り、N−(2−ヒド
ロキシエチル)−2−ピロリドンの転化率は84.7モ
ル%と高水準であったが、N−ビニル−2−ピロリドン
の選択率は71.0モル%と必ずしも満足なものでなか
った。However, the method using activated alumina disclosed in US Pat. No. 2,669,570 is disclosed in JP-B-47-40.
According to the reference example of Japanese Patent No. 792, the reaction rate (conversion rate) of N- (2-hydroxyethyl) -2-pyrrolidone is 31.
The value is as low as 7 mol%, and N-vinyl-based on N- (2-hydroxyethyl) -2-pyrrolidone reacted.
Since the yield (selectivity) of 2-pyrrolidone is as low as 62.8 mol% and the by-product ratio of the polymer is as high as 22.8 mol%, economic efficiency and separation / purification of products, etc. It is not an excellent method from the industrial point of view. Among the other catalysts, zirconium oxide has the highest performance, and in Example 6 of JP-B-47-40792, the conversion of N- (2-hydroxyethyl) -2-pyrrolidone is 88.6 mol%. N-vinyl-2-pyrrolidone has a selectivity of 9
At 2.6 mol%, 2-pyrrolidone has a selectivity of 5.6 mol%.
It is disclosed that the above can be obtained. Although this catalytic performance is at a relatively high level, the development of a catalyst that exhibits stable activity over time with a higher selectivity is desired as an industrially efficient production method. In addition, in an experiment conducted by the present inventors using zirconium oxide as a catalyst under the reaction conditions of the above invention, as shown in Comparative Example 2 described later, the conversion rate of N- (2-hydroxyethyl) -2-pyrrolidone Was as high as 84.7 mol%, but the selectivity of N-vinyl-2-pyrrolidone was 71.0 mol%, which was not always satisfactory.
【0017】前記したように、特開平6−256306
号公報には、IIb族(亜鉛、カドミウム、水銀)、I
IIb族(スカンジウム、イットリウム)、IVb族
(チタン、ジルコニウム、ハフニウム)、VIb族(ク
ロム、モリブデン、タングステン)の金属の酸化物以外
の酸性不均質触媒を用いる方法が開示されている。しか
し、この開示は、他の先行技術に記載されている触媒元
素の一部を積極的にクレームから排除しただけのもので
あって、排除されなかった元素がすべて有効であるかの
如き思惑に基づくものであるから、不当に広すぎて不明
確である。触媒は、周知のように、同一の元素を含む触
媒でも、組成、焼成温度等により反応成績は大きく変化
するものであるにもかかわらず、この公報には、これら
触媒についての具体的な記載は全くない。該公報の実施
例には、触媒としてはH3PO4及びLa(H2PO4)3の
二例のみについて具体的に示されているにすぎない。N
−(2−ヒドロキシエチル)−2−ピロリドンの脱水反
応におけるN−ビニル−2−ピロリドンの選択率は80
〜90%と比較的良好であるが、この程度では工業的に
は満足できるものでない。また、この触媒は活性の経時
的安定性についても、十分ではない。As described above, Japanese Patent Application Laid-Open No. 6-256306
In the publication, group IIb (zinc, cadmium, mercury), I
Disclosed are methods using an acidic heterogeneous catalyst other than an oxide of a Group IIb (scandium, yttrium), Group IVb (titanium, zirconium, hafnium) or Group VIb (chromium, molybdenum, tungsten) metal. However, this disclosure merely affirmatively excludes from the claim some of the catalytic elements described in other prior art, with the speculation that all elements not excluded are valid. Since it is based, it is unreasonably wide and unclear. As is well known, even though the catalyst contains the same element, the reaction results vary greatly depending on the composition, the calcination temperature, and the like. Not at all. In the examples of the publication, only two examples of the catalyst, H 3 PO 4 and La (H 2 PO 4 ) 3 , are specifically shown. N
The selectivity of N-vinyl-2-pyrrolidone in the dehydration reaction of-(2-hydroxyethyl) -2-pyrrolidone is 80.
Although it is relatively good at about 90%, it is not industrially satisfactory at this level. Also, this catalyst is not sufficient with respect to the stability of the activity over time.
【0018】以上のように、N−(2−ヒドロキシエチ
ル)−2−ピロリドンを気相で触媒を用いて分子内脱水
反応させ、N−ビニル−2−ピロリドンを製造する方法
を工業的に実施するには、高性能、とりわけ高い選択率
でN−ビニル−2−ピロリドンが生成する触媒が望まれ
るが、満足な性能を示す触媒は未だに開発されていない
のが現状である。As described above, N- (2-hydroxyethyl) -2-pyrrolidone is subjected to an intramolecular dehydration reaction in the gas phase using a catalyst to produce N-vinyl-2-pyrrolidone. For this purpose, a catalyst that produces N-vinyl-2-pyrrolidone with high performance, particularly high selectivity, is desired, but a catalyst showing satisfactory performance has not yet been developed.
【0019】本発明の目的は、副原料を一切用いずに、
3級N−(2−ヒドロキシアルキル)カルボン酸アミド
類から気相分子内脱水反応によって3級N−アルケニル
カルボン酸アミド類を製造する方法に使用したときに極
めて高選択的及び高収率を得ることができる触媒を提供
することにある。It is an object of the present invention to use no auxiliary material at all.
When used in a process for producing tertiary N-alkenylcarboxylic amides from tertiary N- (2-hydroxyalkyl) carboxylic amides by a gas phase intramolecular dehydration reaction, extremely high selectivity and high yield are obtained. It is to provide a catalyst which can be used.
【0020】また、本発明の他の目的は、副原料を一切
用いずに、3級N−(2−ヒドロキシアルキル)カルボ
ン酸アミド類から気相分子内脱水反応によって3級N−
アルケニルカルボン酸アミド類を極めて高選択的及び高
収率で得ることができ而かもその際に副原料由来の廃棄
物を生じない、簡便で合理的な、3級N−アルケニルカ
ルボン酸アミド類の製造方法を提供することにある。Another object of the present invention is to provide a method for producing a tertiary N- (2-hydroxyalkyl) carboxylic acid amide from a tertiary N- (2-hydroxyalkyl) carboxylic amide by using a gas phase intramolecular dehydration reaction without using any auxiliary material.
Alkenyl carboxylic amides can be obtained in very high selectivity and high yield, and do not generate waste derived from auxiliary materials at the same time, and are simple and reasonable tertiary N-alkenyl carboxylic amides. It is to provide a manufacturing method.
【0021】本発明者らは、前述の従来技術における種
々の問題点を解決し、簡便で効率よく3級N−アルケニ
ルカルボン酸アミド類を製造し得る方法を見い出すため
に、3級N−(2−ヒドロキシアルキル)カルボン酸ア
ミド類を気相分子内脱水反応させる触媒について鋭意検
討したところ、アルカリ金属元素および/またはアルカ
リ土金属元素と珪素とを含有してなる酸化物が3級N−
(2−ヒドロキシアルキル)カルボン酸アミド類から高
選択的及び高収率で長期にわたり安定的に3級N−アル
ケニルカルボン酸アミド類を得るのに有効な触媒である
ことを見い出した。The present inventors have solved the above-mentioned various problems in the prior art, and in order to find a method for easily and efficiently producing tertiary N-alkenylcarboxylic amides, tertiary N- ( The present inventors have conducted intensive studies on catalysts for dehydrating 2-hydroxyalkyl) carboxylic acid amides in the gas phase, and found that an oxide containing an alkali metal element and / or an alkaline earth metal element and silicon is tertiary N-type.
They have been found to be effective catalysts for obtaining tertiary N-alkenylcarboxylic amides from (2-hydroxyalkyl) carboxylic amides with high selectivity and high yield in a long period of time and stably.
【0022】斯くして、本発明によればアルカリ金属元
素および/またはアルカリ土類金属元素と珪素とを含有
してなる酸化物であることを特徴とする3級N−アルケ
ニルカルボン酸アミド類製造用触媒が提供される。本発
明によれば、また、3級N−(2−ヒドロキシアルキ
ル)カルボン酸アミド類から気相分子内脱水反応によっ
て3級N−アルケニルカルボン酸アミド類を得る際に、
前記触媒を用いることを特徴とする3級N−アルケニル
カルボン酸アミド類の製造方法が提供される。Thus, according to the present invention, a tertiary N-alkenyl carboxylic acid amide is produced which is an oxide containing an alkali metal element and / or an alkaline earth metal element and silicon. A catalyst is provided. According to the present invention, when obtaining a tertiary N-alkenylcarboxylic acid amide from a tertiary N- (2-hydroxyalkyl) carboxylic acid amide by a gas phase intramolecular dehydration reaction,
There is provided a method for producing a tertiary N-alkenylcarboxylic acid amide, which comprises using the catalyst.
【0023】以下に本発明を詳しく説明する。Hereinafter, the present invention will be described in detail.
【0024】本発明の触媒は、N−(2−ヒドロキシエ
チル)−2−ピロリドン、並びに、下記一般式(2)及
び(4)で表される3級N−(2−ヒドロキシアルキ
ル)カルボン酸アミド類から気相分子内脱水反応によっ
て対応する3級N−アルケニルカルボン酸アミド類を製
造する反応において極めて有効に作用する。The catalyst of the present invention comprises N- (2-hydroxyethyl) -2-pyrrolidone and tertiary N- (2-hydroxyalkyl) carboxylic acid represented by the following general formulas (2) and (4): It acts very effectively in the reaction for producing the corresponding tertiary N-alkenylcarboxylic acid amides from the amides by a gas phase intramolecular dehydration reaction.
【0025】[0025]
【化12】 [Chemical 12]
【0026】(式中、R1及びR2は独立した基で、R1
及びR2は炭素数1〜6個の炭化水素基からなる群より
選ばれる何れか1種である。)Wherein R 1 and R 2 are independent groups and R 1
And R 2 is any one selected from the group consisting of hydrocarbon groups having 1 to 6 carbon atoms. )
【0027】[0027]
【化13】 [Chemical 13]
【0028】(式中、R1、R2及びR3は独立した基
で、R1及びR2は炭素数1〜6個の炭化水素基からなる
群より選ばれる何れか1種であり、R3は水素および炭
素数1〜6の炭化水素基からなる群より選ばれる何れか
一種である。) 本発明における反応原料としては、前記のあらゆる種類
の3級N−(2−ヒドロキシアルキル)カルボン酸アミ
ド類が用いられる。具体的には、N−メチル−アセトア
ミド、N−エチル−アセトアミド、N−プロピル−アセ
トアミド、N−ブチル−アセトアミドのN−2−ヒドロ
キシエチル化合物およびN−2−ヒドロキシプロピル化
合物;N−メチル−プロピルアミド、N−エチル−プロ
ピルアミド、N−プロピル−プロピルアミド、N−ブチ
ル−プロピルアミドのN−2−ヒドロキシエチル化合物
およびN−2−ヒドロキシプロピル化合物;N−(2−
ヒドロキシエチル)−2−ピロリドン等が好適であるが
これらに限られるものではない。これらN−2−ヒドロ
キシエチル化合物からは対応する3級N−ビニルカルボ
ン酸アミド化合物が得られ、N−2−ヒドロキシプロピ
ル化合物からは対応する3級N−(1−プロペニル)カ
ルボン酸アミドおよび3級N−(2−プロペニル)カル
ボン酸アミドが得られる。(Wherein R 1 , R 2 and R 3 are independent groups, and R 1 and R 2 are any one selected from the group consisting of hydrocarbon groups having 1 to 6 carbon atoms, R 3 is any one selected from the group consisting of hydrogen and a hydrocarbon group having 1 to 6 carbon atoms.) As the reaction raw material in the present invention, any of the above-mentioned tertiary N- (2-hydroxyalkyl) s Carboxamides are used. Specifically, N-methyl-acetamide, N-ethyl-acetamide, N-propyl-acetamide, N-butyl-acetamide N-2-hydroxyethyl compound and N-2-hydroxypropyl compound; N-methyl-propyl N-2-hydroxyethyl and N-2-hydroxypropyl compounds of amide, N-ethyl-propylamide, N-propyl-propylamide, N-butyl-propylamide; N- (2-
Hydroxyethyl) -2-pyrrolidone and the like are preferable, but not limited thereto. From these N-2-hydroxyethyl compounds, corresponding tertiary N-vinylcarboxylic acid amide compounds are obtained, and from N-2-hydroxypropyl compounds, corresponding tertiary N- (1-propenyl) carboxylic acid amides and 3 A class N- (2-propenyl) carboxylic acid amide is obtained.
【0029】本発明の触媒は、この種の反応でよく問題
となる触媒上への炭素(コーク)の析出、いわゆるコー
キングが非常に少なく、長期間連続して反応しても活性
は殆ど低下しない。また、コーキングが進行した場合、
反応を停止し、触媒に酸素分子を含む気体を通じてコー
クを燃焼除去した後、再び反応を継続することができ
る。The catalyst of the present invention has very little carbon (coke) deposition on the catalyst which is a problem in this type of reaction, so-called coking, and its activity hardly decreases even if the reaction is continued for a long period of time. . Also, if coking progresses,
After stopping the reaction and burning and removing coke through a gas containing oxygen molecules as a catalyst, the reaction can be continued again.
【0030】本発明の触媒の反応成績面での最大の特徴
は、従来技術の触媒にはない極めて高い3級N−アルケ
ニルカルボン酸アミド類の選択率にある。これは主に、
該触媒が、原料である3級N−(2−ヒドロキシアルキ
ル)カルボン酸アミド類の分解脱カルボニル反応を抑制
する事によりもたらされている。N−ビニル−2−ピロ
リドン製造を例に取れば、N−(2−ヒドロキシエチ
ル)−2−ピロリドンの2−ピロリドンとアセトアルデ
ヒドへのいわゆる分解反応が従来触媒に比べて大幅に抑
制される。The greatest feature of the catalyst of the present invention in terms of the reaction performance is the extremely high tertiary N-alkenylcarboxylic acid amide selectivity not found in the prior art catalysts. This is mainly
The catalyst is provided by suppressing the decomposition and decarbonylation of tertiary N- (2-hydroxyalkyl) carboxylic acid amides as raw materials. Taking the production of N-vinyl-2-pyrrolidone as an example, the so-called decomposition reaction of N- (2-hydroxyethyl) -2-pyrrolidone to 2-pyrrolidone and acetaldehyde is significantly suppressed as compared with the conventional catalyst.
【0031】本発明の触媒は、アルカリ金属元素および
/またはアルカリ土類金属元素と珪素とを含有してなる
酸化物であり、好ましくは一般式(1) MaSibXcOd (1) (式中、Mはアルカリ金属元素及びアルカリ土類金属元
素からなる群より選ばれる少なくとも1つの元素、Si
は珪素、Xはホウ素、アルミニウム及びリンからなる群
より選ばれる少なくとも1つの元素、Oは酸素を表す。
添字a、b、c及びdは、それぞれの元素の原子数を表
し、a=1のときb=1〜500、c=0〜1の範囲を
とり、dはa、b及びcの値及び各種構成元素の結合状
態により定まる数値である。)で表される酸化物であ
る。アルカリ金属元素および/またはアルカリ土類金属
元素と珪素との割合は、1:1〜500好ましくは1:
5〜200である。また、アルカリ金属元素および/ま
たはアルカリ土類金属元素と必要に応じて添加するホウ
素、アルミニウム及びリンからなる群より選ばれる1種
以上の元素X成分との割合は、1:0〜1が適当であ
る。[0031] The catalyst of the present invention is an oxide comprising an alkali metal element and / or alkaline earth metal element and silicon, preferably general formula (1) M a Si b X c O d (1 Wherein M is at least one element selected from the group consisting of an alkali metal element and an alkaline earth metal element;
Represents silicon, X represents at least one element selected from the group consisting of boron, aluminum and phosphorus, and O represents oxygen.
