JPH08139351A - Method and apparatus for manufacturing solar cell module - Google Patents

Method and apparatus for manufacturing solar cell module

Info

Publication number
JPH08139351A
JPH08139351A JP6273569A JP27356994A JPH08139351A JP H08139351 A JPH08139351 A JP H08139351A JP 6273569 A JP6273569 A JP 6273569A JP 27356994 A JP27356994 A JP 27356994A JP H08139351 A JPH08139351 A JP H08139351A
Authority
JP
Japan
Prior art keywords
thin film
laser beam
solar cell
cell module
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6273569A
Other languages
Japanese (ja)
Other versions
JP3537196B2 (en
Inventor
Mikihiko Nishitani
幹彦 西谷
Takahiro Wada
隆博 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27356994A priority Critical patent/JP3537196B2/en
Publication of JPH08139351A publication Critical patent/JPH08139351A/en
Application granted granted Critical
Publication of JP3537196B2 publication Critical patent/JP3537196B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: To eliminate process residue and prevent the degradation of throughput by cutting a line in the lower electrode, the junction layer of a semiconductor thin film, and the upper electrode on an insulating substrate using laser light, and while introducing a plurality of gases, irradiating the cut with laser light to form an insulating thin film there. CONSTITUTION: A lower electrode 2, a junction layer 3 of a semiconductor thin film, and an upper electrode 4 are formed on the entire surface of an insulating substrate 1. The spot diameter of laser is reduced, and a laser beam L11 is applied to the workpiece to cut a line therein. The mode of the laser beam L1 is switched to the substrate locally heating mode. While dimethylzinc or the like and oxygen gas are introducing through nozzles 8 and 9, respectively, laser is applied to form a high-resistance linear ZnO thin film 5. Part of the lower electrode 2B is exposed, and a conductive thick film is formed by screen printing to connect the obtained solar cells together in series.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特性の安定した太陽電
池モジュールの製造を実現できる太陽電池モジュールの
構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a solar cell module capable of producing a solar cell module having stable characteristics.

【0002】[0002]

【従来の技術】従来より、CuInSe2 (CIS)薄
膜太陽電池モジュールの構造及びそれを実現できる製造
方法についてすでに報告されている(例えば、 23r
d proc.of IEEE Photovoltai
c Specialist Conference 19
93)。この報告の薄膜太陽電池モジュールの構造及び
製造方法を、それぞれ図4及び図5に示している。
2. Description of the Related Art Hitherto, the structure of a CuInSe2 (CIS) thin film solar cell module and a manufacturing method capable of realizing the same have already been reported (for example, 23r).
d proc. of IEEE Photovoltai
c Specialist Conference 19
93). The structure and manufacturing method of the thin-film solar cell module of this report are shown in FIGS. 4 and 5, respectively.

【0003】図4は、絶縁性基板1上に下部電極2A、
CIS薄膜/CdS薄膜接合層3A、上部電極4Aより
なるセルAと同様に下部電極2B、CIS薄膜/CdS
薄膜の接合層3B、上部電極4BよりなるセルBの直列
接続の断面図である。薄膜太陽電池モジュールは、この
ように複数個のセルを直列接続してなっている。具体的
には、上部電極4Aと下部電極2Bのみを電気的に接続
することによって直列接続がなされる。そのための分離
部Q及び接合部の短絡を防ぐために絶縁層5’が設けら
れている。
FIG. 4 shows a lower electrode 2A on an insulating substrate 1,
The lower electrode 2B, the CIS thin film / CdS as well as the cell A including the CIS thin film / CdS thin film bonding layer 3A and the upper electrode 4A
It is sectional drawing of the serial connection of the cell B which consists of the thin bonding layer 3B and the upper electrode 4B. In this way, the thin-film solar cell module has a plurality of cells connected in series. Specifically, serial connection is made by electrically connecting only the upper electrode 4A and the lower electrode 2B. For that purpose, an insulating layer 5 ′ is provided in order to prevent a short circuit between the separation portion Q and the joint portion.

【0004】図5は、図4の構造を実現するための製造
方法を示している。まず、絶縁性基板1上にあらかじめ
パターニングされた下部電極2A、2B上にCIS薄膜
/CdS薄膜接合層3を形成する(図5(a))。
FIG. 5 shows a manufacturing method for realizing the structure of FIG. First, the CIS thin film / CdS thin film bonding layer 3 is formed on the lower electrodes 2A and 2B patterned in advance on the insulating substrate 1 (FIG. 5A).

【0005】続いてレーザースクライビング技術あるい
はメカニカルスクライビング技術を用いて接合部3のみ
接合層3Aと接合層3Bのように分離する(図5
(b))。さらに、接合部の短絡を防止するための絶縁
層5’を形成した後(図5(c))、上部電極4を形成
し(図5(d))、最後に図4にQで示した部分をレー
ザースクライビング技術あるいはメカニカルスクライビ
ング技術を用いて上部電極4Aと上電極4Bに分離し、
図4の構造のような半導体薄膜による接合層が、CdS
薄膜とCdTe薄膜とで形成された太陽電池モジュール
を得る。
Subsequently, only the bonding portion 3 is separated into a bonding layer 3A and a bonding layer 3B by using a laser scribing technique or a mechanical scribing technique (FIG. 5).
(B)). Furthermore, after forming an insulating layer 5 ′ for preventing short-circuiting of the joint portion (FIG. 5 (c)), the upper electrode 4 is formed (FIG. 5 (d)), and finally indicated by Q in FIG. The part is separated into an upper electrode 4A and an upper electrode 4B by using laser scribing technology or mechanical scribing technology,
A bonding layer made of a semiconductor thin film as in the structure of FIG.
A solar cell module formed of a thin film and a CdTe thin film is obtained.

