JPH08141363A - Urea blowing method - Google Patents

Urea blowing method

Info

Publication number
JPH08141363A
JPH08141363A JP6283457A JP28345794A JPH08141363A JP H08141363 A JPH08141363 A JP H08141363A JP 6283457 A JP6283457 A JP 6283457A JP 28345794 A JP28345794 A JP 28345794A JP H08141363 A JPH08141363 A JP H08141363A
Authority
JP
Japan
Prior art keywords
urea
furnace
blowing
wall
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6283457A
Other languages
Japanese (ja)
Inventor
Naoki Fujiwara
直機 藤原
Manabu Yamamoto
学 山本
Satonori Sasaki
郷紀 佐々木
Toru Senju
透 千手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP6283457A priority Critical patent/JPH08141363A/en
Publication of JPH08141363A publication Critical patent/JPH08141363A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve nitrogen oxide removing efficiency and lower the leakage of ammonia by blowing urea to a combustion furnace after urea is evaporated and hydrolyzed in a bent part of a nitrogen oxide removing agent blowing pipe installed in the wall of the combustion furnace. CONSTITUTION: Urea particles supplied to a nitrogen oxide removing agent blowing pipe 7 are blown to a leading pipe 18 in the inside of a furnace wall by a nitrogen oxide removing agent blowing medium 16 such as steam-containing air, steam, etc., and the particles are separated from the blowing medium due to the centrifugal force in a bent part of the leading pipe 18 and come into collision against the inner wall of the leading pipe. The urea particles colliding against the inner wall of the leading pipe are fused and adhere to the inner wall of the leading pipe, furthermore hydrolyzed to be converted into ammonia, and the ammonia is mixed with the blowing medium 16 and blown to the furnace while the blowing angle being altered at 90 degree. The ammonia blown to the furnace reduces NOx in a combustion gas within a short time and thus removes nitrogen oxides. As a result, the nitrogen oxide removing efficiency can be heightened and the leakage of ammonia can be lowered simultaneously.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は尿素吹込方法に関し、さ
らに詳しくは尿素吹込機器の簡素化、省エネルギー化お
よび低公害化に役立つ、ごみ焼却炉などの無触媒脱硝に
好適に採用することができる尿素吹込方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a urea blowing method, and more particularly, it can be suitably used for non-catalytic denitration such as a refuse incinerator, which is useful for simplifying the urea blowing equipment, saving energy and reducing pollution. Urea blowing method.

【0002】[0002]

【従来の技術】アンモニア、尿素などを、酸素存在下で
高温の燃焼ガス中に吹込んで窒素酸化物(NOx)を還
元することは無触媒脱硝法としてよく知られている。ア
ンモニアは、常温常圧下で気体であり、気体のままスチ
ーム、空気および燃焼ガスと混合されて炉内に吹込まれ
ている。しかし、アンモニアガスは人体に対し有毒であ
るので大量に取扱う場合には法的な規制に従い、安全防
護施設を設置しなければならない。
BACKGROUND ART It is well known as a non-catalytic denitration method to blow nitrogen, urea, etc. into a high temperature combustion gas in the presence of oxygen to reduce nitrogen oxides (NOx). Ammonia is a gas under normal temperature and pressure, and is mixed with steam, air and combustion gas as it is, and is blown into the furnace. However, since ammonia gas is toxic to the human body, when handling a large amount, it is necessary to install a safety protection facility in accordance with legal regulations.

【0003】一方、尿素は常温常圧で固体でハンドリン
グが容易な上、人体に無害であるため小型の設備、例え
ばごみ焼却炉などでは尿素のほうがよく使用される。し
かし、尿素の溶融温度は135℃と低く、粒子または粉
体のままで気流搬送すると炉近傍の配管内壁に溶融付着
するというトラブルを生ずる。そのため、一般的には図
4(A)に示すように、尿素水溶液40を高圧空気また
は蒸気などの霧化媒体41とともに2流体アトマイザを
用いて炉内に噴霧尿素水43として噴霧する方法、また
は図4(B)に示すように、ポンプで加圧した加圧尿素
水44を圧力噴霧式アトマイザ45を用いて炉内に噴霧
尿素水43として噴霧する方法が採用されている。
On the other hand, urea is a solid at room temperature and atmospheric pressure, is easy to handle, and is harmless to the human body, so that urea is more often used in small equipment such as a refuse incinerator. However, the melting temperature of urea is as low as 135 ° C., and if particles or powders are conveyed as an air stream, the problem of melting and adhering to the inner wall of the pipe near the furnace occurs. Therefore, generally, as shown in FIG. 4 (A), a method of spraying urea aqueous solution 40 as atomized urea water 43 into a furnace using a two-fluid atomizer together with atomizing medium 41 such as high-pressure air or steam, or As shown in FIG. 4 (B), a method is adopted in which pressurized urea water 44 pressurized by a pump is sprayed as atomized urea water 43 into the furnace by using a pressure spray atomizer 45.