The subscripts a, b, c and d represent the number of atoms of each element, and when a = 1, the range is b = 1 to 500, c = 0 to 1, and d is the value of a, b and c and It is a numerical value determined by the bonding state of various constituent elements. ) Is an oxide represented by. The ratio of the alkali metal element and / or the alkaline earth metal element to silicon is 1: 1 to 500, preferably 1: 1.
5 to 200. The ratio of the alkali metal element and / or the alkaline earth metal element and one or more element X components selected from the group consisting of boron, aluminum and phosphorus to be added as needed is preferably 1: 0 to 1. It is.
【0032】触媒調製法は特に限定されるものでなく、
従来公知のあらゆる方法で調製することができる。触媒
の必須元素であるアルカリ金属元素および/またはアル
カリ土類金属元素の原料としては、酸化物、水酸化物、
ハロゲン化物、塩類(炭酸塩、硝酸塩、カルボン酸塩、
リン酸塩、硫酸塩等)および金属等を用いることができ
る。もう一つの必須成分である珪素の原料としては、酸
化珪素、珪酸、珪酸塩類(アルカリ金属珪酸塩、アルカ
リ土類金属珪酸塩等)、珪素含有モレキュラーシーブズ
(アルミノシリケート、シリコアルミノフォスフェート
等)、および有機珪酸エステルなどを用いることができ
る。更に、必要に応じて添加されるX成分の原料として
は、酸化物、水酸化物、ハロゲン化物、塩類(炭酸塩、
硝酸塩、カルボン酸塩、リン酸塩、硫酸塩等)および金
属などを用いることができる。The method for preparing the catalyst is not particularly limited.
It can be prepared by any conventionally known method. Raw materials for the alkali metal element and / or alkaline earth metal element which are essential elements of the catalyst include oxides, hydroxides,
Halides, salts (carbonates, nitrates, carboxylates,
Phosphates, sulfates, etc.) and metals. As another raw material of silicon which is an essential component, silicon oxide, silicic acid, silicates (alkali metal silicate, alkaline earth metal silicate, etc.), silicon-containing molecular sieves (aluminosilicate, silicoaluminophosphate, etc.), And organic silicate ester etc. can be used. Further, as a raw material of the component X added as needed, oxides, hydroxides, halides, salts (carbonates,
(Nitrate, carboxylate, phosphate, sulfate, etc.) and metal can be used.
【0033】本発明の触媒の好ましい調製法を具体的に
例示すれば、次のとおりである。The following is a specific example of a preferred method for preparing the catalyst of the present invention.
【0034】(1) アルカリ金属元素および/または
アルカリ土類金属元素の原料と珪素の原料を水に溶解も
しくは懸濁させ、撹拌下に加熱濃縮し、乾燥し、焼成す
ることによって触媒を得る方法。(1) A method for obtaining a catalyst by dissolving or suspending a raw material of an alkali metal element and / or an alkaline earth metal element and a raw material of silicon in water, heating and concentrating with stirring, drying and calcining. .
【0035】(2) アルカリ金属元素および/または
アルカリ土類金属元素の原料の水溶液中にあらかじめ成
型した酸化珪素を浸した後、加熱乾固し、乾燥し、焼成
することによって触媒を得る方法。(2) A method of obtaining a catalyst by immersing previously molded silicon oxide in an aqueous solution of a raw material of an alkali metal element and / or an alkaline earth metal element, heating to dryness, drying and calcining.
【0036】(3) 各種珪酸塩あるいは有機珪酸エス
テルに、アルカリ金属元素および/またはアルカリ土類
金属元素の原料の水溶液を加えて混合した後、乾燥し、
焼成することによって触媒を得る方法。(3) An aqueous solution of a raw material of an alkali metal element and / or an alkaline earth metal element is added to various silicates or organic silicates, mixed, and dried.
A method of obtaining a catalyst by calcining.
【0037】(4) 珪素含有モレキュラーシーブズ
に、アルカリ金属元素および/またはアルカリ土類金属
元素をイオン交換法により担持した後、乾燥し、焼成す
ることによって触媒を得る方法。(4) A method of obtaining a catalyst by supporting an alkali metal element and / or an alkaline earth metal element on silicon-containing molecular sieves by an ion exchange method, followed by drying and calcination.
【0038】X成分は触媒調製途中、乾燥以前の工程の
どこで添加しても良い。例えば、アルカリ金属元素およ
び/またはアルカリ土類金属元素の原料および/または
珪素の原料としてX成分を始めから含有するものを用い
る方法とか、X成分の原料を触媒調製時に個別に添加す
る方法とか、を採ることができる。The X component may be added at any point during the preparation of the catalyst or before the drying. For example, a method using a raw material containing an X component as a raw material of an alkali metal element and / or an alkaline earth metal element and / or a raw material of silicon, a method of individually adding a raw material of the X component at the time of preparing a catalyst, Can be adopted.
【0039】また、本発明の触媒は、アルミナ、シリコ
ンカーバイド等のような公知の担体に担持したり、これ
ら担体と混合して用いることもできる。The catalyst of the present invention can be supported on a known carrier such as alumina, silicon carbide or the like, or can be used as a mixture with such a carrier.
【0040】触媒の焼成温度は、触媒の組成や、用いる
触媒原料の種類にもよるが、300〜1000℃の広い
範囲をとることができ、好ましくは400〜800℃の
範囲である。The calcination temperature of the catalyst can be in a wide range of 300 to 1000 ° C., preferably 400 to 800 ° C., depending on the composition of the catalyst and the type of the catalyst raw material used.
【0041】本発明の3級N−アルケニルカルボン酸ア
ミド類の製造方法は、3級N−(2−ヒドロキシアルキ
ル)カルボン酸アミド類から気相分子内脱水反応によっ
て3級N−アルケニルカルボン酸アミド類を製造する際
に、前記の組成の触媒を用いることを特徴とするもので
ある。The process for producing tertiary N-alkenylcarboxylic amides according to the present invention comprises the steps of producing a tertiary N-alkenylcarboxylic amide from a tertiary N- (2-hydroxyalkyl) carboxylic amide by a gas phase intramolecular dehydration reaction. In the production of a product, a catalyst having the above composition is used.
【0042】本発明の方法は、固定床流通型、流動床型
及び移動床型のいずれの型の反応器でも実施できる。反
応は、原料である3級N−(2−ヒドロキシアルキル)
カルボン酸アミド類が、気相状態を維持しうる反応圧力
および反応温度で行う。反応温度は、300〜500
℃、好ましくは350〜450℃の範囲が適当である。
反応温度が300℃より低いと、原料である3級N−
(2−ヒドロキシアルキル)カルボン酸アミド類の転化
率が大幅に低下するため、生産性の低下を招く。反応温
度が500℃より高いと、副反応の割合が増大して目的
物である3級N−アルケニルカルボン酸アミド類の選択
率が著しく低下したり、コーキング速度増大による活性
低下が顕著になる等の不都合を招く。The process of the present invention can be carried out in any of fixed bed flow type, fluidized bed type and moving bed type reactors. The reaction is a tertiary N- (2-hydroxyalkyl) which is a raw material.
Carboxylic amides are carried out at a reaction pressure and a reaction temperature capable of maintaining a gas phase state. The reaction temperature is 300 to 500
C., preferably in the range of 350 to 450.degree.
When the reaction temperature is lower than 300 ° C., the tertiary N-
Since the conversion rate of (2-hydroxyalkyl) carboxylic acid amides is significantly reduced, the productivity is reduced. If the reaction temperature is higher than 500 ° C., the ratio of side reactions increases, the selectivity of the target tertiary N-alkenylcarboxylic acid amides decreases remarkably, and the activity decrease due to an increase in the coking rate becomes remarkable. Cause inconvenience.
【0043】反応圧力は、原料である3級N−(2−ヒ
ドロキシアルキル)カルボン酸アミド類の分圧が5〜6
00mmHg、好ましくは10〜300mmHgの範囲
で制御され得る限り、特に制限はない。原料の分圧が5
mmHgより小さい場合、反応自体は支障なく実施でき
るが、生成物の捕集が困難になったり、補修装置が大き
くなる等、生産効率が低下する。原料の分圧が600m
mHgより大きい場合、副反応の割合が増大して目的物
である3級N−アルケニルカルボン酸アミド類の選択率
が低下する。具体的には、 (1) 窒素、ヘリウム、アルゴン、炭化水素などのよ
うな反応に不活性な物質による希釈によって原料の分圧
がコントロールされたガスを触媒に通じて反応させる方
法(反応圧力は任意)。The reaction pressure is such that the partial pressure of the tertiary N- (2-hydroxyalkyl) carboxylic amide as the raw material is 5-6.
There is no particular limitation as long as it can be controlled within the range of 00 mmHg, preferably 10 to 300 mmHg. Material partial pressure is 5
When it is less than mmHg, the reaction itself can be carried out without any trouble, but the production efficiency is lowered due to the difficulty of collecting the product, the size of the repair device, and the like. 600m partial pressure of raw material
If it is higher than mHg, the rate of side reactions increases, and the selectivity of the target tertiary N-alkenylcarboxylic amides decreases. Specifically, (1) a method in which a gas whose raw material is controlled in partial pressure by dilution with a substance inert to the reaction such as nitrogen, helium, argon, or a hydrocarbon is passed through a catalyst (reaction pressure is Any).
【0044】(2) 反応原料のみを触媒に通じ、反応
系を減圧にすることによって原料の分圧をコントロール
しながら反応させる方法。(2) A method in which only the reaction raw materials are passed through a catalyst and the reaction system is depressurized to control the partial pressure of the raw materials to carry out the reaction.
【0045】等が好ましい。Etc. are preferred.
【0046】また、原料である3級N−(2−ヒドロキ
シアルキル)カルボン酸アミド類の単位触媒容積当たり
の供給量を表す空間速度(GHSV)は、原料の種類
や、反応条件、反応方法などによって多少異なるが、供
給した3級N−(2−ヒドロキシアルキル)カルボン酸
アミド類の標準状態(25℃、1気圧の気体としての容
積)基準で1〜1000h-1、好ましくは10〜500
h-1の範囲である。空間速度が1h-1より小さいと、接
触時間が長いことに因って逐次反応が進行するために目
的物の選択率が低下し、一方、空間速度が1000h-1
より大きいと接触時間が不足するために転化率の低下を
招く等の不利益を招く。The space velocity (GHSV), which represents the supply amount of the tertiary N- (2-hydroxyalkyl) carboxylic acid amides as a raw material per unit catalyst volume, is the kind of the raw material, the reaction conditions, the reaction method, etc. Depending on the standard state (volume at 25 ° C., gas at 1 atm) of the supplied tertiary N- (2-hydroxyalkyl) carboxylic acid amides, it is 1 to 1000 h −1 , preferably 10 to 500, though it is slightly different depending on
It is in the range of h −1 . When the space velocity is smaller than 1 h -1 , the selectivity of the target substance is lowered because the reaction proceeds successively due to the long contact time, while the space velocity is 1000 h -1.
If it is larger, the contact time will be insufficient, resulting in a disadvantage such as a decrease in the conversion rate.
【0047】以下に、実施例により本発明を具体的に説
明するが、本発明はこれらにより何等限定されるもので
はない。Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
【0048】なお、実施例中の転化率、選択率及び単流
収率は次の定義に従う。The conversion, selectivity and single-stream yield in the examples follow the following definitions.
【0049】転化率(モル%)=100×(消費した3
級N−(2−ヒドロキシアルキル)カルボン酸アミドの
モル数)/(供給した3級N−(2−ヒドロキシアルキ
ル)カルボン酸アミドのモル数) 選択率(モル%)=100×(生成した3級N−アルケ
ニルカルボン酸アミドのモル数)/(消費した3級N−
(2−ヒドロキシアルキル)カルボン酸アミドのモル
数) 単流収率(モル%)=100×(生成した3級N−アル
ケニルカルボン酸アミドのモル数)/(供給した3級N
−(2−ヒドロキシアルキル)カルボン酸アミドのモル
数) 以下に示す実施例1〜35は、3級N−(2−ヒドロキ
シエチル)カルボン酸アミド類の分子内脱水反応による
3級N−ビニルカルボン酸アミド類の製造についての実
施例である。Conversion (mol%) = 100 × (3 consumed)
Number of moles of primary N- (2-hydroxyalkyl) carboxylic amide) / (number of moles of tertiary N- (2-hydroxyalkyl) carboxylic acid supplied) Selectivity (mol%) = 100 × (3 Number of moles of tertiary N-alkenylcarboxylic acid amide) / (consumed tertiary N-
(Mole number of (2-hydroxyalkyl) carboxylic acid amide) Single stream yield (mol%) = 100 × (mol number of tertiary N-alkenylcarboxylic acid amide generated) / (tertiary N supplied)
-Number of moles of-(2-hydroxyalkyl) carboxylic acid amide) Examples 1 to 35 shown below show tertiary N-vinyl carboxylic acids by intramolecular dehydration of tertiary N- (2-hydroxyethyl) carboxylic acid amides It is an example about production of acid amides.
【0050】[0050]
【実施例】実施例1 (触媒調製)水酸化リチウム1水和物0.7gを水10
0gに溶解した溶液中に、球状シリカゲル(5〜10メ
ッシュ)30gを2時間浸せきした。その後、湯浴上で
加熱乾固し、空気中120℃で20時間乾燥後、空気中
600℃で2時間焼成することによって、酸素を除く原
子比でLi1Si30なる組成の触媒を得た。 Example 1 (Catalyst preparation) 0.7 g of lithium hydroxide monohydrate was added to 10 parts of water.
30 g of spherical silica gel (5 to 10 mesh) was immersed in a solution of 0 g for 2 hours. Thereafter, the mixture was heated to dryness on a hot water bath, dried in air at 120 ° C. for 20 hours, and then calcined in air at 600 ° C. for 2 hours to obtain a catalyst having a composition of Li 1 Si 30 in atomic ratio excluding oxygen. .
【0051】(反応)この触媒5mlを内径10mmの
ステンレス製反応管に充填し、該反応管を380℃の溶
融塩浴に浸せきした。該反応管に、N−(2−ヒドロキ
シエチル)−N′−メチル−アセトアミドの分圧が76
mmHgになるように窒素で希釈した原料ガスを、N−
(2−ヒドロキシエチル)−N′−メチル−アセトアミ
ドの空間速度200h-1で供給して、常圧で反応させ
た。反応開始より1時間後の反応器出口ガスをガスクロ
マトグラフにより分析した結果、N−(2−ヒドロキシ
エチル)−N′−メチル−アセトアミドの転化率、N−
ビニル−N′−メチル−アセトアミド選択率および単流
収率は、それぞれ73.6モル%、89.2モル%および
65.7モル%であった。(Reaction) 5 ml of this catalyst was charged into a stainless steel reaction tube having an inner diameter of 10 mm, and the reaction tube was immersed in a molten salt bath at 380 ° C. When the partial pressure of N- (2-hydroxyethyl) -N'-methyl-acetamide is 76
The raw material gas diluted with nitrogen to a pressure of
(2-Hydroxyethyl) -N'-methyl-acetamide was supplied at a space velocity of 200 h -1 and reacted at normal pressure. As a result of analyzing the gas at the outlet of the reactor one hour after the start of the reaction by gas chromatography, the conversion of N- (2-hydroxyethyl) -N'-methyl-acetamide, N-
The vinyl-N'-methyl-acetamide selectivities and single stream yields were 73.6 mol%, 89.2 mol% and 65.7 mol%, respectively.