【0006】[0006]

【発明が解決しようとする課題】従来のCIS薄膜太陽
電池モジュールの問題点は、図4及び5に示したように
薄膜のスクライビングプロセスが2度あり、モジュール
作製のスループットを低下させている。さらに、スクラ
イビング時に生じる加工の残査物が後工程に悪影響をお
よぼし、モジュール特性の低下や電気的な短絡を生じ、
歩留まり低下の原因となる。特に図5(b)に示したよ
うなスクライビングプロセスの後、絶縁層5’や上部電
極4を形成する必要がある場合、スクライビングの後、
残査物の処理プロセスが必要である。
The problem with the conventional CIS thin film solar cell module is that the thin film scribing process is performed twice as shown in FIGS. 4 and 5, which lowers the throughput of module manufacturing. Furthermore, the processing residue generated during scribing adversely affects the subsequent process, resulting in deterioration of module characteristics and electrical short circuit,
This causes a decrease in yield. Especially when it is necessary to form the insulating layer 5 ′ and the upper electrode 4 after the scribing process as shown in FIG. 5B, after the scribing,
Residue processing process is required.

【0007】本発明の目的は、以上のような解決すべき
課題に鑑み、すぐれた生産性と歩留まりを保持できる薄
膜太陽電池モジュールの製造方法を提供することであ
る。
In view of the above problems to be solved, an object of the present invention is to provide a method of manufacturing a thin film solar cell module capable of maintaining excellent productivity and yield.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するた
め、本発明の薄膜太陽電池モジュールの作製方法は、絶
縁性基板上に下部電極と半導体薄膜による接合層と上部
電極を全面形成した後、前記下部電極と半導体薄膜によ
る接合層と上部電極をレーザー光線を用いてライン状に
切断して複数個の短冊状の島を面内に形成する工程と、
レーザー光線の照射部近傍に複数種のガスを導くことに
よって前記レーザー光線で加工した切口の断面部に絶縁
性薄膜を選択的に形成する工程と、前記切口の近傍を前
記半導体薄膜による接合層と上部電極のみをレーザー光
線を用いて切断し、下部電極をライン状に露出させる工
程と、該工程によって露出した下部電極と隣接する島の
上部電極とを電気的に接続するための接続電極を形成す
る工程とよりなることを特徴とする。
In order to solve the above-mentioned problems, a method of manufacturing a thin-film solar cell module of the present invention comprises the steps of forming a lower electrode, a bonding layer of a semiconductor thin film and an upper electrode on an insulating substrate, A step of forming a plurality of strip-shaped islands in a plane by cutting the lower electrode and the bonding layer of the semiconductor thin film and the upper electrode in a line shape using a laser beam;
A step of selectively forming an insulating thin film on a cross section of a cut processed by the laser beam by introducing a plurality of kinds of gas in the vicinity of an irradiation part of the laser beam; and a bonding layer and an upper electrode formed by the semiconductor thin film near the cut. A step of cutting only the lower electrode with a laser beam to expose the lower electrode in a line shape, and a step of forming a connecting electrode for electrically connecting the lower electrode exposed by the step and the upper electrode of an adjacent island. Is characterized in that

【0009】前記構成の薄膜太陽電池モジュールの作製
方法において、レーザー光線の照射部近傍に複数種のガ
スを導くことによって前記レーザー光線で加工した切口
の断面部に絶縁性薄膜を選択的に形成する工程におい
て、照射するレーザー光線が赤外線レーザーと紫外線レ
ーザーの重ね合わせからなることが好ましい。
In the method of manufacturing a thin-film solar cell module having the above structure, in the step of selectively forming an insulating thin film on a cross-section of a cut processed by the laser beam by introducing a plurality of kinds of gas in the vicinity of a laser beam irradiation portion. It is preferable that the laser beam to be irradiated is a combination of an infrared laser and an ultraviolet laser.

【0010】また前記構成の作製方法において、薄膜太
陽電池モジュールの半導体薄膜による接合層が、CdS
薄膜とCdTe薄膜とで形成された接合層であることが
好ましい。
In the method of manufacturing the above-mentioned structure, the bonding layer of the semiconductor thin film of the thin film solar cell module is CdS.
It is preferably a bonding layer formed of a thin film and a CdTe thin film.

【0011】また前記作製方法において、薄膜太陽電池
モジュールの半導体薄膜による接合層が、CdS薄膜と
CuInSe2 薄膜をあるいはCuInS2 薄膜とで形
成された接合層であることが好ましい。
In the above manufacturing method, it is preferable that the semiconductor thin film bonding layer of the thin film solar cell module is a bonding layer formed of a CdS thin film and a CuInSe 2 thin film or a CuInS 2 thin film.

