JPH08138708A - Water treatment system of fuel cell power generating facility - Google Patents
Water treatment system of fuel cell power generating facilityInfo
- Publication number
- JPH08138708A JPH08138708A JP6277822A JP27782294A JPH08138708A JP H08138708 A JPH08138708 A JP H08138708A JP 6277822 A JP6277822 A JP 6277822A JP 27782294 A JP27782294 A JP 27782294A JP H08138708 A JPH08138708 A JP H08138708A
- Authority
- JP
- Japan
- Prior art keywords
- water
- fuel cell
- blowdown
- cooling
- power generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は燃料電池の冷却水の電
気導電率を小さく抑えるための燃料電池発電設備の水処
理システムに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment system for fuel cell power generation equipment for suppressing the electric conductivity of cooling water for fuel cells.
【0002】[0002]
【従来の技術】図7は例えば特開平5−315002号
公報に示された従来の燃料電池発電設備の水処理システ
ムを示す系統線図であり、図7において1は燃料電池、
2は燃料電池1の冷却水の気水分離を行う水蒸気分離
器、3は水蒸気分離器2から燃料電池1に電池冷却水を
送水する電池冷却水循環ポンプ、100は燃料電池1に
通水して冷却する電池冷却水を取り扱い、水蒸気分離器
2および電池冷却水循環ポンプ3を有する電池冷却水系
統、4は水蒸気分離器2からブローダウン水(電池冷却
水系統から水処理システムに取り出された冷却水をブロ
ーダウン水と呼ぶ。以下同じ。)を取り出すブローダウ
ン水配管路、5はこのブローダウン水と補充水として使
用する市水を貯留する受水槽、6は受水槽に貯留された
水の導電率を向上させる逆浸透膜7およびこの膜を通過
した再生水の導電率をさらに向上させるイオン交換樹脂
8を有する導電率改善装置、9は受水槽5より導電率改
善装置6に送水するための原水ポンプ、10は導電率改
善装置6を通過した再生水を水蒸気分離器2へ送水する
ための補給水供給ポンプ、11は水蒸気分離器2の水位
により補給水量を制御する調節弁、12は導電率改善装
置6に通水される水を冷却する熱交換器、13は補給水
供給ポンプ10の出口側圧力が上昇したときの圧力開放
のための安全弁である。2. Description of the Related Art FIG. 7 is a system diagram showing a water treatment system of a conventional fuel cell power generation facility disclosed in, for example, Japanese Unexamined Patent Publication (Kokai) No. 5-315002, where 1 is a fuel cell,
Reference numeral 2 is a water vapor separator that separates the cooling water of the fuel cell 1 from water to water, 3 is a cell cooling water circulation pump that supplies the cell cooling water from the water vapor separator 2 to the fuel cell 1, and 100 is water that passes through the fuel cell 1. The battery cooling water system that handles the battery cooling water to be cooled and has the steam separator 2 and the battery cooling water circulation pump 3 is blowdown water from the steam separator 2 (cooling water taken out from the battery cooling water system to the water treatment system). Is referred to as blowdown water. The same shall apply hereinafter). 5 is a water receiving tank for storing the blowdown water and city water used as supplementary water, and 6 is the conductivity of the water stored in the water receiving tank. A conductivity improving device having a reverse osmosis membrane 7 for improving the conductivity and an ion exchange resin 8 for further improving the conductivity of the regenerated water that has passed through this film, and 9 is supplied from the water receiving tank 5 to the conductivity improving device 6. For supplying raw water, 10 is a makeup water supply pump for sending the regenerated water that has passed through the conductivity improving device 6 to the steam separator 2, 11 is a control valve for controlling the amount of makeup water according to the water level of the steam separator 2, and 12 is A heat exchanger that cools the water that flows through the conductivity improving device 6, and 13 is a safety valve for releasing the pressure when the outlet side pressure of the makeup water supply pump 10 rises.
【0003】次に動作について説明する。電池冷却水は
燃料電池1に通水され冷却する役目を果たすため、燃料
電池1より受熱し気液混合状態になって水蒸気分離気2
に戻ってくる。水蒸気分離器2において気液混合状態の
電池冷却水は気水分離され、液相部分のみ電池冷却水循
環ポンプ3によって燃料電池1に送水される。この電池
冷却水は電池の地絡および冷却管の腐食を防止するため
に導電率を小さく維持することが必要である。このため
水蒸気分離器2の一部の水をブローダウンして、導電率
の低い水と入れ換える必要がある。通常、水量の節約上
ブローダウン水を水処理システムに通して再生利用する
方法がとられる。Next, the operation will be described. Since the cell cooling water passes through the fuel cell 1 to cool it, the cell cooling water receives heat from the fuel cell 1 and becomes a gas-liquid mixed state, so that the steam separation gas 2
Come back to. In the steam separator 2, the cell cooling water in a gas-liquid mixed state is separated into gas and water, and only the liquid phase portion is sent to the fuel cell 1 by the cell cooling water circulation pump 3. The battery cooling water needs to have a low electric conductivity in order to prevent a ground fault of the battery and corrosion of the cooling pipe. Therefore, it is necessary to blow down part of the water in the steam separator 2 and replace it with water having a low conductivity. Generally, in order to save water, blowdown water is recycled through a water treatment system.