【0052】実施例2 (触媒調製)硝酸ナトリウム0.43gを水100gに
溶解した溶液中に、球状シリカゲル(5〜10メッシ
ュ)30gを2時間浸せきした。その後、湯浴上で加熱
乾固し、空気中120℃で20時間乾燥後、空気中60
0℃で2時間焼成することによって、酸素を除く原子比
でNa1Si100なる組成の触媒を得た。 Example 2 (Preparation of catalyst) 30 g of spherical silica gel (5 to 10 mesh) was immersed in a solution of 0.43 g of sodium nitrate in 100 g of water for 2 hours. Then, it is dried by heating in a hot water bath and dried in air at 120 ° C. for 20 hours.
By calcining at 0 ° C. for 2 hours, a catalyst having a composition of Na 1 Si 100 in an atomic ratio excluding oxygen was obtained.
【0053】(反応)この触媒を用いて、反応温度を4
00℃とした以外は実施例1と同様に反応させ、分析し
た。反応開始1時間後のN−(2−ヒドロキシエチル)
−N′−メチル−アセトアミドの転化率、N−ビニル−
N′−メチル−アセトアミド選択率および単流収率は、
それぞれ75.2モル%、87.1モル%および65.5
モル%であった。(Reaction) Using this catalyst, a reaction temperature of 4
The reaction was conducted and analyzed in the same manner as in Example 1 except that the temperature was changed to 00 ° C. N- (2-hydroxyethyl) 1 hour after the start of the reaction
-N'-methyl-acetamide conversion, N-vinyl-
The N'-methyl-acetamide selectivity and single flow yield are
75.2 mol%, 87.1 mol% and 65.5 mol% respectively
It was mol%.
【0054】実施例3 (触媒調製)硝酸カリウム5.06gを水250gに溶
解し、90℃で加熱撹拌しているところに30gの酸化
珪素を加えて加熱濃縮後、空気中120℃で20時間乾
燥した。得られた固体を9〜16メッシュに破砕し、空
気中500℃で2時間焼成することによって、酸素を除
く原子比でK1Si10なる組成の触媒を得た。 Example 3 (Preparation of catalyst) 5.06 g of potassium nitrate was dissolved in 250 g of water, and while heating and stirring at 90 ° C., 30 g of silicon oxide was added. The mixture was heated and concentrated, and then dried in air at 120 ° C. for 20 hours. did. The obtained solid was crushed to 9 to 16 mesh and calcined in air at 500 ° C. for 2 hours to obtain a catalyst having a composition of K 1 Si 10 in terms of atomic ratio excluding oxygen.
【0055】(反応)この触媒を用いて、反応温度を3
90℃とした以外は実施例1と同様に反応させ、分析し
た。反応開始1時間後のN−(2−ヒドロキシエチル)
−N′−メチル−アセトアミドの転化率、N−ビニル−
N′−メチル−アセトアミド選択率および単流収率は、
それぞれ77.3モル%、85.6モル%および66.1
モル%であった。(Reaction) Using this catalyst, a reaction temperature of 3
The reaction and analysis were performed in the same manner as in Example 1 except that the temperature was 90 ° C. N- (2-hydroxyethyl) 1 hour after the start of the reaction
-N'-methyl-acetamide conversion, N-vinyl-
The N'-methyl-acetamide selectivity and single flow yield are
77.3 mol%, 85.6 mol% and 66.1 respectively
It was mol%.
【0056】実施例4 (触媒調製)硝酸ルビジウム7.38gを水250gに
溶解し、90℃で加熱撹拌しているところに30gの酸
化珪素を加えて加熱濃縮後、空気中120℃で20時間
乾燥した。得られた固体を9〜16メッシュに破砕し、
空気中500℃で2時間焼成することによって、酸素を
除く原子比でRb1Si10なる組成の触媒を得た。 Example 4 (Catalyst preparation) 7.38 g of rubidium nitrate was dissolved in 250 g of water, and 30 g of silicon oxide was added while heating and stirring at 90 ° C., and the mixture was heated and concentrated, and then heated in air at 120 ° C. for 20 hours. Dried. Crush the resulting solid into 9-16 mesh,
By firing in air at 500 ° C. for 2 hours, a catalyst having a composition of Rb 1 Si 10 in terms of atomic ratio excluding oxygen was obtained.
【0057】(反応)この触媒を用いて、実施例1と同
様に反応させ、分析した。反応開始1時間後のN−(2
−ヒドロキシエチル)−N′−メチル−アセトアミドの
転化率、N−ビニル−N′−メチル−アセトアミド選択
率および単流収率は、それぞれ74.9モル%、88.8
モル%および66.5モル%であった。(Reaction) Using this catalyst, the reaction was carried out in the same manner as in Example 1, and the reaction was analyzed. N- (2
-Hydroxyethyl) -N'-methyl-acetamide conversion, N-vinyl-N'-methyl-acetamide selectivity and single-stream yield were 74.9 mol% and 88.8 mol, respectively.
% And 66.5 mol%.
【0058】実施例5 (触媒調製)炭酸セシウム7.76gを水250gに溶
解し、90℃で加熱撹拌しているところに30gの酸化
珪素を加えて加熱濃縮後、空気中120℃で20時間乾
燥した。得られた固体を9〜16メッシュに破砕し、空
気中500℃で2時間焼成することによって、酸素を除
く原子比でCs1Si10なる組成の触媒を得た。 Example 5 (Preparation of catalyst) 7.76 g of cesium carbonate was dissolved in 250 g of water, 30 g of silicon oxide was added to the mixture while heating and stirring at 90 ° C., and the mixture was concentrated by heating and then in air at 120 ° C. for 20 hours. Dried. The obtained solid was crushed to 9 to 16 mesh and calcined in air at 500 ° C. for 2 hours to obtain a catalyst having a composition of Cs 1 Si 10 in an atomic ratio excluding oxygen.
【0059】(反応)この触媒を用いて、実施例1と同
様に反応させ、分析した。反応開始1時間後のN−(2
−ヒドロキシエチル)−N′−メチル−アセトアミドの
転化率、N−ビニル−N′−メチル−アセトアミド選択
率および単流収率は、それぞれ76.2モル%、89.1
モル%および67.9モル%であった。(Reaction) Using this catalyst, the reaction was carried out in the same manner as in Example 1, and the reaction was analyzed. N- (2
-Hydroxyethyl) -N'-methyl-acetamide conversion, N-vinyl-N'-methyl-acetamide selectivity and single stream yield were 76.2 mol% and 89.1, respectively.
Mol% and 67.9 mol%.
【0060】実施例6 (触媒調製)炭酸セシウム8.15g、リン酸第2アン
モニウム0.66gおよび酸化珪素30gに水150g
を加えて、湯浴上で加熱混合しながら濃縮乾固した。次
いで空気中120℃で20時間乾燥し、9〜16メッシ
ュに破砕後、空気中450℃で2時間焼成することによ
って、酸素を除く原子比でCs1Si10P0.1なる組成の
触媒を得た。 Example 6 (Catalyst preparation) 8.15 g of cesium carbonate, 0.66 g of diammonium phosphate and 30 g of silicon oxide and 150 g of water.
Was added, and the mixture was concentrated to dryness with heating and mixing on a hot water bath. Then dried 20 hours at 120 ° C. in air, crushed into 9-16 mesh, by calcining 2 hours at 450 ° C. in air, the Cs 1 Si 10 P 0. 1 catalyst having a composition of atomic ratio excluding oxygen Obtained.
【0061】(反応)この触媒を用いて、N−(2−ヒ
ドロキシエチル)−N′−メチル−アセトアミドの分圧
を38mmHgに、そして空間速度100h-1にそれぞ
れ変更した以外は実施例1と同様に反応させ、分析し
た。反応開始1時間後のN−(2−ヒドロキシエチル)
−N′−メチル−アセトアミドの転化率、N−ビニル−
N′−メチル−アセトアミド選択率および単流収率は、
それぞれ73.9モル%、92.6モル%および68.4
モル%であった。(Reaction) As Example 1 except that the partial pressure of N- (2-hydroxyethyl) -N'-methyl-acetamide was changed to 38 mmHg and the space velocity was 100 h -1 using this catalyst. It reacted similarly and analyzed. N- (2-hydroxyethyl) 1 hour after the start of the reaction
-N'-methyl-acetamide conversion, N-vinyl-
The N'-methyl-acetamide selectivity and single flow yield are
73.9 mol%, 92.6 mol% and 68.4 respectively
It was mol%.
【0062】実施例7 実施例1の触媒を用いて、反応原料をN−(2−ヒドロ
キシエチル)−N′−メチル−プロピルアミドに変更し
た以外は実施例1と同様に反応させ、分析した。反応開
始1時間後のN−(2−ヒドロキシエチル)−N′−メ
チル−プロピルアミドの転化率、N−ビニル−N′−メ
チル−プロピルアミド選択率および単流収率は、それぞ
れ87.1モル%、91.3モル%および79.5モル%
であった。 Example 7 Using the catalyst of Example 1, the reaction was carried out and analyzed in the same manner as in Example 1, except that N- (2-hydroxyethyl) -N'-methyl-propylamide was used as a reaction raw material. . The conversion rate of N- (2-hydroxyethyl) -N′-methyl-propylamide, the N-vinyl-N′-methyl-propylamide selectivity and the single-flow yield one hour after the start of the reaction were 87.1, respectively. Mol%, 91.3 mol% and 79.5 mol%
Met.
【0063】実施例8 (触媒調製)水酸化マグネシウム0.29g、硝酸ルビ
ジウム6.64gおよびの酸化珪素30gに水150g
を加えて、湯浴上で加熱混合しながら濃縮乾固した。次
いで空気中120℃で20時間乾燥し、9〜16メッシ
ュに破砕後、空気中500℃で2時間焼成することによ
って、酸素を除く原子比でRb0.9Mg0.1Si10なる組
成の触媒を得た。 Example 8 (Catalyst preparation) 0.29 g of magnesium hydroxide, 6.64 g of rubidium nitrate and 30 g of silicon oxide were added to 150 g of water.
Was added, and the mixture was concentrated to dryness with heating and mixing on a hot water bath. Then dried 20 hours at 120 ° C. in air, crushed into 9-16 mesh, by calcining 2 hours at 500 ° C. in air, in the atomic ratio excluding oxygen Rb 0. 9 Mg 0. 1 Si 10 comprising composition A catalyst was obtained.
【0064】(反応)この触媒を用いて実施例6と同様
に反応させ、分析した。反応開始1時間後のN−(2−
ヒドロキシエチル)−N′−メチル−プロピルアミドの
転化率、N−ビニル−N′−メチル−プロピルアミド選
択率および単流収率は、それぞれ85.4モル%、93.
1モル%および79.1モル%であった。(Reaction) Using this catalyst, a reaction was conducted in the same manner as in Example 6 and an analysis was conducted. N- (2-
The conversion of (hydroxyethyl) -N'-methyl-propylamide, the N-vinyl-N'-methyl-propylamide selectivity and the single stream yield are 85.4 mol% and 93.
1 mol% and 79.1 mol%.
【0065】実施例9 (触媒調製)水酸化バリウム8水和物3.16g、硝酸
セシウム7.80gおよび酸化珪素30gに水150g
を加えて湯浴上で加熱混合しながら濃縮乾固した。次い
で空気中120℃で20時間乾燥し、9〜16メッシュ
に破砕後、空気中500℃で2時間焼成することによっ
て酸素を除く原子比でCs0.8Ba0.2Si10なる組成の
触媒を得た。 Example 9 (Catalyst preparation) 3.16 g of barium hydroxide octahydrate, 7.80 g of cesium nitrate and 30 g of silicon oxide and 150 g of water.
Was added and the mixture was concentrated to dryness while heating and mixing on a hot water bath. Then dried 20 hours at 120 ° C. in air, crushed into 9-16 mesh, Cs 0 in terms of atomic ratio when oxygen was excluded by calcining 2 hours at 500 ° C. in air. 8 Ba 0. 2 Si 10 catalyst having a composition of Got
【0066】(反応)この触媒を用いて実施例6と同様
に反応させ、分析した。反応開始1時間後のN−(2−
ヒドロキシエチル)−N′−メチル−プロピルアミドの
転化率、N−ビニル−N′−メチル−プロピルアミド選
択率および単流収率は、それぞれ87.1モル%、92.
4モル%および80.5モル%であった。(Reaction) Using this catalyst, a reaction was conducted in the same manner as in Example 6 and an analysis was conducted. N- (2-
The conversion of (hydroxyethyl) -N'-methyl-propylamide, the N-vinyl-N'-methyl-propylamide selectivity and the single stream yield are 87.1 mol% and 92.
4 mol% and 80.5 mol%.
【0067】実施例10 (触媒調製)水酸化カリウム1.40gおよびほう酸0.
15gを水100gに溶解した溶液中に、30gの球状
シリカゲル(5〜10メッシュ)を3時間浸せきした
後、湯浴上で濃縮乾固した。次いで空気中120℃で2
0時間乾燥し、更に空気中600℃で2時間焼成するこ
とによって、酸素を除く原子比でK1Si20B0.1なる組
成の触媒を得た。 Example 10 (Catalyst preparation) 1.40 g of potassium hydroxide and 0,0 boric acid.
30 g of spherical silica gel (5 to 10 mesh) was immersed in a solution of 15 g dissolved in 100 g of water for 3 hours, and then concentrated and dried on a hot water bath. Then 2 at 120 ℃ in air
It dried 0 hours, by further calcined for 2 hours at 600 ° C. in air to obtain a K 1 Si 20 B 0. 1 catalyst having a composition of atomic ratio excluding oxygen.
【0068】(反応)この触媒を用いて実施例6と同様
に反応させ、分析した。反応開始1時間後のN−(2−
ヒドロキシエチル)−N′−メチル−プロピルアミドの
転化率、N−ビニル−N′−メチル−プロピルアミド選
択率および単流収率は、それぞれ88.8モル%、91.
4モル%および81.2モル%であった。(Reaction) Using this catalyst, a reaction was conducted in the same manner as in Example 6 and an analysis was conducted. N- (2-
The conversion of (hydroxyethyl) -N'-methyl-propylamide, the N-vinyl-N'-methyl-propylamide selectivity and the single-flow yield are 88.8 mol% and 91.
4 mol% and 81.2 mol%.
【0069】実施例11 (反応)実施例1の触媒5mlを内径10mmのステン
レス製反応管に充填した後、該反応管を370℃の溶融
塩浴に浸せきした。次いで、該反応管をその後部より真
空ポンプで減圧することによって反応器の出口圧力を3
8mmHgに調整した。この反応管に、N−(2−ヒド
ロキシエチル)−N′−メチルプロピルアミドを空間速
度100h-1で供給して反応させた。反応を50時間継
続した後、原料供給を停止し、反応器内の圧力を窒素に
より常圧に戻し、次いで空気を100cc/分で24時
間通じて触媒上に析出している炭素状物質を燃焼させて
除くことによって、触媒を再生した。その後、再び前述
の反応条件にて更に50時間反応させた。原料供給開始
より1時間および50時間ならびに再生後1時間および
50時間の各時点で、反応器出口ガスをガスクロマトグ
ラフにより分析した。N−(2−ヒドロキシエチル)−
N′−メチル−プロピルアミドの転化率、N−ビニル−
N′−メチル−プロピルアミド選択率および単流収率を
表−1に示した。 Example 11 (Reaction) After 5 ml of the catalyst of Example 1 was filled in a stainless reaction tube having an inner diameter of 10 mm, the reaction tube was immersed in a molten salt bath at 370 ° C. Then, the pressure at the outlet of the reactor was reduced to 3 by depressurizing the reaction tube from the rear with a vacuum pump.