【0004】このように尿素を水滴として炉内に吹込む
場合、尿素がNOxと反応するためにはまず水滴が気化
する必要がある。すなわち、アンモニアのように気体の
ままで吹込むのと異なり炉内で尿素水滴が気化する時間
が必要である。また尿素がNOxと反応して還元するに
は、まず下記のように水蒸気と反応し、加水分解されて
アンモニアが生成される必要がある。 H2 NCONH2 +H2 O → 2NH3 +CO2 (1) すなわち、尿素がアンモニアとなって脱硝剤として働く
には、(1) 尿素水滴の気化、(2) 気化した尿素の加水分
解が必要である。
When urea is blown into the furnace as water droplets in this way, the water droplets must first be vaporized in order for urea to react with NOx. That is, unlike the case where ammonia is blown in as a gas as it is, it takes time for the aqueous urea solution to vaporize in the furnace. Further, in order for urea to react with NOx to be reduced, it is necessary to react with steam and hydrolyze to produce ammonia as described below. H 2 NCONH 2 + H 2 O → 2NH 3 + CO 2 (1) In order for urea to act as ammonia and act as a denitration agent, (1) vaporization of urea water droplets and (2) hydrolysis of vaporized urea are necessary. is there.

【0005】また水滴の大きさ、炉内温度にもよるが、
水滴の気化には数秒/10程度の時間が必要である。ま
た瞬間加熱反応装置を用いて空気流中での固体尿素粒子
の加熱分解によるアンモニア生成反応を調べた結果で
は、反応速度が最大値に達するには500〜800℃で
約1〜2秒を要する。なお、実際の火炉ではこれより高
温であり、また反応を促進させるラジカル等が燃焼ガス
中に共存しているため、尿素はもっと速く熱分解される
と考えられる。一方、実際の火炉での無触媒脱硝におけ
る吹込み脱硝剤の滞留時間は以下のようになっている。
Also, depending on the size of water droplets and the temperature inside the furnace,
It takes several seconds / 10 for vaporization of water droplets. In addition, as a result of investigating an ammonia production reaction by thermal decomposition of solid urea particles in an air flow using an instantaneous heating reactor, it takes about 1 to 2 seconds at 500 to 800 ° C. to reach a maximum reaction rate. . It should be noted that in an actual furnace, the temperature is higher than this, and because radicals that promote the reaction coexist in the combustion gas, it is considered that urea is pyrolyzed faster. On the other hand, the residence time of the blown denitration agent in non-catalytic denitration in an actual furnace is as follows.

【0006】まず燃焼ガスの炉内滞留時間は燃焼が遅い
石炭では2〜3秒程度であり、またごみ焼却炉のように
燃え難いものも混ざった種々雑多なごみを燃焼する場合
でも3〜4秒程度である。しかし、アンモニア、尿素な
どの脱硝剤を燃焼反応が活発に進行している領域に吹込
むと窒素分が脱硝剤として働くよりもむしろ酸化(燃
焼)され、逆にNOxを発生させる。そのため、無触媒
脱硝では燃焼反応がほぼ完了している炉の出口付近、炉
の長さでいえば炉の長さの約1/2〜2/3より後流の
部分に脱硝剤を吹込まざるを得ない。この脱硝剤を吹込
んだ位置から炉出口までの燃焼ガス滞留時間は1〜2秒
程度であるため、実際の火炉での脱硝剤の滞留時間も1
〜2秒ということになる。
First, the residence time of the combustion gas in the furnace is about 2 to 3 seconds in the case of slow burning coal, and it is 3 to 4 seconds even in the case of burning various miscellaneous wastes such as refuse incinerators that are difficult to burn. It is a degree. However, when a denitration agent such as ammonia or urea is blown into a region where the combustion reaction is actively progressing, the nitrogen component is oxidized (combusted) rather than acting as a denitration agent, and conversely generates NOx. Therefore, in the case of non-catalytic denitration, the denitration agent must be blown near the exit of the furnace where the combustion reaction is almost completed, that is, in the length of the furnace, about a half to two-thirds of the length of the furnace. I don't get. Since the combustion gas residence time from the position where the denitration agent is blown to the furnace outlet is about 1 to 2 seconds, the residence time of the denitration agent in the actual furnace is also 1
~ 2 seconds.