【0012】本発明の太陽電池モジュールの作製装置
は、出力を調節する手段及び集光手段を備えたレーザー
と、不活性ガスの導入部および排出部と、レーザー光線
を導入する窓を備えた容器と、前記容器内に前後左右上
下に可動なステージと、前記ステージ上の前記レーザー
光線が照射される位置の近傍に複数種のガスを導入する
複数個のノズルを有することを要旨とする。
A device for producing a solar cell module of the present invention comprises a laser provided with a means for adjusting the output and a condensing means, an inlet and outlet for an inert gas, and a container provided with a window for introducing a laser beam. The gist of the present invention is to have a stage movable in the front-rear, left-right, and up-down directions in the container, and a plurality of nozzles for introducing a plurality of kinds of gas in the vicinity of a position on the stage where the laser beam is irradiated.

【0013】前記作製装置の構成において、レーザー光
線が、第1のレーザー光線と、第2のレーザー光線とか
らなり、該第2のレーザー光線を前記第1のレーザー光
線に重畳する光学系を備えていることが好ましい。
In the construction of the manufacturing apparatus, it is preferable that the laser beam is composed of a first laser beam and a second laser beam, and an optical system for superimposing the second laser beam on the first laser beam is provided. .

【0014】また前記作製装置の構成において、レーザ
ー光線が赤外線レーザーであることが好ましい。また前
記構成の作製装置において、前記第1のレーザー光線が
赤外線レーザーであり、前記第2のレーザー光線が紫外
線レーザーであることが好ましい。
Further, in the constitution of the manufacturing apparatus, it is preferable that the laser beam is an infrared laser. Further, in the manufacturing apparatus having the above structure, it is preferable that the first laser beam is an infrared laser and the second laser beam is an ultraviolet laser.

【0015】[0015]

【作用】本発明の太陽電池モジュールの作製方法は、絶
縁性基板上に下部電極と半導体薄膜による接合層と上部
電極を全面形成した後、前記下部電極と半導体薄膜によ
る接合層と上部電極をレーザー光線を用いてライン状に
切断して複数個の短冊状の島を面内に形成する工程と、
レーザー光線の照射部近傍に複数種のガスを導くことに
よって前記レーザー光線で加工した切口の断面部に絶縁
性薄膜を選択的に形成する工程と、前記切口の近傍を前
記半導体薄膜による接合層と上部電極のみをレーザー光
線を用いて切断し、下部電極をライン状に露出させる工
程と、該露出した下部電極と隣接する島の上部電極とを
電気的に接続するための接続電極を形成する工程とより
なる。
According to the method of manufacturing a solar cell module of the present invention, a lower electrode, a bonding layer made of a semiconductor thin film, and an upper electrode are formed on an insulating substrate, and then the bonding layer made of the lower electrode, a semiconductor thin film, and an upper electrode is irradiated with a laser beam. A step of forming a plurality of strip-shaped islands in the plane by cutting in a line shape using
A step of selectively forming an insulating thin film on a cross section of a cut processed by the laser beam by introducing a plurality of kinds of gas in the vicinity of the irradiation part of the laser beam; and a bonding layer and an upper electrode formed by the semiconductor thin film near the cut. Only the step of cutting only the lower electrode with a laser beam to expose the lower electrode in a line shape, and the step of forming a connection electrode for electrically connecting the exposed lower electrode to the upper electrode of the adjacent island .

【0016】このように、薄膜太陽電池セルの構成に必
要な薄膜(下部電極、半導体接合層、上部電極)をすべ
て形成した後に、レーザー光線の照射によってセルの分
離と加工断面への絶縁層の選択的形成を連続的に行うの
で、絶縁層の形成が効率良く行える。その上、従来方法
で大きな課題となっていた加工残査の問題やスループッ
トの低下の問題を解決することができる。
After forming all the thin films (lower electrode, semiconductor junction layer, and upper electrode) necessary for the construction of the thin-film solar cell in this way, the cells are separated by irradiation of a laser beam and the insulating layer is selected for the processed cross section. Since the target formation is continuously performed, the insulating layer can be efficiently formed. In addition, it is possible to solve the problems of processing residuals and the reduction of throughput, which have been major problems in conventional methods.

【0017】前記作製方法において、レーザー光線の照
射部近傍に複数種のガスを導くことによって前記レーザ
ー光線で加工した切口の断面部に絶縁性薄膜を選択的に
形成する工程において、照射するレーザー光線が赤外線
レーザーと紫外線レーザーの重ね合わせからなるという
好ましい例によれば、より効率よく加工を行うことがで
きる。
In the above-mentioned manufacturing method, in the step of selectively forming an insulating thin film on the cross section of the cut processed by the laser beam by introducing a plurality of kinds of gas in the vicinity of the laser beam irradiation part, the laser beam to be irradiated is an infrared laser. According to the preferable example of the superposition of the above and the ultraviolet laser, the processing can be performed more efficiently.

【0018】また、前記作製方法において、半導体薄膜
による接合層が、CdS薄膜とCdTe薄膜とで形成さ
れた接合層であっても、加工残量の問題やスループット
の低下の問題を解消することができる。
Further, in the above-mentioned manufacturing method, even if the bonding layer formed of the semiconductor thin film is a bonding layer formed of the CdS thin film and the CdTe thin film, the problem of the remaining processing amount and the problem of the decrease in throughput can be solved. it can.