It was adjusted to 8 mmHg. N- (2-hydroxyethyl) -N'-methylpropylamide was supplied to the reaction tube at a space velocity of 100 h -1 to cause a reaction. After the reaction is continued for 50 hours, the supply of the raw material is stopped, the pressure in the reactor is returned to normal pressure with nitrogen, and then air is passed at 100 cc / min for 24 hours to burn the carbonaceous material deposited on the catalyst. The catalyst was regenerated by removing it. Thereafter, the reaction was performed again for another 50 hours under the above-described reaction conditions. The reactor outlet gas was analyzed by gas chromatography at 1 and 50 hours from the start of the raw material supply and at 1 and 50 hours after regeneration. N- (2-hydroxyethyl)-
Conversion of N'-methyl-propylamide, N-vinyl-
Table 1 shows N'-methyl-propylamide selectivity and single-stream yield.
【0070】 表−1 ------------------------------------------------ 経過時間 転化率 選択率 単流収率 (時間) (モル%) (モル%) (モル%) ------------------------------------------------ 1 86.4 94.2 81.4 50 80.0 95.6 76.5 再生後 1 86.6 94.3 81.7 50 80.1 95.8 76.7 ------------------------------------------------実施例12 (触媒調製)硝酸リチウム3.45gを水50gに溶解
させ、90℃で加熱、撹拌しながら酸化珪素30gを加
えて加熱濃縮後、空気中120℃で20時間乾燥した。
得られた固体を9〜16メッシュに破砕し、空気中50
0℃で2時間焼成することによって、酸素を除く原子比
でLi1Si10なる組成の触媒を得た。Table 1 -------------------------------------------- ---- Elapsed time Conversion rate Selectivity Single stream yield (hour) (mol%) (mol%) (mol%) --------------------- --------------------------- 1 86.4 94.2 81.4 50 80.0 95.6 76.5 After playback 1 86.6 94.3 81.7 50 80.1 95.8 76.7 ----- ------------------------------------------- Example 12 (Preparation of catalyst) 3.45 g of lithium nitrate was dissolved in 50 g of water, 30 g of silicon oxide was added while heating and stirring at 90 ° C., and the mixture was concentrated by heating, and then dried in air at 120 ° C. for 20 hours.
The solid obtained is crushed to 9-16 mesh and 50 in air.
By calcining at 0 ° C. for 2 hours, a catalyst having a composition of Li 1 Si 10 in an atomic ratio excluding oxygen was obtained.
【0071】(反応)この触媒5mlを内径10mmの
ステンレス製反応管に充填し、該反応管を400℃の溶
融塩浴に浸せきした。該反応管にN−(2−ヒドロキシ
エチル)−2−ピロリドンの分圧が76mmHgになる
ように窒素で希釈した原料ガスを、N−(2−ヒドロキ
シエチル)−2−ピロリドンの空間速度200h-1で供
給して、常圧で反応させた。反応開始より1時間後の反
応器出口ガスをガスクロマトグラフにより分析した結
果、N−(2−ヒドロキシエチル)−2−ピロリドンの
転化率、N−ビニル−2−ピロリドン選択率および単流
収率は、それぞれ59.2モル%、99.2モル%および
58.7モル%であった。(Reaction) 5 ml of this catalyst was filled in a stainless steel reaction tube having an inner diameter of 10 mm, and the reaction tube was immersed in a molten salt bath at 400 ° C. A raw material gas diluted with nitrogen so that the partial pressure of N- (2-hydroxyethyl) -2-pyrrolidone was 76 mmHg was fed to the reaction tube, and the space velocity of N- (2-hydroxyethyl) -2-pyrrolidone was 200 h −. It was fed at 1 and reacted at atmospheric pressure. As a result of analyzing the gas at the outlet of the reactor one hour after the start of the reaction by gas chromatography, the conversion of N- (2-hydroxyethyl) -2-pyrrolidone, the selectivity for N-vinyl-2-pyrrolidone and the single-stream yield were as follows: 59.2 mol%, 99.2 mol% and 58.7 mol%, respectively.
【0072】実施例13〜16 (触媒調製)実施例12において、硝酸リチウム3.4
5gを、硝酸ナトリウム4.25g(実施例13)、硝
酸カリウム5.06g(実施例14)、硝酸ルビジウム
7.38g(実施例15)および硝酸セシウム9.75g
(実施例16)にそれぞれ変更した以外は実施例12と
同様にして、表−2に記載の触媒(酸素を除く原子比で
表記)を得た。 Examples 13 to 16 (Catalyst preparation) In Example 12, 3.4 parts of lithium nitrate were used.
5 g of sodium nitrate 4.25 g (Example 13), potassium nitrate 5.06 g (Example 14), rubidium nitrate 7.38 g (Example 15) and cesium nitrate 9.75 g
Except having changed into (Example 16), it carried out similarly to Example 12, and obtained the catalyst (expressed by atomic ratio except oxygen) shown in Table-2.
【0073】(反応)これらの触媒を用いて反応温度を
変えた以外は実施例12と同様に反応させ、分析した。
反応開始1時間後のN−(2−ヒドロキシエチル)−2
−ピロリドンの転化率、N−ビニル−2−ピロリドン選
択率および単流収率を表−2に示した。(Reaction) A reaction was carried out in the same manner as in Example 12 except that the reaction temperature was changed using these catalysts, and the reaction was analyzed.
N- (2-hydroxyethyl) -2 one hour after the start of the reaction
Table 2 shows the conversion of -pyrrolidone, the selectivity for N-vinyl-2-pyrrolidone, and the single-stream yield.
【0074】 表−2 ---------------------------------------------------------------------- 実施例 触媒 反応温度 転化率 選択率 単流収率 番号 (℃) (モル%) (モル%) (モル%) ---------------------------------------------------------------------- 13 Na1Si10 370 57.0 98.7 56.3 14 K1Si10 370 85.9 95.1 81.7 15 Rb1Si10 370 89.8 94.2 84.6 16 Cs1Si10 350 80.9 96.2 77.8 ----------------------------------------------------------------------比較例1 実施例12において、触媒を活性アルミナ(500℃、
2時間焼成品)に変更した以外は全く同様に反応させ、
分析した。反応開始1時間後のN−(2−ヒドロキシエ
チル)−2−ピロリドンの転化率、N−ビニル−2−ピ
ロリドン選択率および単流収率は、それぞれ93.8モ
ル%、33.6モル%および31.5モル%であった。Table-2 -------------------------------------------- -------------------------- Example Catalyst Reaction temperature Conversion rate Selectivity Single flow yield number (℃) (mol%) (mol% ) (Mol%) --------------------------------------------- ------------------------- 13 Na 1 Si 10 370 57.0 98.7 56.3 14 K 1 Si 10 370 85.9 95.1 81.7 15 Rb 1 Si 10 370 89.8 94.2 84.6 16 Cs 1 Si 10 350 80.9 96.2 77.8 --------------------------------------- ------------------------------- Comparative Example 1 In Example 12, the catalyst was activated alumina (500 ° C.,
2 hours fired product)
analyzed. One hour after the start of the reaction, the conversion of N- (2-hydroxyethyl) -2-pyrrolidone, the selectivity for N-vinyl-2-pyrrolidone and the single-stream yield were 93.8 mol% and 33.6 mol%, respectively. And 31.5 mol%.
【0075】比較例2 実施例12において、触媒を酸化ジルコニウム(900
℃、2時間焼成品)に、反応温度を370℃に、それぞ
れ変更した以外は同様に反応させ、分析した。反応開始
1時間後のN−(2−ヒドロキシエチル)−2−ピロリ
ドンの転化率、N−ビニル−2−ピロリドン選択率およ
び単流収率は、それぞれ84.7モル%、71.0モル%
および60.3モル%であった。 Comparative Example 2 In Example 12, the catalyst was changed to zirconium oxide (900
C. for 2 hours) and the reaction temperature was changed to 370.degree. One hour after the start of the reaction, the conversion of N- (2-hydroxyethyl) -2-pyrrolidone, the selectivity for N-vinyl-2-pyrrolidone and the single-stream yield were 84.7 mol% and 71.0 mol%, respectively.
And 60.3 mol%.
【0076】比較例3 実施例12において、触媒を酸化珪素(500℃、2時
間焼成品)に、反応温度を370℃に、それぞれ変更し
た以外は同様に反応させ、分析した。反応開始1時間後
のN−(2−ヒドロキシエチル)−2−ピロリドンの転
化率、N−ビニル−2−ピロリドン選択率および単流収
率は、それぞれ16.3モル%、94.2モル%および1
5.4モル%であった。 Comparative Example 3 In Example 12, the reaction was carried out in the same manner as in Example 12, except that the catalyst was reacted with silicon oxide (500 ° C., fired for 2 hours), and the reaction temperature was changed to 370 ° C., respectively. One hour after the start of the reaction, the conversion of N- (2-hydroxyethyl) -2-pyrrolidone, the selectivity for N-vinyl-2-pyrrolidone, and the single-stream yield were 16.3 mol% and 94.2 mol%, respectively. And 1
It was 5.4 mol%.
【0077】実施例17 (触媒調製)炭酸セシウム0.81gを水40gに溶解
させた溶液中に、球状シリカゲル(5〜10メッシュ)
30gを2時間浸せきした。その後湯浴上で加熱乾固
し、空気中120℃で20時間乾燥後、空気中800℃
で2時間焼成することによって、酸素を除く原子比でC
s1Si100なる組成の触媒を得た。 Example 17 (Preparation of catalyst) Spherical silica gel (5 to 10 mesh) was placed in a solution obtained by dissolving 0.81 g of cesium carbonate in 40 g of water.
30 g was soaked for 2 hours. Thereafter, the mixture is heated to dryness in a hot water bath, dried in air at 120 ° C. for 20 hours, and then dried in air at 800 ° C.
By firing for 2 hours, the atomic ratio excluding oxygen is C
A catalyst having a composition of s 1 Si 100 was obtained.
【0078】(反応)この触媒を用いて、反応温度を3
60℃に変更した以外は実施例12と同様に反応させ、
分析した。反応開始1時間後のN−(2−ヒドロキシエ
チル)−2−ピロリドンの転化率、N−ビニル−2−ピ
ロリドン選択率、および単流収率は、それぞれ93.8
モル%、93.1モル%および87.3モル%であった。(Reaction) Using this catalyst, a reaction temperature of 3
The reaction was carried out in the same manner as in Example 12, except that the temperature was changed to 60 ° C.
analyzed. One hour after the start of the reaction, the conversion of N- (2-hydroxyethyl) -2-pyrrolidone, the selectivity for N-vinyl-2-pyrrolidone, and the single-stream yield were 93.8, respectively.
%, 93.1 mol% and 87.3 mol%.
【0079】実施例18 (触媒調製)実施例17において、炭酸セシウム量を
0.81gから0.41gに変更した以外は同様にして、
酸素を除く原子比でCs1Si200なる触媒を調製した。 Example 18 (Preparation of catalyst) The procedure of Example 17 was repeated, except that the amount of cesium carbonate was changed from 0.81 g to 0.41 g.
A catalyst having an atomic ratio of Cs 1 Si 200 excluding oxygen was prepared.
【0080】(反応)この触媒を用いて、反応温度を3
70℃に変更した以外は実施例12と同様に反応させ、
分析した。反応開始1時間後のN−(2−ヒドロキシエ
チル)−2−ピロリドンの転化率、N−ビニル−2−ピ
ロリドン選択率および単流収率は、それぞれ90.7モ
ル%、91.1モル%および82.6モル%であった。(Reaction) Using this catalyst, a reaction temperature of 3
The reaction was carried out in the same manner as in Example 12, except that the temperature was changed to 70 ° C.
analyzed. One hour after the start of the reaction, the conversion of N- (2-hydroxyethyl) -2-pyrrolidone, the selectivity for N-vinyl-2-pyrrolidone and the single-stream yield were 90.7 mol% and 91.1 mol%, respectively. And 82.6 mol%.
【0081】実施例19 (触媒調製)実施例17において炭酸セシウム0.81
gを炭酸ナトリウム0.88gに変更し、焼成温度を7
00℃に変更した以外は同様にして、酸素を除く原子比
でNa1Si30なる組成の触媒を得た。 Example 19 (Catalyst preparation) Cesium carbonate 0.81 in Example 17
g was changed to 0.88 g of sodium carbonate and the baking temperature was changed to 7
A catalyst having a composition of Na 1 Si 30 in atomic ratio excluding oxygen was obtained in the same manner except that the temperature was changed to 00 ° C.
【0082】(反応)この触媒を用いて、反応温度を3
70℃に変更した以外は実施例12と同様に反応させ、
分析した。反応開始1時間後のN−(2−ヒドロキシエ
チル)−2−ピロリドンの転化率、N−ビニル−2−ピ
ロリドン選択率および単流収率は、それぞれ92.7モ
ル%、92.1モル%および85.4モル%であった。(Reaction) Using this catalyst, a reaction temperature of 3
The reaction was carried out in the same manner as in Example 12, except that the temperature was changed to 70 ° C.
analyzed. One hour after the start of the reaction, the conversion of N- (2-hydroxyethyl) -2-pyrrolidone, the selectivity for N-vinyl-2-pyrrolidone and the single-stream yield were 92.7 mol% and 92.1 mol%, respectively. And 85.4 mol%.
【0083】実施例20 (触媒調製)実施例17において、炭酸セシウム0.8
1gを炭酸カリウム1.15gに変更し、焼成温度を7
00℃に変更した以外は同様にして、酸素を除く原子比
でK1Si30なる組成の触媒を得た。 Example 20 (Preparation of catalyst) In Example 17, cesium carbonate 0.8 was used.
1 g was changed to 1.15 g of potassium carbonate and the firing temperature was 7
A catalyst having a composition of K 1 Si 30 in atomic ratio excluding oxygen was obtained in the same manner except that the temperature was changed to 00 ° C.
【0084】(反応)この触媒を用いて、反応温度を3
70℃に変更した以外は実施例12と同様に反応させ、
分析した。反応開始1時間後のN−(2−ヒドロキシエ
チル)−2−ピロリドンの転化率、N−ビニル−2−ピ
ロリドン選択率および単流収率は、それぞれ91.1モ
ル%、91.8モル%および83.6モル%であった。(Reaction) Using this catalyst, the reaction temperature was set to 3
The reaction was carried out in the same manner as in Example 12, except that the temperature was changed to 70 ° C.
analyzed. The conversion rate of N- (2-hydroxyethyl) -2-pyrrolidone, the N-vinyl-2-pyrrolidone selectivity and the single-flow yield one hour after the start of the reaction were 91.1 mol% and 91.8 mol%, respectively. And 83.6 mol%.