【0007】このように、尿素が脱硝剤として働くため
には、尿素が気化し、NH3 に加水分解される必要があ
るため、水滴として直接炉内に吹込んだ場合、尿素が気
化、加水分解されるまでの時間がむだ時間となり、一
方、炉内での滞留時間は限定されているので実質的に脱
硝反応に費やされる時間が短くなる。すなわち、尿素を
脱硝剤として用いても脱硝反応に必要な滞留時間が充分
とれないため、アンモニアと比較し脱硝率が低く、未反
応のリークアンモニアが排出され易いという問題があ
る。
As described above, in order for urea to function as a denitration agent, urea needs to be vaporized and hydrolyzed to NH 3. Therefore, when it is directly blown into the furnace as water droplets, urea is vaporized and hydrolyzed. The time until decomposition is a dead time, while the residence time in the furnace is limited, so the time spent for the denitration reaction is substantially shortened. That is, even when urea is used as a denitration agent, the residence time required for the denitration reaction is not sufficient, so the denitration rate is lower than that of ammonia, and unreacted leaked ammonia is likely to be discharged.

【0008】したがって、尿素の気化、加水分解を事前
に行った後、火炉に吹き込めば、その分炉内での脱硝反
応時間を稼ぐことができ、脱硝率を高めると同時にリー
クアンモニアの低減に役立つことは明らかである。この
ような観点から、尿素粒子または尿素水をあらかじめ気
化させた後、炉内に吹込む方法が提案されている。
Therefore, if urea is vaporized and hydrolyzed in advance and then blown into the furnace, the denitration reaction time in the furnace can be increased by that much, which serves to increase the denitration rate and at the same time reduce leakage ammonia. That is clear. From such a viewpoint, a method has been proposed in which urea particles or urea water is vaporized in advance and then blown into the furnace.

【0009】図5は、従来技術による尿素粒子を気化し
て炉内に吹き込む方法の説明図である。この方法によれ
ば、ホッパ1に貯溜された尿素粒子は、弁2およびダブ
ルロータリーフィーダ3により計測して気化器35のヒ
ータ面36に供給され、ヒータ28により気化させて窒
素や蒸気などの搬送媒体29により配管30および脱硝
剤吹込管34を経て炉内に吹き込まれる。しかし、上記
配管30および脱硝剤吹込管34は、気化器35で気化
した尿素が凝集固化しないようにヒータ31を設置して
加熱する必要があり、設備費、運転経費が増し、不経済
であるという欠点がある。さらに(1) ヒータ面36に落
下した尿素粒子の溶融、気化に時間を要する、(2) 気化
器35の容積および気化器35から炉内に到る配管の容
積が大きい、(3) 液体と比較し粉体の供給機は原理的に
応答性が低いなどの理由から、制御応答性が低いという
問題点があり、ほとんど実用化されていない。
FIG. 5 is an explanatory view of a conventional method of vaporizing urea particles and blowing them into a furnace. According to this method, the urea particles stored in the hopper 1 are measured by the valve 2 and the double rotary feeder 3 and supplied to the heater surface 36 of the carburetor 35, which is vaporized by the heater 28 to convey nitrogen or vapor. The medium 29 is blown into the furnace through the pipe 30 and the denitration agent blowing pipe 34. However, the pipe 30 and the denitration agent blowing pipe 34 need to be installed and heated by the heater 31 so that the urea vaporized in the vaporizer 35 does not coagulate and solidify, which increases the facility cost and the operating cost and is uneconomical. There is a drawback that. Furthermore, (1) it takes time to melt and vaporize the urea particles dropped on the heater surface 36, (2) the volume of the vaporizer 35 and the pipe volume from the vaporizer 35 into the furnace are large, and (3) liquid In comparison, a powder feeder has a problem of low control response, for example, because of its low response in principle, and it has hardly been put to practical use.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の問題点を解決し、脱硝剤として尿素を炉内に
吹き込む際に、吹込機器の大型化、設備費や運転経費の
増大を招くことなく、尿素を炉内に吹き込んで脱硝率を
向上させ、リークアンモニアの低減することができる尿
素吹込方法を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems of the prior art, and when urea is blown into the furnace as a denitration agent, the blowing equipment becomes large, and the equipment cost and operating cost increase. It is an object of the present invention to provide a urea blowing method capable of blowing urea into the furnace to improve the denitration rate and reducing the amount of leaked ammonia without causing the above.