【0019】本発明の太陽電池モジュールの作製装置
は、前記のように出力を調節する手段及び集光手段を備
えたレーザーと、不活性ガスの導入部および排出部と、
レーザー光線を導入する窓を備えた容器と、前記容器内
に前後左右上下に可動なステージと、前記ステージ上の
前記レーザー光線が照射される位置の近傍に複数種のガ
スを導入する複数個のノズルを有し、レーザースポット
に不活性ガスを供給しながら加工するように構成してい
るので、酸化膜を生成させることなく、半導体薄膜によ
る接合層を分離加工ができる。その後酸素を含んだガス
をレーザースポットに供給しながら加工するので、温度
上昇した層が酸化して膜を形成し、絶縁膜とすることが
でき、生産性を向上させることができる。
The apparatus for producing a solar cell module of the present invention comprises a laser provided with the means for adjusting the output and the light condensing means as described above, an inlet and an outlet for the inert gas,
A container provided with a window for introducing a laser beam, a stage movable in the container in the front, rear, left, right, up, and down, and a plurality of nozzles for introducing a plurality of gases in the vicinity of the position on the stage where the laser beam is irradiated. Since it is configured to be processed while supplying an inert gas to the laser spot, the bonding layer made of the semiconductor thin film can be separated and processed without forming an oxide film. After that, since the gas containing oxygen is processed while being supplied to the laser spot, the layer whose temperature has risen is oxidized to form a film, which can be used as an insulating film, and productivity can be improved.

【0020】前記作製装置において、レーザー光線が、
第1のレーザー光線と、第2のレーザー光線とからな
り、該第2のレーザー光線を前記第1のレーザー光線に
重畳する光学系を備えている好ましい例によれば、絶縁
膜の堆積速度を上げることができ、生産性を向上させる
ことができる。
In the above manufacturing apparatus, the laser beam is
According to the preferable example including the first laser beam and the second laser beam, and including the optical system that superimposes the second laser beam on the first laser beam, the deposition rate of the insulating film can be increased. , The productivity can be improved.

【0021】また前記作製装置において、レーザー光線
が赤外線レーザーである好ましい例によれば、歩留りを
よくすることができ、生産性を向上することができる。
また前記構成の作製装置において、前記第1のレーザー
光線が赤外線レーザーであり、前記第2のレーザー光線
が紫外線レーザーであることが好ましい例によれば、薄
膜加工モードと局部加熱モードとを容易に選択すること
ができ、加工の変更が容易にでき、生産性を向上させる
ことができる。
Further, in the above-mentioned manufacturing apparatus, according to a preferable example in which the laser beam is an infrared laser, the yield can be improved and the productivity can be improved.
According to an example in which the first laser beam is an infrared laser and the second laser beam is an ultraviolet laser in the manufacturing apparatus having the above configuration, the thin film processing mode and the local heating mode are easily selected. It is possible to change the processing easily and improve the productivity.

【0022】[0022]

【実施例】以下、図面に基づいて本発明の太陽電池モジ
ュールの作製方法、およびその作製装置について説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a solar cell module of the present invention and an apparatus for manufacturing the same will be described below with reference to the drawings.

【0023】図1は本発明の太陽電池モジュールの1実
施例を示す断面図、図2はその太陽電池モジュールの作
製方法を示す断面図、図3は本発明の作製装置のレーザ
ー加工・膜堆積装置の1実施例の概略図である。
FIG. 1 is a sectional view showing one embodiment of the solar cell module of the present invention, FIG. 2 is a sectional view showing a method of manufacturing the solar cell module, and FIG. 3 is laser processing / film deposition of the manufacturing apparatus of the present invention. 1 is a schematic view of one embodiment of the device.

【0024】本発明の薄膜太陽電池モジュールの作製方
法は、まず、絶縁性基板1上の全面にわたって下部電極
2、半導体薄膜の接合層3、上部電極4を形成する(図
2(a))。ここで、CuInSe2 あるいはCuIn
2 (CIS)薄膜太陽電池の場合は、通常、下部電極
としてMo薄膜(膜厚1μm)を用い、半導体接合層と
して下部電極側にCIS薄膜を配したCIS(膜厚2μ
m)/CdSあるいはZnO(膜厚0.1μm)接合層
を用い、上部電極として透明電極であるITOなど(膜
厚1μm)を用いる。なお、透光性の絶縁基板1を用い
て基板側から透明導電膜(ITOなど)/CdSあるい
はZnO/CIS/Moからなる構造とした上下を反転
させた構造の薄膜太陽電池モジュールであっても同様に
形成できる。
In the method of manufacturing a thin film solar cell module of the present invention, first, the lower electrode 2, the bonding layer 3 of the semiconductor thin film, and the upper electrode 4 are formed over the entire surface of the insulating substrate 1 (FIG. 2A). Here, CuInSe 2 or CuIn
In the case of an S 2 (CIS) thin film solar cell, usually, a Mo thin film (film thickness 1 μm) is used as the lower electrode, and a CIS thin film (film thickness 2 μm) is arranged on the lower electrode side as a semiconductor bonding layer.
m) / CdS or ZnO (film thickness 0.1 μm) bonding layer is used, and ITO or the like (film thickness 1 μm) which is a transparent electrode is used as the upper electrode. It should be noted that a thin-film solar cell module having a structure in which the transparent insulating substrate 1 is used and the structure is made of a transparent conductive film (ITO or the like) / CdS or ZnO / CIS / Mo from the substrate side upside down may be used. It can be formed similarly.