【0085】実施例21 (触媒調製)実施例17において、炭酸セシウム0.8
1gを水酸化ルジウム1.71gに変更し、焼成温度を
700℃に変更した以外は同様にして、酸素を除く原子
比でRb1Si30なる組成の触媒を得た。 Example 21 (Preparation of catalyst) In Example 17, cesium carbonate 0.8 was used.
A catalyst having a composition of Rb 1 Si 30 in atomic ratio excluding oxygen was obtained in the same manner except that 1 g was changed to 1.71 g of rudium hydroxide and the calcination temperature was changed to 700 ° C.
【0086】(反応)この触媒を用いて、反応温度を3
60℃に変更した以外は実施例12と同様に反応させ、
分析した。反応開始1時間後のN−(2−ヒドロキシエ
チル)−2−ピロリドンの転化率、N−ビニル−2−ピ
ロリドン選択率および単流収率は、それぞれ93.5モ
ル%、91.0モル%および85.1モル%であった。(Reaction) Using this catalyst, the reaction temperature was adjusted to 3
The reaction was carried out in the same manner as in Example 12, except that the temperature was changed to 60 ° C.
analyzed. One hour after the start of the reaction, the conversion of N- (2-hydroxyethyl) -2-pyrrolidone, the selectivity for N-vinyl-2-pyrrolidone and the single-stream yield were 93.5 mol% and 91.0 mol%, respectively. And 85.1 mol%.
【0087】実施例22 (触媒調製)実施例12において、硝酸リチウム3.4
5gを水酸セシウム7.5gに変更した以外は同様にし
て、酸素を除く原子比でCs1Si10なる組成の触媒を
得た。 Example 22 (Catalyst preparation) In Example 12, 3.4 parts of lithium nitrate were used.
A catalyst having a composition of Cs 1 Si 10 in terms of atomic ratio excluding oxygen was obtained in the same manner except that 5 g was changed to 7.5 g of cesium hydroxide.
【0088】(反応)この触媒を用いて、反応温度を3
60℃に変更した以外は実施例12と同様に反応させ、
分析した。反応開始1時間後のN−(2−ヒドロキシエ
チル)−2−ピロリドンの転化率、N−ビニル−2−ピ
ロリドン選択率および単流収率は、それぞれ94.6モ
ル%、94.6モル%および89.5モル%であった。(Reaction) Using this catalyst, the reaction temperature was adjusted to 3
The reaction was carried out in the same manner as in Example 12, except that the temperature was changed to 60 ° C.
analyzed. One hour after the start of the reaction, the conversion of N- (2-hydroxyethyl) -2-pyrrolidone, the selectivity for N-vinyl-2-pyrrolidone and the single-stream yield were 94.6 mol% and 94.6 mol%, respectively. And 89.5 mol%.
【0089】実施例23 (触媒調製)水酸化マグネシウム2.9gおよび酸化珪
素30gに水150gを加え、湯浴上で加熱混合しなが
ら濃縮乾固した。次いで空気中120℃で20時間乾燥
し、得られた固体を9〜16メッシュに破砕した後、空
気中500℃で2時間焼成することによって、酸素を除
く原子比でMg1Si10なる組成の触媒を得た。 Example 23 (Preparation of catalyst) 150 g of water was added to 2.9 g of magnesium hydroxide and 30 g of silicon oxide, and the mixture was concentrated to dryness while heating and mixing on a hot water bath. Next, after drying in air at 120 ° C. for 20 hours, the obtained solid was crushed to 9 to 16 mesh, and then calcined in air at 500 ° C. for 2 hours to obtain a composition having a composition of Mg 1 Si 10 in an atomic ratio excluding oxygen. A catalyst was obtained.
【0090】(反応)この触媒を用いて、実施例12と
同様に反応させ、分析した。反応開始1時間後のN−
(2−ヒドロキシエチル)−2−ピロリドンの転化率、
N−ビニル−2−ピロリドン選択率および単流収率は、
それぞれ54.6モル%、88.6モル%および48.4
モル%であった。(Reaction) Using this catalyst, the reaction was carried out in the same manner as in Example 12, and the reaction was analyzed. N- 1 hour after the start of the reaction
(2-hydroxyethyl) -2-pyrrolidone conversion,
N-vinyl-2-pyrrolidone selectivity and single flow yield are
54.6 mol%, 88.6 mol% and 48.4 mol% respectively
It was mol%.
【0091】実施例24〜26 (触媒調製)実施例23において、水酸化マグネシウム
2.9gを、水酸化カルシウム3.7g(実施例24)、
水酸化ストロンチウム8水和物13.3g(実施例2
5)および水酸化バリウム8水和物15.8g(実施例
26)に、それぞれ変更した以外は実施例23と同様に
して、表−3に記載の触媒(酸素を除く原子比で表記)
を得た。 Examples 24 to 26 (Preparation of catalyst) In Example 23, 2.9 g of magnesium hydroxide was replaced by 3.7 g of calcium hydroxide (Example 24).
13.3 g of strontium hydroxide octahydrate (Example 2)
5) and 15.8 g of barium hydroxide octahydrate (Example 26), respectively, in the same manner as in Example 23 except that the catalysts shown in Table 3 (expressed in atomic ratio excluding oxygen) were used.
I got
【0092】(反応)これらの触媒を用いて、実施例1
2と同様に反応させ、分析した。反応開始1時間後のN
−(2−ヒドロキシエチル)−2−ピロリドンの転化
率、N−ビニル−2−ピロリドン選択率および単流収率
を表−3に示した。(Reaction) Using these catalysts, Example 1
Reaction and analysis were carried out in the same manner as in 2. N hour after the start of the reaction
Table 3 shows the conversion rate of-(2-hydroxyethyl) -2-pyrrolidone, the N-vinyl-2-pyrrolidone selectivity and the single-stream yield.
【0093】 表−3 ---------------------------------------------------------------------- 実施例 触媒 反応温度 転化率 選択率 単流収率 番号 (℃) (モル%) (モル%) (モル%) ---------------------------------------------------------------------- 24 Ca1Si10 400 51.1 85.2 43.5 25 Sr1Si10 400 58.9 89.2 52.4 26 Ba1Si10 400 50.8 99.8 50.7 ----------------------------------------------------------------------実施例27 (触媒調製)硝酸セシウム3.9gおよび硝酸リチウム
0.34gを水100gに溶かした溶液中に、酸化珪素
30gを加え、湯浴上で加熱混合しながら濃縮乾固し
た。次いで、空気中120℃で乾燥し、9〜16メッシ
ュに破砕後、空気中500℃で2時間焼成することによ
って、酸素を除く原子比でCs0.8Li0.2Si20なる組
成の触媒を得た。Table-3 -------------------------------------------- -------------------------- Example Catalyst Reaction temperature Conversion rate Selectivity Single flow yield number (℃) (mol%) (mol% ) (Mol%) --------------------------------------------- ------------------------- 24 Ca 1 Si 10 400 51.1 85.2 43.5 25 Sr 1 Si 10 400 58.9 89.2 52.4 26 Ba 1 Si 10 400 50.8 99.8 50.7 ---------------------------------------------------------------- ---------------------- Example 27 (Catalyst preparation) 3.9 g of cesium nitrate and 0.34 g of lithium nitrate were dissolved in 100 g of water, 30 g of silicon oxide was added, and the mixture was concentrated to dryness while heating and mixing on a hot water bath. Then dried at 120 ° C. in air, crushed into 9-16 mesh, by calcining 2 hours at 500 ° C. in air, Cs 0 at the atomic ratio excluding oxygen. 8 Li 0. 2 Si 20 catalyst having a composition of Got
【0094】(反応)この触媒を用いて、反応温度を3
50℃に変更した以外は実施例12と同様に反応させ、
分析した。反応開始1時間後のN−(2−ヒドロキシエ
チル)−2−ピロリドンの転化率、N−ビニル−2−ピ
ロリドン選択率および単流収率は、それぞれ82.8モ
ル%、94.3モル%および78.1モル%であった。(Reaction) Using this catalyst, the reaction temperature was adjusted to 3
Reaction was carried out in the same manner as in Example 12 except that the temperature was changed to 50 ° C.
analyzed. One hour after the start of the reaction, the conversion of N- (2-hydroxyethyl) -2-pyrrolidone, the selectivity for N-vinyl-2-pyrrolidone, and the single-stream yield were 82.8 mol% and 94.3 mol%, respectively. And 78.1 mol%.
【0095】実施例28 (触媒調製)硝酸ルビジウム5.9gおよび水酸化バリ
ウム8水和物3.2gを水100gに溶かした溶液中
に、酸化珪素30gを加え、湯浴上で加熱濃縮しながら
濃縮乾固した。次いで空気中120℃で20時間乾燥
し、9〜16メッシュに破砕後、空気中500℃で2時
間焼成することによって、酸素を除く原子比でRb0.8
Ba0.2Si10なる組成の触媒を得た。 Example 28 (Catalyst preparation) 30 g of silicon oxide was added to a solution of 5.9 g of rubidium nitrate and 3.2 g of barium hydroxide octahydrate dissolved in 100 g of water, and the mixture was heated and concentrated on a hot water bath. It was concentrated to dryness. Then dried 20 hours at 120 ° C. in air, crushed into 9-16 mesh, by calcining 2 hours at 500 ° C. in air, Rb 0 in atomic ratio excluding oxygen. 8
Ba 0. To give a 2 Si 10 catalyst having a composition of.
【0096】(反応)この触媒を用いて、反応温度を3
60℃に変更した以外は実施例12と同様に反応させ、
分析した。反応開始1時間後のN−(2−ヒドロキシエ
チル)−2−ピロリドンの転化率、N−ビニル−2−ピ
ロリドン選択率および単流収率は、それぞれ80.8モ
ル%、97.8モル%および79.0モル%であった。(Reaction) Using this catalyst, a reaction temperature of 3
The reaction was carried out in the same manner as in Example 12, except that the temperature was changed to 60 ° C.
analyzed. One hour after the start of the reaction, the conversion of N- (2-hydroxyethyl) -2-pyrrolidone, the selectivity for N-vinyl-2-pyrrolidone and the single-stream yield were 80.8 mol% and 97.8 mol%, respectively. And 79.0 mol%.
【0097】実施例29 (触媒調製)水酸化バリウム8水和物15.8g、リン
酸第2アンモニウム0.66gおよび酸化珪素30gに
水150gを加え、湯浴上で加熱濃縮しながら濃縮乾固
した。次いで空気中120℃で20時間乾燥し、9〜1
6メッシュに破砕後、空気中450℃で2時間焼成する
ことによって、酸素を除く原子比でBa1Si10P0.1な
る組成の触媒を得た。 Example 29 (Catalyst preparation) 15.8 g of barium hydroxide octahydrate, 0.66 g of diammonium phosphate and 30 g of silicon oxide were combined with 150 g of water, and concentrated to dryness while heating and concentrating on a water bath. did. Then, dry in air at 120 ° C. for 20 hours, and
After crushing to 6 mesh by baking for 2 hours at 450 ° C. in air to obtain a catalyst of the Ba 1 Si 10 P 0. 1 having a composition in terms of atomic ratio excluding oxygen.
【0098】(反応)この触媒を用いて、実施例12と
同様に反応させ、分析した。反応開始1時間後のN−
(2−ヒドロキシエチル)−2−ピロリドンの転化率、
N−ビニル−2−ピロリドン選択率および単流収率は、
それぞれ67.2モル%、96.1モル%および64.6
モル%であった。(Reaction) Using this catalyst, the reaction was carried out in the same manner as in Example 12, and the reaction was analyzed. N- 1 hour after the start of the reaction
(2-hydroxyethyl) -2-pyrrolidone conversion,
N-vinyl-2-pyrrolidone selectivity and single flow yield are
67.2 mol%, 96.1 mol% and 64.6 mol%, respectively.
It was mol%.
【0099】実施例30 (触媒調製)硝酸セシウム19.5gおよびほう酸4.9
gを水100gに溶かした溶液中に、酸化珪素30gを
加え、湯浴上で加熱濃縮しながら濃縮乾固した。次いで
空気中120℃で20時間乾燥し、9〜16メッシュに
破砕後、空気中500℃で2時間焼成することによっ
て、酸素を除く原子比でCs1Si5B0.5なる組成の触
媒を得た。 Example 30 (Catalyst preparation) 19.5 g of cesium nitrate and 4.9 boric acid
30 g of silicon oxide was added to a solution of g in 100 g of water, and the mixture was concentrated to dryness while being heated and concentrated on a water bath. Then dried 20 hours at 120 ° C. in air, crushed into 9-16 mesh, by calcining 2 hours at 500 ° C. in air, Cs 1 Si 5 B 0 in atomic ratio excluding oxygen. 5 catalyst having a composition of the Obtained.
【0100】(反応)この触媒を用いて、実施例12と
同様に反応を100時間継続した。反応開始1時間、2
0時間および100時間後におけるN−(2−ヒドロキ
シエチル)−2−ピロリドンの転化率、N−ビニル−2
−ピロリドン選択率および単流収率を表−4に示した。(Reaction) Using this catalyst, the reaction was continued for 100 hours in the same manner as in Example 12. Reaction start 1 hour, 2
Conversion of N- (2-hydroxyethyl) -2-pyrrolidone at 0 and 100 hours, N-vinyl-2
-Pyrrolidone selectivity and single flow yield are shown in Table-4.
【0101】 表−4 ------------------------------------------------ 経過時間 転化率 選択率 単流収率 (時間) (モル%) (モル%) (モル%) ------------------------------------------------ 1 84.5 96.0 81.1 20 83.8 96.6 81.0 100 82.0 98.0 80.4 ------------------------------------------------実施例31 (触媒調製)硝酸セシウム19.5gおよびリン酸第2
アンモニウム9.2gを水100gに溶かした溶液中
に、リン酸アルミニウム1.2gおよび酸化珪素30g
を加え、湯浴上で加熱濃縮しながら濃縮乾固した。次い
で空気中120℃で20時間乾燥し、9〜16メッシュ
に破砕後、空気中600℃で2時間焼成することによっ
て、酸素を除く原子比でCs1Si5Al0.1P0.8なる組
成の触媒を得た。Table-4 -------------------------------------------- ---- Elapsed time Conversion rate Selectivity Single-flow yield (time) (mol%) (mol%) (mol%) --------------------- --------------------------- 1 84.5 96.0 81.1 20 83.8 96.6 81.0 100 82.0 98.0 80.4 ----------- ------------------------------------- Example 31 (Catalyst preparation) 19.5 g of cesium nitrate and Phosphoric acid second
1.2 g of aluminum phosphate and 30 g of silicon oxide in a solution prepared by dissolving 9.2 g of ammonium in 100 g of water.
Was added, and the mixture was concentrated to dryness while heating and concentrating on a hot water bath. Then dried 20 hours at 120 ° C. in air, crushed into 9-16 mesh, by calcining 2 hours at 600 ° C. in air, Cs 1 Si 5 Al 0 in atomic ratio excluding oxygen. Becomes 1 P 0. 8 A catalyst having a composition was obtained.
【0102】(反応)この触媒を用いて、実施例12と
同様に反応させ、分析した。反応開始1時間後のN−
(2−ヒドロキシエチル)−2−ピロリドンの転化率、
N−ビニル−2−ピロリドン選択率および単流収率は、
それぞれ53.6モル%、97.8モル%および52.4
モル%であった。(Reaction) Using this catalyst, a reaction and an analysis were carried out in the same manner as in Example 12. N- 1 hour after the start of the reaction
(2-hydroxyethyl) -2-pyrrolidone conversion,
N-vinyl-2-pyrrolidone selectivity and single flow yield are
53.6 mol%, 97.8 mol% and 52.4 mol% respectively
It was mol%.