【0011】[0011]

【課題を解決するための手段】本願で特許請求される発
明は以下の通りである。 (1)尿素を脱硝剤吹込管により燃焼炉内に吹き込んで
燃焼ガス中の窒素酸化物を還元脱硝するに際し、燃焼炉
の壁内に脱硝剤吹込管の屈曲部を設け、該屈曲部で尿素
の気化および加水分解を行った後、燃焼炉内に吹き込む
ことを特徴とする尿素吹込方法。 (2)脱硝剤吹込管に供給する尿素が固体尿素または噴
霧尿素水であり、これらの尿素を水蒸気を含む空気また
は蒸気流で搬送することを特徴とする(1)の尿素吹込
方法。
The inventions claimed in this application are as follows. (1) When urea is blown into a combustion furnace by a denitration agent blowing pipe to reduce and denitrate nitrogen oxides in combustion gas, a bent portion of the denitration agent blowing pipe is provided in the wall of the combustion furnace, and the urea is bent at the bending portion. A method for injecting urea, which comprises injecting into a combustion furnace after vaporizing and hydrolyzing. (2) The urea blowing method according to (1), wherein the urea supplied to the denitration agent blowing pipe is solid urea or spray urea water, and the urea is conveyed by air containing steam or a steam flow.

【0012】本発明の方法によれば、水蒸気を含む空気
または蒸気流で搬送された固体尿素または尿素水滴は、
高温の炉壁内に設けられた導管の屈曲部で遠心力により
搬送流から分離され、高温の壁に付着し、壁に付着した
固体尿素または尿素水は壁からの熱を受けて気化し、加
水分解されてアンモニアに転化する。アンモニアは導管
内を流れる空気または蒸気などの搬送流とともに炉内に
吹込まれて燃焼ガス中のNOxを還元脱硝する。このよ
うにすることによって、格別の大型設備や熱源を追加す
ることなく、尿素をアンモニアに転化した後、炉内に吹
込むことができるため、経費節減および脱硝率の向上が
図れ、かつ未反応のリークアンモニアが排出が防止され
る。
According to the method of the present invention, solid urea or urea water droplets carried in an air or steam stream containing water vapor comprises:
At the bent part of the conduit provided in the high temperature furnace wall, centrifugal force separates from the carrier flow, adheres to the high temperature wall, and solid urea or urea water adhering to the wall is vaporized by receiving heat from the wall, It is hydrolyzed and converted to ammonia. Ammonia is blown into the furnace together with a carrier flow such as air or steam flowing in the conduit to reduce and denitrate NOx in the combustion gas. By doing this, it is possible to convert urea into ammonia and then blow it into the furnace without adding any special large-scale equipment or heat source. Leakage ammonia is prevented from being discharged.