【0004】ブローダウン水はブローダウン水配管路4
を通って受水槽5に回収される。受水槽5で補充水とし
て使用される市水とブローダウン水とが混合して貯留さ
れ、原水ポンプ9によってこの受水槽5に貯留された水
を導電率改善装置6に送水し、逆浸透膜7およびイオン
交換樹脂8を通して導電率の向上が図られる。逆浸透膜
7は耐熱温度が約40℃と低く、またブローダウン水の
温度は約170℃と高いので、受水槽5で補充される市
水の混入によって温度を下げ、さらに、この混合水を熱
交換器12により所定温度以下に下げる必要がある。こ
の熱交換器12の冷却用水は市水あるいは工水が用いら
れる。こうして得られた再生水は補給水供給ポンプ10
により昇圧され水蒸気分離器2へ戻される。通常、水蒸
気分離器2内のスチームは、改質用の原料スチームとし
ても使用されているので、水蒸気分離器2内の水は常に
消費されており、その消費分は補充水として受水槽25
に混入される市水でまかなわれ、水処理システムにより
補給される。その補給水の水量は水蒸気分離器2内の水
位レベルが常に一定となるように調節弁11により制御
される。その制御により余剰となった補給水のため補給
水供給ポンプ10の吐出圧は高くなり所定値を越えると
安全弁13により余剰水として排出される。The blowdown water is blowdown water pipe line 4
It is collected in the water receiving tank 5 through the. The city water used as replenishment water and blowdown water are mixed and stored in the water receiving tank 5, and the water stored in the water receiving tank 5 is sent to the conductivity improving device 6 by the raw water pump 9 to form a reverse osmosis membrane. 7 and the ion exchange resin 8 improve the conductivity. Since the reverse osmosis membrane 7 has a low heat resistance of about 40 ° C. and the temperature of blowdown water is as high as about 170 ° C., the temperature is lowered by mixing city water supplemented in the water receiving tank 5, and the mixed water is further It is necessary to lower the temperature below a predetermined temperature by the heat exchanger 12. As cooling water for the heat exchanger 12, city water or industrial water is used. The regenerated water thus obtained is supplied by the makeup water supply pump 10.
The pressure is increased by and is returned to the water vapor separator 2. Usually, the steam in the steam separator 2 is also used as the raw material steam for reforming, so the water in the steam separator 2 is always consumed, and the consumed amount is used as makeup water in the water receiving tank 25.
It is supplied by city water mixed in and is replenished by a water treatment system. The amount of the makeup water is controlled by the control valve 11 so that the water level in the steam separator 2 is always constant. Due to the supplementary water that has been surplus by the control, the discharge pressure of the supplementary water supply pump 10 becomes high, and when it exceeds a predetermined value, it is discharged as surplus water by the safety valve 13.
【0005】[0005]
【発明が解決しようとする課題】従来の燃料電池発電設
備の水処理システムは以上のように構成されていたので
次のような問題点があった。逆浸透膜の入り口の通水温
度が、補充水として混入される市水や、熱交換気器を冷
却する市水または工水温度に左右されるため季節により
安定せず、逆浸透膜の使用温度上限40℃を越えて、逆
浸透膜で適正な脱塩効果が得られず、逆浸透膜が極端に
短寿命となったり、温度が低すぎて逆浸透膜の通水抵抗
が増加し所要の通水流量が確保できず、補給水量不足と
なって水蒸気分離器の水位が下がり、燃料電池発電設備
全体が停止するといった問題点があった。Since the conventional water treatment system for the fuel cell power generation facility is constructed as described above, it has the following problems. The water temperature at the entrance of the reverse osmosis membrane is not stable depending on the season because it depends on the temperature of city water mixed as supplementary water, city water for cooling the heat exchanger, or industrial water. If the temperature exceeds the upper limit of 40 ° C, the reverse osmosis membrane will not have an adequate desalting effect, and the reverse osmosis membrane will have an extremely short life, or the temperature will be too low and the water resistance of the reverse osmosis membrane will increase. However, there was a problem that the flow rate of water could not be secured, the amount of makeup water became insufficient, the water level of the steam separator dropped, and the entire fuel cell power generation facility stopped.