【0025】なお、CdTe薄膜太陽電池の場合は、通
常、透光性絶縁基板上1に下部電極として透明電極であ
るITOなど(膜厚1μm)を用い、半導体接合層とし
て下部電極側にCdS薄膜を配したCdS(膜厚0.1
μm)/CdTe(膜厚3μm)接合層を用い、上部電
極としてグラファイト薄膜(膜厚1μm)を用いる。な
お、絶縁基板1を用いて基板側からグラファイト薄膜/
CdTe/CdS/ITOからなる構造とした上下を反
転させた構造の薄膜太陽電池モジュールにおいても同様
に形成できる。
In the case of a CdTe thin film solar cell, usually, ITO or the like (film thickness 1 μm) which is a transparent electrode is used as the lower electrode on the transparent insulating substrate 1, and the CdS thin film is used as the semiconductor bonding layer on the lower electrode side. With CdS (film thickness 0.1
μm) / CdTe (thickness 3 μm) bonding layer, and a graphite thin film (thickness 1 μm) is used as the upper electrode. In addition, using the insulating substrate 1, the graphite thin film /
A thin film solar cell module having a structure of CdTe / CdS / ITO and a vertically inverted structure can be formed in the same manner.

【0026】次に、以上の薄膜堆積プロセスを経たあ
と、図3に示したような薄膜太陽電池モジュール作製装
置のXYZ軸可動ステージ10に薄膜が堆積した基板
1’を取り付ける。ここで軸方向は、図3に示す紙面の
左右方向をX軸方向とし、上下方向をZ方向とし、紙面
に垂直方向をY方向にとっている。また、基板1’は、
ステージをとおして一定の温度(25℃程度)になるよ
う水冷している。L1は、赤外線レーザー(具体的には
YAGレーザー)であり、その出力パワーを直接調節し
たりNDフィルターなどによって調節することによっ
て、薄膜加工モードと基板局部加熱モード(Tモードと
呼ぶ)を選択することができるようになっている。
Next, after the above thin film deposition process, the substrate 1'where the thin film is deposited is attached to the XYZ axis movable stage 10 of the thin film solar cell module manufacturing apparatus as shown in FIG. Here, regarding the axial direction, the horizontal direction of the paper surface shown in FIG. 3 is the X-axis direction, the vertical direction is the Z direction, and the vertical direction to the paper surface is the Y direction. Also, the substrate 1'is
It is water-cooled to a constant temperature (about 25 ° C) through the stage. L1 is an infrared laser (specifically, a YAG laser), and the thin film processing mode and the substrate local heating mode (referred to as T mode) are selected by directly adjusting the output power or adjusting the output power with an ND filter or the like. Is able to.

【0027】薄膜太陽電池モジュール作製装置の加工モ
ードにおいては、下部電極まで切断してしまうモード
(PHモードと呼ぶ)と下部電極のみを残して切断でき
るモード(PLモードと呼ぶ)にレーザービーム強度を
調節して選択できるようになっている。このレーザービ
ームのスポット径は、レーザービームの集光用レンズL
Nとステージ10のZ軸方向の上下によって20μmか
ら2mm程度まで変更できるようにしている。
In the processing mode of the thin-film solar cell module manufacturing apparatus, the laser beam intensity is divided into a mode in which even the lower electrode is cut (called PH mode) and a mode in which only the lower electrode can be cut (called PL mode). It can be adjusted and selected. The spot diameter of the laser beam is the lens L for condensing the laser beam.
It can be changed from 20 μm to about 2 mm depending on N and the vertical direction of the stage 10 in the Z-axis direction.

【0028】本実施例の作製装置による太陽電池モジュ
ールの作成では、まず、レーザーのスポット径を50μ
mに絞りステージをY軸方向に移動させながらPHモー
ドによって薄膜加工を行う。この際、チャンバー11内
には、常に新鮮なArなどの不活性ガスがS1を通して
導入されている。加工後の断面は、図2(b)に示した
ようであり、分離幅は約50μmで、基板1’のY軸方
向にライン状に分離されている。
In the production of the solar cell module by the production apparatus of this embodiment, first, the laser spot diameter is set to 50 μm.
Thin film processing is performed in PH mode while moving the diaphragm stage to m in the Y-axis direction. At this time, a fresh inert gas such as Ar is always introduced into the chamber 11 through S1. The cross section after processing is as shown in FIG. 2B, the separation width is about 50 μm, and the substrates 1 ′ are linearly separated in the Y-axis direction.

【0029】続いてレーザービームL1をT1モードに
切り換えて、先にライン状に加工した部分と同一部分を
走査する。その際、ジメチル亜鉛をキャリアガスの水素
とともにノズル8より、酸素ガスをノズル9より、レー
ザースポットの近傍に供給しておく。その結果、レーザ
ースポットが照射されているところだけが200℃前後
の温度に上昇するため、その近傍のみに高抵抗のZnO
薄膜を形成することができる。したがって、図2(c)
に示したように加工部の切口のみに絶縁層として高抵抗
のZnO薄膜5をライン状に形成することができる。
Subsequently, the laser beam L1 is switched to the T1 mode, and the same portion as the portion previously processed into the line shape is scanned. At that time, dimethyl zinc is supplied together with hydrogen as a carrier gas from a nozzle 8 and oxygen gas is supplied from a nozzle 9 in the vicinity of the laser spot. As a result, the temperature rises to around 200 ° C. only where the laser spot is irradiated, so high resistance ZnO is present only in the vicinity thereof.
A thin film can be formed. Therefore, as shown in FIG.
As shown in, the high resistance ZnO thin film 5 can be formed in a line shape as an insulating layer only in the cut portion of the processed portion.