【0013】[0013]

【実施例】以下、本発明を図面により詳しく説明する。
図1は、本発明の一実施例を示す燃焼炉の尿素吹込部の
断面説明図である。図において、燃焼炉の固定炉壁9の
尿素吹込部には、はめ込み炉壁10がはめ込まれてい
る。該はめ込み炉壁10には、屈曲部を有し、一方の開
口部は脱硝剤吹込管7に接続され、他方の開口部は炉内
に開口する炉壁内導管18および該炉壁内導管18の屈
曲部と炉内出口に設けられた温度計17が設置されてい
る。炉壁内導管18の屈曲部は、壁内温度が約700〜
800℃の位置で90度に折り曲げられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings.
FIG. 1 is a cross-sectional explanatory view of a urea injection part of a combustion furnace showing an embodiment of the present invention. In the figure, a fitting furnace wall 10 is fitted into the urea blowing portion of the fixed furnace wall 9 of the combustion furnace. The fitting furnace wall 10 has a bent portion, one opening is connected to the denitration agent blowing pipe 7, and the other opening is a furnace wall conduit 18 and a furnace wall conduit 18 opening into the furnace. A thermometer 17 provided at the bent portion and the furnace outlet is installed. The bent portion of the furnace wall conduit 18 has a wall temperature of about 700 to
It is bent 90 degrees at a position of 800 ° C.

【0014】脱硝剤吹込管7には、尿素粒子を供給する
尿素粒子供給管4と注水管8が接続され、尿素粒子供給
管4の脱硝剤吹込管接続部には、尿素粒子の溶融による
尿素粒子供給管壁内への付着を防止するための水冷ジャ
ケット6が設置されている。また尿素粒子供給管4には
注水管5が設けられており、脱硝剤吹込管7と尿素粒子
供給管4の接続部で尿素が内壁に付着固化し、閉塞した
場合には、水を供給して洗い流すことができる。
A urea particle supply pipe 4 and a water injection pipe 8 for supplying urea particles are connected to the denitration agent blowing pipe 7, and urea by melting of urea particles is connected to a denitration agent blowing pipe connection portion of the urea particle supply pipe 4. A water cooling jacket 6 is installed to prevent the particles from adhering to the inside of the wall of the pipe. Further, a water injection pipe 5 is provided in the urea particle supply pipe 4, and when urea is adhered and solidified on the inner wall at the connecting portion between the denitration agent injection pipe 7 and the urea particle supply pipe 4 and clogged, water is supplied. Can be washed away.

【0015】一方、注水管8は、炉壁内導管18に設け
られた温度計17の信号に基づいて脱硝剤吹込管7の炉
壁入口近傍に水を噴霧する。燃料の性状変化や炉の運転
状態によって炉壁内温度が適正温度からずれた場合に、
炉壁内導管18の温度を適正に調節するためである。炉
壁内導管18の温度計17の信号は演算器に送られ、コ
ントローラを介して流量計14および制御弁15の調節
を行い、弁12およびポンプ13により水タンク11の
水が注入管8から脱硝剤吹込管7に供給される。
On the other hand, the water injection pipe 8 sprays water in the vicinity of the furnace wall inlet of the denitration agent injection pipe 7 based on the signal from the thermometer 17 provided in the furnace wall conduit 18. If the temperature inside the furnace wall deviates from the proper temperature due to changes in the properties of the fuel or the operating conditions of the furnace,
This is for properly adjusting the temperature of the conduit 18 in the furnace wall. The signal from the thermometer 17 of the conduit 18 in the furnace wall is sent to the arithmetic unit, the flow meter 14 and the control valve 15 are adjusted via the controller, and the water in the water tank 11 is supplied from the injection pipe 8 by the valve 12 and the pump 13. It is supplied to the denitration agent blowing pipe 7.

【0016】尿素粒子は、ホッパ1からダブルロータリ
ーフィーダ3を介して尿素粒子供給管4を経て脱硝剤吹
込管7内に供給される。ダブルロータリーフィーダ3
は、尿素粒子の定量供給の目的のみであればシングルの
ロタリーフィーダでよいが、本実施例では脱硝剤吹込管
7に供給される脱硝剤吹込媒体16がホッパ1側に逆流
することを防止するためダブルロータリーフィーダ3が
使用されている。
Urea particles are supplied from the hopper 1 through the double rotary feeder 3 and the urea particle supply pipe 4 into the denitration agent blowing pipe 7. Double rotary feeder 3
A single rotary feeder may be used only for the purpose of quantitatively supplying urea particles, but in this embodiment, the denitration agent blowing medium 16 supplied to the denitration agent blowing pipe 7 is prevented from flowing backward to the hopper 1. Therefore, the double rotary feeder 3 is used.