【0103】実施例32〜34 (触媒調製)硝酸セシウム9.8gおよびリン酸第2ア
ンモニウム5.3gを水100gに溶かした溶液中に、
酸化珪素30gを加え、湯浴上で加熱濃縮しながら濃縮
乾固した。次いで空気中120℃で20時間乾燥し、9
〜16メッシュに破砕後、空気中500℃で2時間焼成
することによって、酸素を除く原子比でCs1Si
10P0.8なる組成の触媒を得た。 Examples 32-34 (Catalyst Preparation) 9.8 g of cesium nitrate and 5.3 g of diammonium phosphate were dissolved in 100 g of water,
30 g of silicon oxide was added, and the mixture was concentrated to dryness while being heated and concentrated on a hot water bath. Then, dry in air at 120 ° C. for 20 hours, and
After crushing to ~ 16 mesh, it is fired in air at 500 ° C for 2 hours to obtain Cs 1 Si at an atomic ratio excluding oxygen.
To obtain a 10 P 0. 8 having a composition of the catalyst.
【0104】(反応)この触媒を用い、反応条件を表−
5に示す値に変更した以外は実施例12と同様に反応さ
せ、分析した。反応開始1時間後のN−(2−ヒドロキ
シエチル)−2−ピロリドンの転化率、N−ビニル−2
−ピロリドン選択率および単流収率を表−5に示した。(Reaction) Using this catalyst, the reaction conditions are shown in Table 1.
The reaction and analysis were performed in the same manner as in Example 12 except that the value was changed to the value shown in FIG. Conversion rate of N- (2-hydroxyethyl) -2-pyrrolidone 1 hour after the start of the reaction, N-vinyl-2
Table 5 shows the pyrrolidone selectivity and the single-stream yield.
【0105】 表−5 ---------------------------------------------------------------------- 実施例 原料分圧 空間速度 反応温度 転化率 選択率 単流収率 番号 (mmHg) (hr-1) (℃) (モル%)(モル%) (モル%) ---------------------------------------------------------------------- 32 76 200 400 78.9 96.8 76.4 33 76 100 400 89.9 93.3 83.9 34 38 200 390 92.1 98.4 90.6 ----------------------------------------------------------------------実施例35 (触媒調製)炭酸セシウム8.15gを水100gに溶
解させた溶液中に、酸化珪素30gを加え、湯浴上で加
熱混合しながら濃縮乾固した。次いで空気中120℃で
20時間乾燥し、9〜16メッシュに破砕後、空気中5
00℃で2時間焼成することによって、酸素を除く原子
比でCs1Si10なる組成の触媒を得た。Table 5 -------------------------------------------- -------------------------- eXAMPLE feedstock partial pressure space velocity reaction temperature conversion selectivity pass yield number (mmHg) (hr - 1 ) (℃) (mol%) (mol%) (mol%) --------------------------------- ------------------------------------- 32 76 200 400 78.9 96.8 76.4 33 76 100 400 89.9 93.3 83.9 34 38 200 390 92.1 98.4 90.6 ------------------------------------------ ---------------------------- Example 35 (Preparation of catalyst) In a solution prepared by dissolving 8.15 g of cesium carbonate in 100 g of water. And 30 g of silicon oxide, and concentrated to dryness while heating and mixing on a hot water bath. Then, it is dried in air at 120 ° C. for 20 hours, crushed to 9 to 16 mesh, and then dried in air.
By calcining at 00 ° C. for 2 hours, a catalyst having a composition of Cs 1 Si 10 in an atomic ratio excluding oxygen was obtained.
【0106】(反応)この触媒5mlを内径10mmの
ステンレス製の反応管に充填した後、該反応管を360
℃の溶融塩浴に浸せきした。次いで、該反応管をその後
部より真空ポンプで減圧することによって反応器の出口
圧力を76mmHgに調整した。この反応管に、N−
(2−ヒドロキシエチル)−2−ピロリドンを空間速度
200h-1で供給して反応させた。反応を100時間継
続した後、原料供給を停止し、反応器内の圧力を窒素に
より常圧に戻し、次いで空気を100cc/分で24時
間通じて触媒上に析出している炭素状物質を燃焼させて
除くことによって、触媒を再生した。その後、再び前述
の反応条件にて更に100時間反応させた。原料供給開
始より1時間、20時間および100時間ならびに再生
後1時間、20時間および100時間の各時点で、反応
器出口ガスをガスクロマトグラフフにより分析した。N
−(2−ヒドロキシエチル)−2−ピロリドンの転化
率、N−ビニル−2−ピロリドン選択率および単流収率
を表−6に示した。(Reaction) After filling 5 ml of this catalyst into a stainless steel reaction tube having an inner diameter of 10 mm, the reaction tube was filled with 360
C. in a molten salt bath. Then, the outlet pressure of the reactor was adjusted to 76 mmHg by depressurizing the reaction tube from the rear part with a vacuum pump. N-
(2-Hydroxyethyl) -2-pyrrolidone was supplied and reacted at a space velocity of 200 h -1 . After the reaction is continued for 100 hours, the supply of raw materials is stopped, the pressure in the reactor is returned to normal pressure with nitrogen, and then air is passed at 100 cc / min for 24 hours to burn carbonaceous substances deposited on the catalyst. The catalyst was regenerated by removing it. Thereafter, the reaction was performed again for another 100 hours under the above-described reaction conditions. The gas at the outlet of the reactor was analyzed by gas chromatography at 1 hour, 20 hours and 100 hours after the start of the raw material supply and at 1 hour, 20 hours and 100 hours after the regeneration. N
The conversion of-(2-hydroxyethyl) -2-pyrrolidone, the selectivity for N-vinyl-2-pyrrolidone and the single-stream yield are shown in Table-6.
【0107】 表−6 ------------------------------------------------ 経過時間 転化率 選択率 単流収率 (時間) (モル%) (モル%) (モル%) ------------------------------------------------ 1 94.3 94.9 89.5 20 93.5 95.6 89.4 100 93.0 96.4 89.7 再生後 1 94.0 95.3 89.6 20 93.8 95.7 89.8 100 93.5 96.9 90.6 ------------------------------------------------ 以下に示す実施例36〜39は、3級N−(2−ヒドロ
キシプロピル)カルボン酸アミド類の分子内脱水反応に
よる3級N−プロペニルカルボン酸アミド類の製造につ
いての実施例である。Table-6 -------------------------------------------- ---- Elapsed time Conversion rate Selectivity Single-flow yield (time) (mol%) (mol%) (mol%) --------------------- --------------------------- 1 94.3 94.9 89.5 20 93.5 95.6 89.4 100 93.0 96.4 89.7 After playback 1 94.0 95.3 89.6 20 93.8 95.7 89.8 100 93.5 96.9 90.6 ---------------------------------------------------- -Examples 36 to 39 shown below are examples of producing tertiary N-propenylcarboxylic acid amides by intramolecular dehydration reaction of tertiary N- (2-hydroxypropyl) carboxylic acid amides.
【0108】実施例36 (反応)実施例1の触媒を用い、反応原料をN−(2−
ヒドロキシプロピル)−N′−メチル−アセトアミドに
変更した以外は実施例1と同様に反応させ、分析した。
反応開始1時間後のN−(2−ヒドロキシプロピル)−
N′−メチル−アセトアミドの転化率、N−(1−プロ
ペニル)−N′−メチル−アセトアミドとN−(2−プ
ロペニル)−N′−メチル−アセトアミドとを併せたN
−プロペニル−N′−メチル−アセトアミドの選択率お
よび単流収率は、それぞれ67.9モル%、92.2モル
%および62.6モル%であった。 Example 36 (Reaction) Using the catalyst of Example 1, the reaction raw material was N- (2-
The reaction was carried out and analyzed in the same manner as in Example 1 except that (hydroxypropyl) -N'-methyl-acetamide was used.
N- (2-hydroxypropyl)-1 hour after the start of the reaction
Conversion of N'-methyl-acetamide, N- (1-propenyl) -N'-methyl-acetamide and N- (2-propenyl) -N'-methyl-acetamide combined N
The selectivity and single-stream yield of -propenyl-N'-methyl-acetamide were 67.9 mol%, 92.2 mol% and 62.6 mol%, respectively.
【0109】実施例37 (反応)実施例10の触媒を用いた以外は、実施例36
と同様に反応させ、分析した。反応開始1時間後のN−
(2−ヒドロキシプロピル)−N′−メチル−アセトア
ミドの転化率、N−(1−プロペニル)−N′−メチル
−アセトアミドとN−(2−プロペニル)−N′−メチ
ル−アセトアミドとを併せたN−プロペニル−N′−メ
チル−アセトアミドの選択率および単流収率は、それぞ
れ84.2モル%、94.5モル%および79.6モル%
であった。 Example 37 (Reaction) Example 36 except that the catalyst of Example 10 was used.
The reaction was performed in the same manner as described above and analyzed. N- 1 hour after the start of the reaction
Conversion of (2-hydroxypropyl) -N'-methyl-acetamide, combining N- (1-propenyl) -N'-methyl-acetamide and N- (2-propenyl) -N'-methyl-acetamide The selectivity and single-stream yield of N-propenyl-N'-methyl-acetamide were 84.2 mol%, 94.5 mol% and 79.6 mol%, respectively.
Met.
【0110】実施例38 (反応)実施例17の触媒を用いて、反応原料をN−
(2−ヒドロキシプロピル)−N′−メチル−プロピル
アミドに変更した以外は実施例36と同様に反応させ、
分析した。反応開始1時間後のN−(2−ヒドロキシプ
ロピル)−N′−メチル−プロピルアミドの転化率、N
−(1−プロペニル)−N′−メチル−プロピルアミド
とN−(2−プロペニル)−N′−メチル−プロピルア
ミドとを併せたN−プロペニル−N′−メチル−プロピ
ルアミドの選択率および単流収率はそれぞれ93.1モ
ル%、91.6モル%および85.3モル%であった。 Example 38 (Reaction) Using the catalyst of Example 17, the reaction raw material was N--
Reaction was carried out in the same manner as in Example 36 except that (2-hydroxypropyl) -N'-methyl-propylamide was changed.
analyzed. Conversion of N- (2-hydroxypropyl) -N'-methyl-propylamide 1 hour after the start of the reaction, N
Selectivity and unity of N-propenyl-N'-methyl-propylamide combining-(1-propenyl) -N'-methyl-propylamide and N- (2-propenyl) -N'-methyl-propylamide The stream yields were 93.1 mol%, 91.6 mol% and 85.3 mol%, respectively.
【0111】実施例39 (反応)実施例31の触媒を用いて、実施例38と同様
に反応させ、分析した。反応開始1時間後のN−(2−
ヒドロキシプロピル)−N′−メチル−プロピルアミド
の転化率、N−(1−プロペニル)−N′−メチル−プ
ロピルアミドとN−(2−プロペニル)−N′−メチル
−プロピルアミドとを併せたN−プロペニル−N′−メ
チル−プロピルアミドの選択率および単流収率は、それ
ぞれ60.4モル%、95.6モル%および57.7モル
%であった。 Example 39 (Reaction) Using the catalyst of Example 31, the reaction was carried out in the same manner as in Example 38, and the reaction was analyzed. N- (2-
Hydroxypropyl) -N'-methyl-propylamide conversion, combining N- (1-propenyl) -N'-methyl-propylamide and N- (2-propenyl) -N'-methyl-propylamide The selectivity and single-stream yield of N-propenyl-N'-methyl-propylamide were 60.4 mol%, 95.6 mol% and 57.7 mol%, respectively.
【0112】上記の実施例によって例証されるように、
本発明によれば、副原料を一切用いることなく、3級N
−(2−ヒドロキシアルキル)カルボン酸アミド類から
連続的に効率よく3級N−アルケニルカルボン酸アミド
を製造することができる。本発明による3級N−アルケ
ニルカルボン酸アミドの製造方法は、副原料を使用しな
いので簡便であり、しかも副原料由来の廃棄物の発生が
ないので、安全である。As illustrated by the above examples,
According to the present invention, tertiary N
A tertiary N-alkenylcarboxylic acid amide can be continuously and efficiently produced from-(2-hydroxyalkyl) carboxylic acid amides. The method for producing a tertiary N-alkenylcarboxylic acid amide according to the present invention is simple because no auxiliary material is used, and is safe because no waste is generated from the auxiliary material.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成7年10月23日[Submission date] October 23, 1995
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0016[Correction target item name] 0016
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0016】しかし、米国特許第2,669,570号
に開示の活性アルミナを用いる方法は、特公昭47−4
0792号公報の参考例によると、N−(2−ヒドロキ
シエチル)−2−ピロリドンの反応率(転化率)が3
1.7モル%という低い値であり、反応したN−(2−
ヒドロキシエチル)−2−ピロリドンに対するN−ビニ
ル−2−ピロリドンの収率(選択率)が62.8モル%
という低い値であり、重合物の副生率が22.8モル%
という高い値であるので、経済性及び生成物の分離精製
などの工業的な観点からは、優れた方法でない。その他
の触媒では、酸化ジルコニウムが最も高性能であり、特
公昭47−40792号公報の実施例6には、N−(2
−ヒドロキシエチル)−2−ピロリドンの転化率88.
6モル%において、N−ビニル−2−ピロリドンが選択
率92.6モル%で、2−ピロリドンが選択率5.6モ
ル%で、得られることが開示されている。この触媒性能
は比較的高水準であるが、工業的に効率的な製造方法と
しては、より高い選択率で経時的に安定した活性を発揮
する触媒の開発が望まれる。尚、上記発明(特公昭47
−40792号公報)の反応条件下で酸化ジルコニウム
を触媒として用いて行った本発明者らの実験では、後述
の比較例2に示す通り、N−(2−ヒドロキシエチル)
−2ピロリドンの転化率は84.7モル%と高水準であ
ったが、N−ビニル−2−ピロリドンの選択率は71.
0モル%と必ずしも満足なものでなかった。However, the method using activated alumina disclosed in US Pat. No. 2,669,570 is disclosed in Japanese Patent Publication No. 47-4 / 1976.
According to the reference example of Japanese Patent No. 0792, the reaction rate (conversion rate) of N- (2-hydroxyethyl) -2-pyrrolidone is 3
The value was as low as 1.7 mol%, and the reacted N- (2-
The yield (selectivity) of N-vinyl-2-pyrrolidone with respect to (hydroxyethyl) -2-pyrrolidone is 62.8 mol%.
And the by-product rate of the polymer is 22.8 mol%.
This is not an excellent method from an industrial viewpoint such as economy and separation and purification of a product. Among the other catalysts, zirconium oxide has the highest performance, and Example 6 of JP-B-47-40792 discloses that N- (2
-Hydroxyethyl) -2-pyrrolidone conversion 88.
It is disclosed that at 6 mol%, N-vinyl-2-pyrrolidone is obtained with a selectivity of 92.6 mol% and 2-pyrrolidone is obtained with a selectivity of 5.6 mol%. Although this catalytic performance is at a relatively high level, the development of a catalyst that exhibits stable activity over time with a higher selectivity is desired as an industrially efficient production method. The above invention (Japanese Patent Publication No. 47
In the experiment conducted by the inventors of the present invention using zirconium oxide as a catalyst under the reaction conditions of JP-A-40792) , N- (2-hydroxyethyl) was used as shown in Comparative Example 2 below.