【0030】また、図3に示したようにハーフミラーM
を用いて紫外線レーザー(具体的には、He−Cdレー
ザーあるいはエキシマーレーザー)L2をL1に重畳さ
せるとさらにZnO薄膜の堆積速度が増しスループット
を上げることができる。
Further, as shown in FIG. 3, the half mirror M
When an ultraviolet laser (specifically, a He-Cd laser or an excimer laser) L2 is superposed on L1 by using, the deposition rate of the ZnO thin film is further increased and the throughput can be increased.

【0031】さらに、基板1’をステージによってX軸
方向に200μm程度移動し、ステージをのZ軸方向に
移動させてレーザースポットを200μm程度のものと
する。その後、ステージをY軸方向に走査しながらPL
モードのレーザービームL1によって薄膜加工を行う。
この際もチャンバー11内は、常に新鮮なArなどの不
活性ガスのみがS1を通して導入されている。加工後の
断面は、図2(d)に示したようになり、符号Pで示し
たように幅は約200μmで下部電極2Bの一部を露出
させることができる。
Further, the substrate 1'is moved by about 200 μm in the X-axis direction by the stage, and the stage is moved in the Z-axis direction so that the laser spot is about 200 μm. After that, while scanning the stage in the Y-axis direction, PL
Thin film processing is performed by the mode laser beam L1.
Also in this case, only the inert gas such as fresh Ar is always introduced into the chamber 11 through S1. The cross section after processing is as shown in FIG. 2D, and the width is about 200 μm as shown by symbol P, and a part of the lower electrode 2B can be exposed.

【0032】そして、上述の図2(b)〜(d)までの
プロセスを経たあと、基板1’をX軸方向に数mm移動
させて、同様に図2(b)〜(d)までのプロセスを繰
り返して、基板1’に形成された薄膜太陽電池を次の短
冊状の島に分離する。
2 (b) to 2 (d), the substrate 1'is moved in the X-axis direction by several mm, and the same process as in FIGS. 2 (b) to 2 (d) is performed. The process is repeated to separate the thin film solar cell formed on the substrate 1 ′ into the following strip-shaped islands.

【0033】短冊状の島に分離された太陽電池セルは、
図1に示したようにスクリーン印刷によって導電性厚膜
6が形成され、太陽電池セルの直列接続が完成する。図
1は、セルAの上部電極4AとセルBの下部電極2Bが
導電性厚膜6によって電気的接続されることによって、
セルAとセルBが直列接続された状態を示している。こ
の際、形成された高抵抗ZnO薄膜は、接合層3Aの導
電性厚膜6による短絡を防止している。
The solar cells separated into strip-shaped islands are
As shown in FIG. 1, the conductive thick film 6 is formed by screen printing, and the series connection of solar cells is completed. FIG. 1 shows that the upper electrode 4A of the cell A and the lower electrode 2B of the cell B are electrically connected by the conductive thick film 6,
The state where the cell A and the cell B are connected in series is shown. At this time, the formed high resistance ZnO thin film prevents a short circuit due to the conductive thick film 6 of the bonding layer 3A.

【0034】以上に述べたように、本発明の薄膜太陽電
池モジュールの作製方法によれば、太陽電池を構成する
薄膜の形成プロセスのあとにのみ、薄膜の加工プロセス
(接合層の短絡防止層5の形成プロセスを含む)があ
り、連続したプロセスで行うことができる。
As described above, according to the method for producing a thin-film solar cell module of the present invention, the thin-film processing process (bonding layer short-circuit prevention layer 5) is performed only after the thin-film forming process of the solar cell is formed. (Including the forming process), and can be performed in a continuous process.

【0035】[0035]

【発明の効果】上記のように、本発明の薄膜太陽電池モ
ジュールの作製方法およびその作製装置によれば、すぐ
れた生産性と歩留まりを得ることができる。
As described above, according to the method for manufacturing a thin film solar cell module and the manufacturing apparatus therefor of the present invention, excellent productivity and yield can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の薄膜太陽電池モジュールの直列接続
部の断面構造を示す断面図である。
FIG. 1 is a sectional view showing a sectional structure of a series connection portion of a thin film solar cell module of the present invention.

【図2】 本発明の薄膜太陽電池モジュールの製造プロ
セスを示す断面図である。
FIG. 2 is a cross-sectional view showing a manufacturing process of the thin-film solar cell module of the present invention.

【図3】 本発明の薄膜太陽電池モジュールの製造に用
いた薄膜加工・堆積装置を示す断面図である。
FIG. 3 is a cross-sectional view showing a thin film processing / deposition apparatus used for manufacturing the thin film solar cell module of the present invention.

【図4】 従来の薄膜太陽電池モジュールの直列接続部
の断面構造を示す断面図である。
FIG. 4 is a cross-sectional view showing a cross-sectional structure of a serial connection portion of a conventional thin film solar cell module.

【図5】 従来の薄膜太陽電池モジュールの製造プロセ
スを示す断面図である。
FIG. 5 is a cross-sectional view showing a manufacturing process of a conventional thin-film solar cell module.