【0017】脱硝剤吹込管7に供給された尿素粒子は、
水蒸気を含む空気や蒸気などの脱硝剤吹込媒体16によ
り炉壁内導管18に吹き込まれ、該導管18の屈曲部で
遠心力により吹込媒体16から分離されて導管内壁に衝
突する。尿素の溶融温度は135℃のため、導管内壁に
衝突した尿素粒子は溶融して導管内壁に付着し、さらに
上述した反応式(1)により加水分解されてアンモニア
に転化され、吹込媒体16と混合されて90度方向を変
えて炉内に吹込まれる。炉内に吹き込まれたアンモニア
は短時間で燃焼ガス中のNOxを還元脱硝する。
The urea particles supplied to the denitration agent injection pipe 7 are
The denitration agent blowing medium 16 such as air or steam containing steam is blown into the furnace wall conduit 18, and the bent portion of the conduit 18 is separated from the blowing medium 16 by centrifugal force and collides with the conduit inner wall. Since the melting temperature of urea is 135 ° C., the urea particles that have collided with the inner wall of the conduit are melted and adhered to the inner wall of the conduit, further hydrolyzed by the above reaction formula (1) and converted into ammonia, and mixed with the blowing medium 16. It is blown into the furnace by changing its direction by 90 degrees. Ammonia blown into the furnace reduces and denitrates NOx in the combustion gas in a short time.

【0018】図2は、本発明の他の実施例を示す燃焼炉
の尿素吹込部の断面説明図である。図2において、図1
と異なる点は、尿素粒子の代わりに尿素水溶液を適宜そ
の供給量を調節して噴射ノズル27から脱硝剤吹込管7
に吹き込むようにしたことである。すなわち、尿素はあ
らかじめ水溶液としてタンク19に貯溜され、またタン
ク20には炉壁内導管18の温度制御に使用される水が
貯溜されている。タンク19の尿素水とタンク20の水
はそれぞれ弁12、21およびポンプ13、22により
混合器25に供給されて混合され、配管26を経て噴霧
ノズル27に到り、脱硝剤吹込管7内に噴霧される。噴
霧された尿素水は水滴となり、高圧蒸気、燃焼用空気、
排ガス、窒素などの脱硝剤吹込媒体16とともに搬送さ
れ、炉壁内導管18の屈曲部に至る。尿素水および水の
供給量は、図1の場合と同様に炉壁内導管18の温度計
17の信号に基づき演算器、コントローラ、流量計1
4、23、制御弁15、24により調節される。
FIG. 2 is a cross sectional view showing a urea injection portion of a combustion furnace showing another embodiment of the present invention. In FIG. 2, FIG.
5 is different from the urea particles in that the supply amount of the urea aqueous solution is appropriately adjusted and the denitration agent injection pipe 7 is supplied from the injection nozzle 27.
I tried to blow it into. That is, urea is stored in advance in the tank 19 as an aqueous solution, and in the tank 20, water used for controlling the temperature of the furnace wall conduit 18 is stored. The urea water in the tank 19 and the water in the tank 20 are supplied to and mixed with the mixer 25 by the valves 12 and 21 and the pumps 13 and 22, respectively, reach the spray nozzle 27 through the pipe 26, and enter the denitration agent injection pipe 7. Is sprayed. The sprayed urea water becomes water droplets, and high-pressure steam, combustion air,
It is conveyed together with the denitration agent blowing medium 16 such as exhaust gas and nitrogen, and reaches the bent portion of the furnace wall conduit 18. As in the case of FIG. 1, the supply amount of urea water and water is based on the signal from the thermometer 17 in the conduit 18 in the furnace wall, the calculator, the controller, and the flowmeter 1.
4, 23, control valves 15, 24.