Although the conversion of 2-pyrrolidone was as high as 84.7 mol%, the selectivity for N-vinyl-2-pyrrolidone was 71.
0 mol% was not always satisfactory.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0028[Correction target item name] 0028
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0028】(式中、R1、R2及びR3は独立した基
で、R1及びR2は炭素数1〜6個の炭化水素基からな
る群より選ばれる何れか1種であり、R3は水素および
炭素数1〜6の炭化水素基からなる群より選ばれる何れ
か一種である。) 本発明における反応原料としては、前記のあらゆる種類
の3級N−(2−ヒドロキシアルキル)カルボン酸アミ
ド類が用いられる。具体的には、N−メチル−アセトア
ミド、N−エチル−アセトアミド、N−プロピル−アセ
トアミド、N−ブチル−アセトアミドのN−(2−ヒド
ロキシエチル)化合物およびN−(2−ヒドロキシプロ
ピル)化合物;N−メチル−プロピルアミド、N−エチ
ル−プロピルアミド、N−プロピル−プロピルアミド、
N−ブチル−プロピルアミドのN−(2−ヒドロキシエ
チル)化合物およびN−(2−ヒドロキシプロピル)化
合物;N−(2−ヒドロキシエチル)−2−ピロリドン
等が好適であるがこれらに限られるものではない。これ
らN−(2−ヒドロキシエチル)化合物からは対応する
3級N−ビニルカルボン酸アミド化合物が得られ、N−
(2−ヒドロキシプロピル)化合物からは対応する3級
N−(1−プロペニル)カルボン酸アミドおよび3級N
−(2−プロペニル)カルボン酸アミドが得られる。(Wherein R 1 , R 2 and R 3 are independent groups, and R 1 and R 2 are any one selected from the group consisting of hydrocarbon groups having 1 to 6 carbon atoms, R 3 is any one selected from the group consisting of hydrogen and a hydrocarbon group having 1 to 6 carbon atoms.) As the reaction raw material in the present invention, any of the above-mentioned tertiary N- (2-hydroxyalkyl) s Carboxamides are used. Specifically, N- ( 2-hydroxyethyl ) compounds and N- ( 2-hydroxypropyl ) compounds of N-methyl-acetamide, N-ethyl-acetamide, N-propyl-acetamide, N-butyl-acetamide; N- -Methyl-propylamide, N-ethyl-propylamide, N-propyl-propylamide,
N- ( 2-hydroxyethyl ) compound and N- ( 2-hydroxypropyl ) compound of N-butyl-propylamide; N- (2-hydroxyethyl) -2-pyrrolidone and the like are preferable, but not limited thereto. is not. From these N- ( 2-hydroxyethyl ) compounds, the corresponding tertiary N-vinylcarboxylic acid amide compounds can be obtained.
From ( 2-hydroxypropyl ) compounds, the corresponding tertiary N- (1-propenyl) carboxylic acid amides and tertiary N
-(2-Propenyl) carboxylic acid amide is obtained.
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0043[Correction target item name] 0043
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0043】反応圧力は、原料である3級N−(2−ヒ
ドロキシアルキル)カルボン酸アミド類の分圧が5〜6
00mmHg、好ましくは10〜300mmHgの範囲
で制御され得る限り、特に制限はない。原料の分圧が5
mmHgより小さい場合、反応自体は支障なく実施でき
るが、生成物の捕集が困難になったり、捕集装置が大き
くなる等、生産効率が低下する。原料の分圧が600m
mHgより大きい場合、副反応の割合が増大して目的物
である3級N−アルケニルカルボン酸アミド類の選択率
が低下する。具体的には、 (1) 窒素、ヘリウム、アルゴン、炭化水素などのよ
うな反応に不活性な物質による希釈によって原料の分圧
がコントロールされたガスを触媒に通じて反応させる方
法(反応圧力は任意)。The reaction pressure is such that the partial pressure of the tertiary N- (2-hydroxyalkyl) carboxylic amide as the raw material is 5-6.
There is no particular limitation as long as it can be controlled within the range of 00 mmHg, preferably 10 to 300 mmHg. Material partial pressure is 5
When it is smaller than mmHg, the reaction itself can be carried out without hindrance, but the production efficiency is lowered, for example, the collection of the product becomes difficult or the collection device becomes large. 600m partial pressure of raw material
If it is higher than mHg, the rate of side reactions increases, and the selectivity of the target tertiary N-alkenylcarboxylic amides decreases. Specifically, (1) a method in which a gas whose raw material is controlled in partial pressure by dilution with a substance inert to the reaction such as nitrogen, helium, argon, or a hydrocarbon is passed through a catalyst (reaction pressure is Any).
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0060[Correction target item name] 0060
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0060】実施例6 (触媒調製)炭酸セシウム8.15g、リン酸第2アン
モニウム0.66gおよび酸化珪素30gに水150g
を加えて、湯浴上で加熱混合しながら濃縮乾固した。次
いで空気中120℃で20時間乾燥し、9〜16メッシ
ュに破砕後、空気中450℃で2時間焼成することによ
って、酸素を除く原子比でCs1Si10P0.1なる
組成の触媒を得た。 Example 6 (Catalyst preparation) 8.15 g of cesium carbonate, 0.66 g of diammonium phosphate, 30 g of silicon oxide and 150 g of water
Was added, and the mixture was concentrated to dryness with heating and mixing on a hot water bath. Then, it is dried in air at 120 ° C. for 20 hours, crushed to 9 to 16 mesh, and then fired in air at 450 ° C. for 2 hours to obtain an atomic ratio of Cs 1 Si 10 P 0 . A catalyst having a composition of 1 was obtained.
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0063[Correction target item name] 0063
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0063】実施例8 (触媒調製)水酸化マグネシウム0.29g、硝酸ルビ
ジウム6.64gおよびの酸化珪素30gに水150g
を加えて、湯浴上で加熱混合しながら濃縮乾固した。次
いで空気中120℃で20時間乾燥し、9〜16メッシ
ュに破砕後、空気中500℃で2時間焼成することによ
って、酸素を除く原子比でRb0.9Mg0.1Si
10なる組成の触媒を得た。 Example 8 (Catalyst preparation) 0.29 g of magnesium hydroxide, 6.64 g of rubidium nitrate and 30 g of silicon oxide were added to 150 g of water.
Was added, and the mixture was concentrated to dryness with heating and mixing on a hot water bath. Next, it is dried in air at 120 ° C. for 20 hours, crushed to 9 to 16 mesh, and calcined in air at 500 ° C. for 2 hours to obtain an Rb 0 . 9 Mg 0 . 1 Si
A catalyst having a composition of 10 was obtained.
【手続補正6】[Procedure correction 6]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0064[Correction target item name] 0064
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0064】(反応)この触媒を用いて実施例7と同様
に反応させ、分析した。反応開始1時間後のN−(2−
ヒドロキシエチル)−N′−メチル−プロピルアミドの
転化率、N−ビニル−N′−メチル−プロピルアミド選
択率および単流収率は、それぞれ85.4モル%、9
3.1モル%および79.1モル%であった。(Reaction) Using this catalyst, a reaction was conducted in the same manner as in Example 7 and an analysis was conducted. N- (2-
The conversion of (hydroxyethyl) -N'-methyl-propylamide, the N-vinyl-N'-methyl-propylamide selectivity and the single-flow yield are 85.4 mol% and 9%, respectively.
It was 3.1 mol% and 79.1 mol%.
【手続補正7】[Procedure Amendment 7]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0065[Correction target item name] 0065
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0065】実施例9 (触媒調製)水酸化バリウム8水和物3.16g、硝酸
セシウム7.80gおよび酸化珪素30gに水150g
を加えて湯浴上で加熱混合しながら濃縮乾固した。次い
で空気中120℃で20時間乾燥し、9〜16メッシュ
に破砕後、空気中500℃で2時間焼成することによっ
て酸素を除く原子比でCs0.8Ba0.2Si10な
る組成の触媒を得た。 Example 9 (Catalyst preparation) 3.16 g of barium hydroxide octahydrate, 7.80 g of cesium nitrate and 30 g of silicon oxide and 150 g of water.
Was added and the mixture was concentrated to dryness while heating and mixing on a hot water bath. Then, it is dried in air at 120 ° C. for 20 hours, crushed to 9 to 16 mesh, and then calcined in air at 500 ° C. for 2 hours to obtain Cs 0 . 8 Ba 0 . A catalyst having a composition of 2 Si 10 was obtained.
【手続補正8】[Procedure Amendment 8]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0066[Correction target item name] 0066
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0066】(反応)この触媒を用いて実施例7と同様
に反応させ、分析した。反応開始1時間後のN−(2−
ヒドロキシエチル)−N′−メチル−プロピルアミドの
転化率、N−ビニル−N′−メチル−プロピルアミド選
択率および単流収率は、それぞれ87.1モル%、9
2.4モル%および80.5モル%であった。(Reaction) Using this catalyst, a reaction was conducted in the same manner as in Example 7 and an analysis was conducted. N- (2-
The conversion of (hydroxyethyl) -N'-methyl-propylamide, the N-vinyl-N'-methyl-propylamide selectivity and the single stream yield were 87.1 mol% and 9%, respectively.
It was 2.4 mol% and 80.5 mol%.
【手続補正9】[Procedure Amendment 9]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0067[Correction target item name] 0067
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0067】実施例10 (触媒調製)水酸化カリウム1.40gおよびほう酸
0.15gを水100gに溶解した溶液中に、30gの
球状シリカゲル(5〜10メッシュ)を3時間浸せきし
た後、湯浴上で濃縮乾固した。次いで空気中120℃で
20時間乾燥し、更に空気中600℃で2時間焼成する
ことによって、酸素を除く原子比でK1Si20B
0.1なる組成の触媒を得た。 Example 10 (Catalyst preparation) 30 g of spherical silica gel (5 to 10 mesh) was immersed in a solution prepared by dissolving 1.40 g of potassium hydroxide and 0.15 g of boric acid in 100 g of water for 3 hours, and then bathed in a water bath. Concentrated to dryness above. Then, it is dried in air at 120 ° C. for 20 hours, and further calcined in air at 600 ° C. for 2 hours to obtain an atomic ratio of K 1 Si 20 B excluding oxygen.
0 . A catalyst having a composition of 1 was obtained.
【手続補正10】[Procedure Amendment 10]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0068[Correction target item name] 0068
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0068】(反応)この触媒を用いて実施例7と同様
に反応させ、分析した。反応開始1時間後のN−(2−
ヒドロキシエチル)−N′−メチル−プロピルアミドの
転化率、N−ビニル−N′−メチル−プロピルアミド選
択率および単流収率は、それぞれ88.8モル%、9
1.4モル%および81.2モル%であった。(Reaction) Using this catalyst, a reaction was conducted in the same manner as in Example 7 and an analysis was conducted. N- (2-
The conversion of (hydroxyethyl) -N′-methyl-propylamide, the N-vinyl-N′-methyl-propylamide selectivity and the single-flow yield were 88.8 mol% and 9%, respectively.
It was 1.4 mol% and 81.2 mol%.
【手続補正11】[Procedure Amendment 11]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0093[Correction target item name] 0093
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0093】 実施例27 (触媒調製)硝酸セシウム3.9gおよび硝酸リチウム
0.34gを水100gに溶かした溶液中に、酸化珪素
30gを加え、湯浴上で加熱混合しながら濃縮乾固し
た。次いで、空気中120℃で乾燥し、9〜16メッシ
ュに破砕後、空気中500℃で2時間焼成することによ
って、酸素を除く原子比でCs0.8Li0.2Si
20なる組成の触媒を得た。[0093] Example 27 (Catalyst preparation) 30 g of silicon oxide was added to a solution of 3.9 g of cesium nitrate and 0.34 g of lithium nitrate in 100 g of water, and the mixture was concentrated to dryness while heating and mixing on a hot water bath. Then, it is dried in air at 120 ° C., crushed to 9 to 16 mesh, and then fired in air at 500 ° C. for 2 hours to obtain Cs 0 . 8 Li 0 . 2 Si
A catalyst of composition 20 was obtained.
【手続補正12】[Procedure Amendment 12]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0095[Correction target item name] 0095
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0095】実施例28 (触媒調製)硝酸ルビジウム5.9gおよび水酸化バリ
ウム8水和物3,2gを水100gに溶かした溶液中
に、酸化珪素30gを加え、湯浴上で加熱濃縮しながら
濃縮乾固した。次いで空気中120℃で20時間乾燥
し、9〜16メッシュに破砕後、空気中500℃で2時
間焼成することによって、酸素を除く原子比でRb
0.8Ba0.2Si10なる組成の触媒を得た。 Example 28 (Catalyst preparation) 30 g of silicon oxide was added to a solution of 5.9 g of rubidium nitrate and 3,2 g of barium hydroxide octahydrate dissolved in 100 g of water, and the mixture was heated and concentrated on a hot water bath. It was concentrated to dryness. Then, it is dried in air at 120 ° C. for 20 hours, crushed to 9 to 16 mesh, and then fired in air at 500 ° C. for 2 hours to obtain Rb at an atomic ratio excluding oxygen.
0 . 8 Ba 0 . A catalyst having a composition of 2 Si 10 was obtained.
【手続補正13】[Procedure Amendment 13]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0097[Correction target item name] 0097
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0097】実施例29 (触媒調製)水酸化バリウム8水和物15.8g、リン
酸第2アンモニウム0.66gおよび酸化珪素30gに
水150gを加え、湯浴上で加熱濃縮しながら濃縮乾固
した。次いで空気中120℃で20時間乾燥し、9〜1
6メッシュに破砕後、空気中450℃で2時間焼成する
ことによって、酸素を除く原子比でBa1Si10P
0.1なる組成の触媒を得た。 Example 29 (Catalyst preparation) 150 g of water was added to 15.8 g of barium hydroxide octahydrate, 0.66 g of diammonium phosphate and 30 g of silicon oxide, and concentrated to dryness while heating and concentrating in a water bath. did. Then, dry in air at 120 ° C. for 20 hours, and
After crushing into 6 mesh, it was baked in air at 450 ° C. for 2 hours to obtain an atomic ratio of Ba 1 Si 10 P excluding oxygen.
0 . A catalyst having a composition of 1 was obtained.
【手続補正14】[Procedure Amendment 14]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0099[Correction target item name] 0099
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0099】実施例30 (触媒調製)硝酸セシウム19.5gおよびほう酸4.
9gを水100gに溶かした溶液中に、酸化珪素30g
を加え、湯浴上で加熱濃縮しながら濃縮乾固した。次い
で空気中120℃で20時間乾燥し、9〜16メッシュ
に破砕後、空気中500℃で2時間焼成することによっ
て、酸素を除く原子比でCs1Si5B0.5なる組成
の触媒を得た。 Example 30 (Catalyst preparation) 19.5 g of cesium nitrate and 4.
30 g of silicon oxide in a solution of 9 g in 100 g of water
Was added, and the mixture was concentrated to dryness while heating and concentrating on a hot water bath. Next, it is dried in air at 120 ° C. for 20 hours, crushed to 9 to 16 mesh, and then fired in air at 500 ° C. for 2 hours to obtain an atomic ratio of Cs 1 Si 5 B 0 . A catalyst having a composition of 5 was obtained.