【符号の説明】[Explanation of symbols]

1 絶縁性基板 1´ 薄膜太陽電池モジュール基板 2、2A、2B 下部電極 3、3A、3B 半導体接合層 4、4A、4B 上部電極 5、5’ 絶縁層 6 導電性厚膜 7 窓 8 絶縁層形成用ガス導入用ノズル 9 絶縁層形成用ガス導入用ノズル 10 XYZ軸可動ステージ 11 チャンバー 1 Insulating substrate 1'Thin film solar cell module substrate 2, 2A, 2B Lower electrode 3, 3A, 3B Semiconductor junction layer 4, 4A, 4B Upper electrode 5, 5 'Insulating layer 6 Conductive thick film 7 Window 8 Insulating layer formation Gas introduction nozzle 9 Insulating layer forming gas introduction nozzle 10 XYZ axis movable stage 11 Chamber

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板上に下部電極と半導体薄膜に
よる接合層と上部電極を全面形成した後、前記下部電極
と半導体薄膜による接合層と上部電極をレーザー光線を
用いてライン状に切断して複数個の短冊状の島を面内に
形成する工程と、レーザー光線の照射部近傍に複数種の
ガスを導くことによって前記レーザー光線で加工した切
口の断面部に絶縁性薄膜を選択的に形成する工程と、前
記切口の近傍を前記半導体薄膜による接合層と上部電極
のみをレーザー光線を用いて切断し、下部電極をライン
状に露出させる工程と、該露出した下部電極と隣接する
島の上部電極とを電気的に接続するための接続電極を形
成する工程とよりなることを特徴とする薄膜太陽電池モ
ジュールの作製方法。
1. A lower electrode, a bonding layer made of a semiconductor thin film, and an upper electrode are entirely formed on an insulating substrate, and then the bonding layer made of the lower electrode, the semiconductor thin film, and an upper electrode are cut into lines using a laser beam. A step of forming a plurality of strip-shaped islands in a plane, and a step of selectively forming an insulating thin film on the cross-sectional portion of the cut processed by the laser beam by introducing a plurality of kinds of gas in the vicinity of the irradiation portion of the laser beam A step of cutting only the bonding layer of the semiconductor thin film and the upper electrode with a laser beam in the vicinity of the cut portion to expose the lower electrode in a line, and the exposed lower electrode and the upper electrode of an island adjacent to the exposed lower electrode. A method of manufacturing a thin-film solar cell module, comprising the step of forming a connection electrode for electrical connection.
【請求項2】 前記レーザー光線の照射部近傍に複数種
のガスを導くことによって前記レーザー光線で加工した
切口の断面部に絶縁性薄膜を選択的に形成する工程にお
いて、照射するレーザー光線が赤外線レーザーと紫外線
レーザーの重ね合わせからなる請求項1に記載の薄膜太
陽電池モジュールの作製方法。
2. In the step of selectively forming an insulating thin film on a cross section of a cut processed by the laser beam by introducing a plurality of kinds of gas in the vicinity of the irradiation part of the laser beam, the laser beam to be irradiated is an infrared laser and an ultraviolet ray. The method for producing a thin-film solar cell module according to claim 1, which comprises stacking lasers.
【請求項3】 前記半導体薄膜による接合層が、CdS
薄膜とCdTe薄膜とで形成された接合層である請求項
1または2に記載の薄膜太陽電池モジュールの作製方
法。
3. The bonding layer formed of the semiconductor thin film is CdS.
The method for producing a thin-film solar cell module according to claim 1, which is a bonding layer formed of a thin film and a CdTe thin film.
【請求項4】 前記半導体薄膜による接合層が、CdS
薄膜とCuInSe2薄膜をあるいはCuInS2 薄膜
とで形成された接合層である請求項1または2に記載の
薄膜太陽電池モジュールの作製方法。
4. The bonding layer formed of the semiconductor thin film is CdS.
The method for producing a thin film solar cell module according to claim 1 or 2, which is a bonding layer formed of a thin film and a CuInSe 2 thin film or a CuInS 2 thin film.
【請求項5】 出力を調節する手段及び集光手段を備え
たレーザーと、不活性ガスの導入部および排出部と、レ
ーザー光線を導入する窓を備えた容器と、前記容器内に
前後左右上下に可動なステージと、前記ステージ上の前
記レーザー光線が照射される位置の近傍に複数種のガス
を導入する複数個のノズルを有する薄膜太陽電池モジュ
ールの作製装置。
5. A laser provided with a means for adjusting the output and a condensing means, an inert gas introduction part and an exhaust part, a container provided with a window for introducing a laser beam, and front, rear, left, right, up and down inside the container. An apparatus for manufacturing a thin-film solar cell module having a movable stage and a plurality of nozzles for introducing a plurality of kinds of gas in the vicinity of a position on the stage where the laser beam is irradiated.
【請求項6】 前記レーザー光線が、第1のレーザー光
線と、第2のレーザー光線とからなり、該第2のレーザ
ー光線に前記第1のレーザー光線を重畳する光学系を備
えた請求項5に記載の薄膜太陽電池モジュールの作製装
置。
6. The thin-film sun according to claim 5, wherein the laser beam comprises a first laser beam and a second laser beam, and an optical system for superimposing the first laser beam on the second laser beam is provided. Battery module manufacturing equipment.
【請求項7】 前記第1のレーザー光線が赤外線レーザ
ーである請求項5または6に記載の薄膜太陽電池モジュ
ールの作製装置。
7. The apparatus for manufacturing a thin film solar cell module according to claim 5, wherein the first laser beam is an infrared laser.
【請求項8】 前記第2のレーザー光線が紫外線レーザ
ーである請求項5〜7のいずれかに記載の薄膜太陽電池
モジュールの作製装置。
8. The apparatus for producing a thin film solar cell module according to claim 5, wherein the second laser beam is an ultraviolet laser.
JP27356994A 1994-11-08 1994-11-08 Method of manufacturing solar cell module Expired - Lifetime JP3537196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27356994A JP3537196B2 (en) 1994-11-08 1994-11-08 Method of manufacturing solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27356994A JP3537196B2 (en) 1994-11-08 1994-11-08 Method of manufacturing solar cell module