【0019】上記図1、図2の実施例では保守、メンテ
ナンスのやり易さを考慮し、炉壁内導管18を炉本体の
固定炉壁9とは別個の耐火材ブロックで構成したはめ込
み炉壁10を設けているが、本発明はこれに限定されな
い。また上記実施例では炉壁内導管18の屈曲部を2個
所設けているが、この屈曲部は図3に示すように、必要
に応じて数個所設けて炉壁内導管18内での滞留時間を
増すこともできる。なお、図3(A) は尿素吹込部炉壁の
A−A矢視断面図、(B) はB−B矢視断面図である。
In the embodiments shown in FIGS. 1 and 2, in consideration of easiness of maintenance and maintenance, the in-furnace wall conduit 18 in which the furnace wall conduit 18 is made of a refractory block separate from the fixed furnace wall 9 of the furnace body is installed. Although 10 is provided, the present invention is not limited to this. Further, in the above-described embodiment, two bent portions of the furnace wall conduit 18 are provided. However, as shown in FIG. 3, the bent portions may be provided in several places as needed, and the residence time in the furnace wall conduit 18 is set. Can be increased. Note that FIG. 3A is a sectional view taken along the line AA of the urea injection part furnace wall, and FIG. 3B is a sectional view taken along the line BB.

【0020】[0020]

【発明の効果】請求項1および2記載の発明によれば、
炉壁内の導管内で尿素をアンモニアに転化した後、炉内
に吹込むことができるため、高脱硝率と低リークアンモ
ニアを同時に実現でき、特に燃焼装置の低公害化に有用
である。
According to the inventions of claims 1 and 2,
Since urea can be blown into the furnace after converting urea into ammonia in the conduit in the furnace wall, a high denitration rate and low leak ammonia can be realized at the same time, which is particularly useful for reducing pollution of the combustion device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す燃焼炉の尿素吹込部の
断面説明図。
FIG. 1 is an explanatory cross-sectional view of a urea injection part of a combustion furnace showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す燃焼炉の尿素吹込部
の断面説明図。
FIG. 2 is an explanatory cross-sectional view of a urea injection part of a combustion furnace showing another embodiment of the present invention.

【図3】本発明の尿素吹込部の炉壁断面図であり、
(A)はB−B矢視断面図、(B)はA−A矢視断面図
である。
FIG. 3 is a furnace wall cross-sectional view of the urea injection part of the present invention,
(A) is a sectional view taken along the line BB, and (B) is a sectional view taken along the line AA.

【図4】従来技術による尿素吹込方法の説明図であり、
(A)は2流体アトマイザによる尿素吹込法、(B)は
圧力噴霧式アトマイザによる尿素吹込法を示す。
FIG. 4 is an explanatory view of a urea injection method according to a conventional technique,
(A) shows a urea blowing method using a two-fluid atomizer, and (B) shows a urea blowing method using a pressure atomizing atomizer.

【図5】従来技術による尿素粒子を気化して炉内に吹き
込む方法の説明図。
FIG. 5 is an explanatory view of a method of vaporizing urea particles and blowing them into a furnace according to a conventional technique.

【符号の説明】[Explanation of symbols]