【手続補正15】[Procedure Amendment 15]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0101[Correction target item name] 0101
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0101】 実施例31 (触媒調製)硝酸セシウム19.5gおよびリン酸第2
アンモニウム9.2gを水100gに溶かした溶液中
に、リン酸アルミニウム1.2gおよび酸化珪素30g
を加え、湯浴上で加熱濃縮しながら濃縮乾固した。次い
で空気中120℃で20時間乾燥し、9〜16メッシュ
に破砕後、空気中600℃で2時間焼成することによっ
て、酸素を除く原子比でCs1Si5Al0.1P
0.8なる組成の触媒を得た。[0101] Example 31 (Catalyst preparation) 19.5 g of cesium nitrate and phosphoric acid second
1.2 g of aluminum phosphate and 30 g of silicon oxide in a solution prepared by dissolving 9.2 g of ammonium in 100 g of water.
Was added, and the mixture was concentrated to dryness while heating and concentrating on a hot water bath. Then, it is dried in air at 120 ° C. for 20 hours, crushed to 9 to 16 mesh, and then fired in air at 600 ° C. for 2 hours to obtain an atomic ratio of Cs 1 Si 5 Al 0 . 1 P
0 . A catalyst having a composition of 8 was obtained.
【手続補正16】[Procedure Amendment 16]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0103[Correction target item name] 0103
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0103】実施例32〜34 (触媒調製)硝酸セシウム9.8gおよびリン酸第2ア
ンモニウム5.3gを水100gに溶かした溶液中に、
酸化珪素30gを加え、湯浴上で加熱濃縮しながら濃縮
乾固した。次いで空気中120℃で20時間乾燥し、9
〜16メッシュに破砕後、空気中500℃で2時間焼成
することによって、酸素を除く原子比でCs1Si10
P0.8なる組成の触媒を得た。 Examples 32 to 34 (Catalyst preparation) In a solution prepared by dissolving 9.8 g of cesium nitrate and 5.3 g of diammonium phosphate in 100 g of water,
30 g of silicon oxide was added, and the mixture was concentrated to dryness while being heated and concentrated on a hot water bath. Then, dry in air at 120 ° C. for 20 hours, and
After crushing to ~ 16 mesh, the mixture is fired in air at 500 ° C for 2 hours to obtain an atomic ratio of Cs 1 Si 10 excluding oxygen.
P 0 . A catalyst having a composition of 8 was obtained.
Claims (9)
ルボン酸アミド類を気相分子内脱水反応して3級N−ア
ルケニルカルボン酸アミド類を合成する際に用いる触媒
であって、アルカリ金属元素および/またはアルカリ土
類金属元素と珪素とを含有してなる酸化物であることを
特徴とする触媒。1. A catalyst for use in the synthesis of tertiary N-alkenylcarboxylic amides by subjecting tertiary N- (2-hydroxyalkyl) carboxylic amides to a gas phase intramolecular dehydration reaction, comprising an alkali metal A catalyst characterized by being an oxide containing an element and / or an alkaline earth metal element and silicon.
素からなる群より選ばれる少なくとも1つの元素、Si
は珪素、Xはホウ素、アルミニウム及びリンからなる群
より選ばれる少なくとも1つの元素、Oは酸素を表す。
添字a、b、c及びdは、それぞれの元素の原子数を表
し、a=1のときb=1〜500、c=0〜1の範囲を
とり、dはa、b及びcの値及び各種構成元素の結合状
態により定まる数値である。)で表される酸化物である
請求項1に記載の触媒。Wherein said catalyst has the general formula (I) M a Si b X c O d (1) ( at least one element in the formula, M is selected from the group consisting of alkali metal elements and alkaline earth metal elements , Si
Represents silicon, X represents at least one element selected from the group consisting of boron, aluminum and phosphorus, and O represents oxygen.
The subscripts a, b, c and d represent the number of atoms of each element, and when a = 1, the range is b = 1 to 500, c = 0 to 1, and d is the value of a, b and c and It is a numerical value determined by the bonding state of various constituent elements. The catalyst according to claim 1, which is an oxide represented by the formula (1).
ルボン酸アミド類が、下記一般式(2) 【化1】 (式中、R1及びR2は独立した基で、炭素数1〜6個の
炭化水素基からなる群より選ばれる何れか1種であ
る。)で表されるN−(2−ヒドロキシエチル)−N′
−アルキル−アミド化合物であって、これを気相分子内
脱水反応して、3級N−アルケニルカルボン酸アミド類
である、下記一般式(3) 【化2】 (式中、R1及びR2は前記一般式(2)と同じであ
る。)で表されるN−ビニル−N′−アルキル−アミド
化合物を合成する際に用いる請求項1または2に記載の
触媒。3. A tertiary N- (2-hydroxyalkyl) carboxylic acid amide is represented by the following general formula (2): (Wherein R 1 and R 2 are independent groups and are any one selected from the group consisting of hydrocarbon groups having 1 to 6 carbon atoms). ) -N '
An alkyl-amide compound, which is subjected to a gas phase intramolecular dehydration reaction to obtain tertiary N-alkenylcarboxylic acid amides represented by the following general formula (3): (Wherein, R 1 and R 2 are the same as defined above, and general formula (2).) Represented by N- vinyl -N'- alkyl - according to claim 1 or 2 used in the synthesis of the amide compound Catalyst.
ルボン酸アミド類が、N−(2−ヒドロキシエチル)−
2−ピロリドンであって、これを気相分子内脱水反応し
て、3級N−アルケニルカルボン酸アミド類である、N
−ビニル−2−ピロリドンを合成する際に用いる請求項
1または2に記載の触媒。4. The method according to claim 1, wherein the tertiary N- (2-hydroxyalkyl) carboxylic acid amide is N- (2-hydroxyethyl)-
2-pyrrolidone, which is subjected to a gas phase intramolecular dehydration reaction to form tertiary N-alkenylcarboxylic amides,
The catalyst according to claim 1 or 2, which is used when synthesizing vinyl-2-pyrrolidone.
ルボン酸アミド類が、下記一般式(4) 【化3】 (式中、R1、R2及びR3は独立した基で、R1及びR2
は炭素数1〜6個の炭化水素基からなる群より選ばれる
何れか1種であり、R3は水素および炭素数1〜6の炭
化水素基からなる群より選ばれる何れか一種である。)
で表されるN−(2−ヒドロキシアルキル)−N′−ア
ルキル−アミド化合物であって、これを気相分子内脱水
反応して、3級N−アルケニルカルボン酸アミド類であ
る、下記一般式(5)および(6) 【化4】 (式中、R1、R2及びR3は前記一般式(4)と同じで
ある。)で表されるN−アルケニル−N′−アルキル−
アミド化合物を合成する際に用いる請求項1または2に
記載の触媒。5. A tertiary N- (2-hydroxyalkyl) carboxylic acid amide is represented by the following general formula (4): (Wherein R 1 , R 2 and R 3 are independent groups and R 1 and R 2
Is any one selected from the group consisting of hydrocarbon groups having 1 to 6 carbon atoms, and R 3 is any one kind selected from the group consisting of hydrogen and hydrocarbon groups having 1 to 6 carbon atoms. )
Which is an N- (2-hydroxyalkyl) -N'-alkyl-amide compound represented by the formula: (5) and (6) (In the formula, R 1 , R 2 and R 3 are the same as those in the general formula (4).)
The catalyst according to claim 1, which is used when synthesizing an amide compound.
ルボン酸アミド類を気相分子内脱水反応して3級N−ア
ルケニルカルボン酸アミド類を得る際に、請求項1又は
2に記載の触媒を用いることを特徴とする3級N−アル
ケニルカルボン酸アミド類の製造方法。6. The method according to claim 1, wherein the tertiary N- (2-hydroxyalkyl) carboxylic amide is subjected to a gas phase intramolecular dehydration reaction to obtain a tertiary N-alkenylcarboxylic amide. A method for producing tertiary N-alkenylcarboxylic amides, comprising using a catalyst.
ルボン酸アミド類が、下記一般式 【化5】 (式中、R1及びR2は独立した基で、炭素数1〜6個の
炭化水素基からなる群より選ばれる何れか1種であ
る。)で表されるN−(2−ヒドロキシエチル)−N′
−アルキル−アミド化合物であり、3級N−アルケニル
カルボン酸アミド類が、下記一般式(3) 【化6】 (式中、R1及びR2は前記一般式(2)と同じであ
る。)で表されるN−ビニル−N′−アルキル−アミド
化合物である、請求項6に記載の製造方法。7. A tertiary N- (2-hydroxyalkyl) carboxylic acid amide is represented by the following general formula: (Wherein R 1 and R 2 are independent groups and are any one selected from the group consisting of hydrocarbon groups having 1 to 6 carbon atoms). ) -N '
-Alkyl-amide compound, which is a tertiary N-alkenylcarboxylic acid amide represented by the following general formula (3): (Wherein, R 1 and R 2 are the same as defined above, and general formula (2).) Represented by N- vinyl -N'- alkyl - amide compound, The method according to claim 6.
ルボン酸アミド類が、N−(2−ヒドロキシエチル)−
2−ピロリドンであり、3級N−アルケニルカルボン酸
アミド類が、N−ビニル−2−ピロリドンである請求項
6に記載の製造方法。8. The method of claim 1, wherein the tertiary N- (2-hydroxyalkyl) carboxylic acid amide is N- (2-hydroxyethyl)-
The production method according to claim 6, wherein the tertiary N-alkenylcarboxylic acid amide is 2-pyrrolidone, and the tertiary N-alkenylcarboxylic acid amide is N-vinyl-2-pyrrolidone.
ルボン酸アミド類が、下記一般式(4) 【化7】 (式中、R1、R2及びR3は独立した基で、R1及びR2
は炭素数1〜6個の炭化水素基からなる群より選ばれる
何れか1種であり、R3は水素および炭素数1〜6の炭
化水素基からなる群より選ばれる何れか一種である。)
で表されるN−(2−ヒドロキシアルキル)−N′−ア
ルキル−アミド化合物であり、3級N−アルケニルカル
ボン酸アミド類が、下記一般式(5)および(6) 【化8】 (式中、R1、R2及びR3は前記一般式(4)と同じで
ある。)で表されるN−アルケニル−N′−アルキル−
アミド化合物である、請求項6に記載の製造方法。9. A tertiary N- (2-hydroxyalkyl) carboxylic acid amide is represented by the following general formula (4): (Wherein R 1 , R 2 and R 3 are independent groups and R 1 and R 2
Is any one selected from the group consisting of hydrocarbon groups having 1 to 6 carbon atoms, and R 3 is any one kind selected from the group consisting of hydrogen and hydrocarbon groups having 1 to 6 carbon atoms. )
A tertiary N-alkenyl carboxylic acid amide represented by the following general formulas (5) and (6): (In the formula, R 1 , R 2 and R 3 are the same as those in the general formula (4).)
The production method according to claim 6, which is an amide compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7238990A JP2660169B2 (en) | 1994-09-19 | 1995-08-25 | Catalyst for producing tertiary N-alkenylcarboxylic amides and method for producing tertiary N-alkenylcarboxylic amides |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-222895 | 1994-09-19 | ||
JP22289594 | 1994-09-19 | ||
JP7238990A JP2660169B2 (en) | 1994-09-19 | 1995-08-25 | Catalyst for producing tertiary N-alkenylcarboxylic amides and method for producing tertiary N-alkenylcarboxylic amides |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08141402A true JPH08141402A (en) | 1996-06-04 |
JP2660169B2 JP2660169B2 (en) | 1997-10-08 |
Family
ID=26525153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7238990A Expired - Fee Related JP2660169B2 (en) | 1994-09-19 | 1995-08-25 | Catalyst for producing tertiary N-alkenylcarboxylic amides and method for producing tertiary N-alkenylcarboxylic amides |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2660169B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6391994B2 (en) | 2000-02-10 | 2002-05-21 | Nippon Shokubai Co., Ltd. | Production process for vinylpyrrolidone polymer |
US6436243B1 (en) | 1999-10-22 | 2002-08-20 | Nippon Shokubai Co Ltd | Process for recovering N-vinyl-2-pyrrolidone |
US6489515B2 (en) | 2000-01-28 | 2002-12-03 | Nippon Shokubai Co., Ltd. | Gas-phase dehydration reaction process |
US6642333B2 (en) | 2002-04-04 | 2003-11-04 | Nippon Shokubai Co., Ltd. | Vinylpyrrolidone (co)polymer |
-
1995
- 1995-08-25 JP JP7238990A patent/JP2660169B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6436243B1 (en) | 1999-10-22 | 2002-08-20 | Nippon Shokubai Co Ltd | Process for recovering N-vinyl-2-pyrrolidone |
US6489515B2 (en) | 2000-01-28 | 2002-12-03 | Nippon Shokubai Co., Ltd. | Gas-phase dehydration reaction process |
US6391994B2 (en) | 2000-02-10 | 2002-05-21 | Nippon Shokubai Co., Ltd. | Production process for vinylpyrrolidone polymer |
US6642333B2 (en) | 2002-04-04 | 2003-11-04 | Nippon Shokubai Co., Ltd. | Vinylpyrrolidone (co)polymer |
Also Published As
Publication number | Publication date |
---|---|
JP2660169B2 (en) | 1997-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0228898B1 (en) | Process for producing cyclic amines | |
EP0429800B2 (en) | Process for preparing unsaturated carboxylic acid ester | |
KR100388696B1 (en) | Catalyst for production of tertiary n-alkenyl carboxylic acid amide, and process for production of tertiary n-alkenyl carboxylic acid amide using said catalyst | |
JP3571795B2 (en) | Catalyst for gas-phase intramolecular dealcoholation reaction of N- (1-alkyloxyalkyl) carbamates and method for producing N-vinyl carbamates | |
JP2939433B2 (en) | Method for producing cyclic N-vinylcarboxylic acid amide | |
JP2660169B2 (en) | Catalyst for producing tertiary N-alkenylcarboxylic amides and method for producing tertiary N-alkenylcarboxylic amides | |
JPH07173086A (en) | Method for producing dialkylbiphenyl compounds | |
JPWO2004060843A1 (en) | Method for producing alcohol and / or ketone | |
EP0701986B1 (en) | Process for production of unsaturated ether and catalyst used for production of unsaturated ether | |
JP3784878B2 (en) | Production method of vinyl ether | |
JP2740479B2 (en) | Process for producing unsaturated ethers and catalyst for producing unsaturated ethers | |
KR100289682B1 (en) | Process for production of tertiary amine compound | |
JP3736871B2 (en) | Catalyst for gas-phase intramolecular dealcoholization reaction of N- (1-alkyloxyalkyl) -2-oxazolidone and method for producing N-vinyl-2-oxazolidone | |
JP2884637B2 (en) | Method for producing unsaturated carboxylic acid ester | |
JPH0250088B2 (en) | ||
JPH0517461A (en) | Production of triethylene diamine compounds and piperazine compounds | |
JPH09208559A (en) | Production of cyclic n-vinyl compound | |
WO2002036559A2 (en) | Process for the production of amides | |
JP2986405B2 (en) | Method for producing N-vinyl compound | |
JPH10324664A (en) | Production of unsaturated carboxylic acid ester | |
JPS58146562A (en) | Preparation of indoline | |
JPS63201158A (en) | Production of 2-hydroxymethylene-3,3-dialkoxypropanenitrile-alkali metallic salt | |
JPH09227465A (en) | Production of tertiary n-vinyl compound | |
JP3004053B2 (en) | Method for producing N-substituted aziridine compound and catalyst | |
JPS61291551A (en) | Production of aromatic secondary amino compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970527 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090606 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090606 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100606 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100606 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130606 Year of fee payment: 16 |
|
LAPS | Cancellation because of no payment of annual fees |