Publications (2)

Publication Number Publication Date
JPH08139351A true JPH08139351A (en) 1996-05-31
JP3537196B2 JP3537196B2 (en) 2004-06-14

Family

ID=17529640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27356994A Expired - Lifetime JP3537196B2 (en) 1994-11-08 1994-11-08 Method of manufacturing solar cell module

Country Status (1)

Country Link
JP (1) JP3537196B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007249A1 (en) * 1998-07-27 2000-02-10 Citizen Watch Co., Ltd. Solar cell and method of producing the same, and mask for photolithography for producing solar cell
JP2009512197A (en) * 2005-10-07 2009-03-19 アプライド マテリアルズ インコーポレイテッド Systems and methods for forming improved thin film solar cell interconnects
WO2010113880A1 (en) * 2009-03-31 2010-10-07 芝浦メカトロニクス株式会社 Method for manufacturing solar cell, apparatus for manufacturing solar cell, and solar cell
JP2012074619A (en) * 2010-09-29 2012-04-12 Showa Shell Sekiyu Kk Compound-system thin-film solar cell module and manufacturing method therefor
US8298852B2 (en) 2008-12-29 2012-10-30 Jusung Engineering Co., Ltd. Thin film type solar cell and method for manufacturing the same
WO2013054600A1 (en) 2011-10-14 2013-04-18 日東電工株式会社 Solar cell manufacturing method and solar cell module
US8507310B2 (en) 2008-12-04 2013-08-13 Mitsubishi Electric Corporation Method for manufacturing thin-film photoelectric conversion device
EP2442361A3 (en) * 2010-10-15 2017-05-03 Wilhelm Stein Method for manufacturing interconnects in a thin film photovoltaic module and thin film photovoltaic module

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007249A1 (en) * 1998-07-27 2000-02-10 Citizen Watch Co., Ltd. Solar cell and method of producing the same, and mask for photolithography for producing solar cell
JP2009512197A (en) * 2005-10-07 2009-03-19 アプライド マテリアルズ インコーポレイテッド Systems and methods for forming improved thin film solar cell interconnects
US8507310B2 (en) 2008-12-04 2013-08-13 Mitsubishi Electric Corporation Method for manufacturing thin-film photoelectric conversion device
US8298852B2 (en) 2008-12-29 2012-10-30 Jusung Engineering Co., Ltd. Thin film type solar cell and method for manufacturing the same
WO2010113880A1 (en) * 2009-03-31 2010-10-07 芝浦メカトロニクス株式会社 Method for manufacturing solar cell, apparatus for manufacturing solar cell, and solar cell
JP2012074619A (en) * 2010-09-29 2012-04-12 Showa Shell Sekiyu Kk Compound-system thin-film solar cell module and manufacturing method therefor
EP2442361A3 (en) * 2010-10-15 2017-05-03 Wilhelm Stein Method for manufacturing interconnects in a thin film photovoltaic module and thin film photovoltaic module
WO2013054600A1 (en) 2011-10-14 2013-04-18 日東電工株式会社 Solar cell manufacturing method and solar cell module

Also Published As

Publication number Publication date
JP3537196B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
JP3414738B2 (en) Integrated laser patterning method for thin film solar cells
US6720576B1 (en) Plasma processing method and photoelectric conversion device
AU766727B2 (en) Method of fabricating thin-film photovoltaic module
US7964476B2 (en) Method and apparatus for the laser scribing of ultra lightweight semiconductor devices
US6168968B1 (en) Method of fabricating integrated thin film solar cells
US20050272175A1 (en) Laser structuring for manufacture of thin film silicon solar cells
US20080105303A1 (en) Method and Manufacturing Thin Film Photovoltaic Modules
JP2009512197A (en) Systems and methods for forming improved thin film solar cell interconnects
WO2004064167A1 (en) Transparent thin-film solar cell module and its manufacturing method
KR20100032928A (en) Thin-film solar cell module and method for its production
JP2005515639A (en) Method for manufacturing thin film photovoltaic module
JP3537196B2 (en) Method of manufacturing solar cell module
JP3248336B2 (en) Manufacturing method of thin film solar cell
US20120244723A1 (en) Laser drilling of vias in back contact solar cells
JPH10125632A (en) Method and apparatus for laser etching
JP2000208799A (en) Method of processing thin-film body
JP2892929B2 (en) Manufacturing method of integrated photoelectric conversion element
JP4764989B2 (en) Laser processing method
JP2009072831A (en) Apparatus for forming laser scribes
JPH065778B2 (en) Method for manufacturing optical semiconductor device
KR101094324B1 (en) Method for manufacturing thin-film type solar cell and laser machining device
JP3286537B2 (en) Laser beam synthesis method
EP2549545A1 (en) Thin-film solar cell and method for manufacturing the same
JPH05315632A (en) Manufacture of semiconductor device
CN116669514A (en) Perovskite solar cell module preparation method and system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

EXPY Cancellation because of completion of term