1…ホッパ、2…弁、3…ダブルロータリーフィーダ、
4…尿素粒子供給管、5…注水管、6…水冷ジャケッ
ト、7…脱硝剤吹込管、8…注水管、9…固定炉壁、1
0…はめ込み炉壁、11…水タンク、12…弁、13…
ポンプ、14…流量計、15…制御弁、16…脱硝剤吹
込媒体、17…温度計、18…炉壁内導管、19…タン
ク、20…タンク、21…弁、2…ポンプ、23…流量
計、24…制御弁、25…混合器、26…配管、27…
噴霧ノズル、28…ヒータ、29…搬送媒体、30…配
管、31…ヒータ、32…弁、33…空気または蒸気、
34…脱硝剤吹込管、35…気化器、36…ヒータ面。
1 ... Hopper, 2 ... Valve, 3 ... Double rotary feeder,
4 ... Urea particle supply pipe, 5 ... Water injection pipe, 6 ... Water cooling jacket, 7 ... Denitration agent injection pipe, 8 ... Water injection pipe, 9 ... Fixed furnace wall, 1
0 ... Inset furnace wall, 11 ... Water tank, 12 ... Valve, 13 ...
Pump, 14 ... Flowmeter, 15 ... Control valve, 16 ... Denitration agent blowing medium, 17 ... Thermometer, 18 ... Furnace wall conduit, 19 ... Tank, 20 ... Tank, 21 ... Valve, 2 ... Pump, 23 ... Flow rate Total, 24 ... Control valve, 25 ... Mixer, 26 ... Piping, 27 ...
Spray nozzle, 28 ... Heater, 29 ... Transport medium, 30 ... Piping, 31 ... Heater, 32 ... Valve, 33 ... Air or steam,
34 ... Denitration agent blowing pipe, 35 ... Vaporizer, 36 ... Heater surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千手 透 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Sente 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Kure Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 尿素を脱硝剤吹込管により燃焼炉内に吹
き込んで燃焼ガス中の窒素酸化物を還元脱硝するに際
し、燃焼炉の壁内に脱硝剤吹込管の屈曲部を設け、該屈
曲部で尿素の気化および加水分解を行った後、燃焼炉内
に吹き込むことを特徴とする尿素吹込方法。
1. When the urea is blown into the combustion furnace by a denitration agent blowing tube to reduce and denitrify nitrogen oxides in the combustion gas, a bent portion of the denitration agent blowing tube is provided in the wall of the combustion furnace, and the bent portion is formed. A method for injecting urea, which comprises vaporizing and hydrolyzing urea in step 1, and then injecting it into a combustion furnace.
【請求項2】 脱硝剤吹込管に供給する尿素が固体尿素
または噴霧尿素水であり、これらの尿素を水蒸気を含む
空気または蒸気流で搬送することを特徴とする請求項1
記載の尿素吹込方法。
2. The urea supplied to the denitration agent blowing pipe is solid urea or atomized urea water, and the urea is conveyed by air containing steam or steam flow.
The urea blowing method described.
JP6283457A 1994-11-17 1994-11-17 Urea blowing method Pending JPH08141363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6283457A JPH08141363A (en) 1994-11-17 1994-11-17 Urea blowing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6283457A JPH08141363A (en) 1994-11-17 1994-11-17 Urea blowing method

Publications (1)

Publication Number Publication Date
JPH08141363A true JPH08141363A (en) 1996-06-04

Family

ID=17665801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6283457A Pending JPH08141363A (en) 1994-11-17 1994-11-17 Urea blowing method

Country Status (1)

Country Link
JP (1) JPH08141363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238349A (en) * 2012-05-15 2013-11-28 Takuma Co Ltd Method and apparatus for treating exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238349A (en) * 2012-05-15 2013-11-28 Takuma Co Ltd Method and apparatus for treating exhaust gas

Similar Documents

Publication Publication Date Title
JP3100191B2 (en) Flue gas denitration equipment
TW200407189A (en) Selective catalytic reduction of NOx enabled by side stream urea decomposition
CN103007743A (en) SCR (Selective Catalytic Reduction) denitrification device for flue gas of glass kiln
CN105451862B (en) Waste gas processing method and emission-control equipment
KR102586253B1 (en) spray device comprising porous structure for providing precise controllable concentration of diluted urea-water solution inserted inside
JP2005127271A (en) Urea water vaporizer
WO2005033480A1 (en) Exhaust gas purification device and exhaust gas purification method for engine
JP2000000436A (en) DEVICE IN NOx REDUCING EQUIPMENT
JPH0857258A (en) Denitrification apparatus using solid reducing agent
JPH0716431A (en) Flue gas denitrification apparatus
JPH0857261A (en) Denitrification apparatus using aqueous solution of reducing agent
JPH08141363A (en) Urea blowing method
EP0363684A1 (en) Exhaust gas denitrification apparatus
KR20210075560A (en) Air atomizing nozzle for atomization of large capacity urea water
CN209828701U (en) Preparation facilities of mixed denitrifier based on aqueous ammonia + hydrazine
KR100437875B1 (en) NOx reduction system by selective catalytic reduction available for urea as reducing agent
CN110013752A (en) A kind of heater for rolling steel flue gas denitrification system and technique
CN206897678U (en) Boiler SCR denitrating flue gas urea liquid spray gun
CN208627647U (en) A kind of protection sleeve pipe of spray gun tail end
JP3276158B2 (en) Denitration equipment
CN113041837A (en) Process for denitration of flue gas generated after incineration of fluorine-containing waste liquid of fluorine material
US11027237B2 (en) Direct injection of aqueous urea
JP3295419B2 (en) Ammonia supply to denitration equipment
CN219596288U (en) SNCR system for high-salt waste liquid incinerator
CN218774577U (en) Injection apparatus and flue gas denitration system