【0006】また、水蒸気分離器へ戻る補給水は温度が
低く、水蒸気分離器へ直接供給しているので、水蒸気分
離器の温度を下げる方向に作用し保有熱量を減少させ
る。従って、水蒸気分離器から余剰熱として取り出せる
熱量も少なくなり総合熱効率が下がるという欠点があっ
た。また、イオン交換樹脂を出た後の水圧が逆浸透膜お
よびイオン交換樹脂の目詰まり具合により左右されるた
め、逆浸透膜およびイオン交換樹脂の寿命末期には水圧
が下がり補給水供給ポンプがキャビテーションを起こ
し、ポンプが損傷するという問題点があった。また、水
蒸気分離器の水位変動により調節弁が補給水量を調節し
ているので必要量以外の再生水は安全弁回路より系外に
放出され、純度の高い再生水を無駄に廃棄しているとい
う欠点があった。Further, since the makeup water returning to the steam separator has a low temperature and is directly supplied to the steam separator, it acts to lower the temperature of the steam separator and reduces the amount of heat retained. Therefore, there is a drawback that the amount of heat that can be taken out from the steam separator as excess heat is small and the total thermal efficiency is lowered. In addition, the water pressure after leaving the ion exchange resin depends on the degree of clogging of the reverse osmosis membrane and ion exchange resin, so the water pressure decreases at the end of the life of the reverse osmosis membrane and ion exchange resin, and the makeup water supply pump cavitation. And the pump was damaged. In addition, since the control valve regulates the amount of makeup water by the fluctuation of the water level of the water vapor separator, there is a drawback in that the amount of reclaimed water other than the required amount is discharged out of the system from the safety valve circuit, and the highly purified reclaimed water is wasted. It was
【0007】この発明は上記のような課題を解決するた
めになされたものであり、燃料電池の発熱エネルギーを
効率的に利用し、導電率改善装置の性能の劣化を防ぐと
ともに、効率の高い燃料電池発電設備の水処理システム
を得ることを目的とする。The present invention has been made to solve the above problems, and efficiently utilizes the heat generation energy of the fuel cell to prevent the performance of the conductivity improving device from deteriorating and to provide a highly efficient fuel. The objective is to obtain a water treatment system for battery power generation equipment.
【0008】[0008]
【課題を解決するための手段】この発明の請求項1に係
る燃料電池発電設備の水処理システムは、ブローダウン
水を取り出す配管路、上記配管路に設けられ、取り出さ
れたブローダウン水を冷却する熱交換器、導電率改善装
置に流れる水の温度を検出する温度検出器、および上記
配管路に設けられ、上記温度検出器の検出する温度によ
り、該配管路を流れるブローダウン水の流量を調節する
弁を備えたものである。According to a first aspect of the present invention, there is provided a water treatment system for a fuel cell power generation facility, which is provided with a pipe line for taking out blowdown water and cooling the blowdown water taken out by being provided in the pipe line. The heat exchanger, the temperature detector for detecting the temperature of the water flowing to the conductivity improving device, and the temperature detected by the temperature detector, which is provided in the pipe, determines the flow rate of the blowdown water flowing through the pipe. It is equipped with a regulating valve.
【0009】この発明の請求項2に係る燃料電池発電設
備の水処理システムは、ブローダウン水を取り出す配管
路、上記配管路に設けられ、取り出されたブローダウン
水を冷却する熱交換器、導電率改善装置に流れる水の温
度を検出する温度検出器、および上記熱交換器を冷却す
る冷却水の配管路に設けられ、上記温度検出器の検出す
る温度により、上記冷却水の配管路を流れる熱交換器の
冷却水流量を調節する弁を備えたものである。According to a second aspect of the present invention, there is provided a water treatment system for a fuel cell power generation facility, which has a pipe passage for taking out blowdown water, a heat exchanger provided in the pipe passage for cooling the taken-down blowdown water, and a conductive material. A temperature detector for detecting the temperature of water flowing to the rate improving device, and a pipe for cooling water for cooling the heat exchanger are provided, and flow through the pipe for cooling water according to the temperature detected by the temperature detector. It is provided with a valve for adjusting the flow rate of cooling water of the heat exchanger.
【0010】この発明の請求項3に係る燃料電池発電設
備の水処理システムは、ブローダウン水を取り出す2つ
以上の配管路、上記配管路のうちの少なくとも1つに設
けられ、取り出されたブローダウン水を冷却する熱交換
器、導電率改善装置に流れる水の温度を検出する温度検
出器、および上記熱交換器を有する配管路と、上記熱交
換器の無い配管路とのそれぞれに設けられ、上記温度検
出器の検出する温度により、該配管路を流れるブローダ
ウン水の流量を調節する弁を備えたものである。According to a third aspect of the present invention, there is provided a water treatment system for fuel cell power generation equipment, wherein two or more pipe lines for taking out blowdown water are provided in at least one of the pipe lines. A heat exchanger for cooling down water, a temperature detector for detecting the temperature of water flowing through the conductivity improving device, and a pipe passage having the heat exchanger and a pipe passage having no heat exchanger are provided. A valve is provided for adjusting the flow rate of blowdown water flowing through the pipeline according to the temperature detected by the temperature detector.
【0011】この発明の請求項4に係る燃料電池発電設
備の水処理システムは、電池冷却水系統からブローダウ
ン水を取り出す配管路に設けた熱交換器の冷却を、導電
率改善装置を通過して上記電池冷却水系統へ戻す補給水
によって行うものである。According to a fourth aspect of the present invention, in a water treatment system for a fuel cell power generation facility, cooling of a heat exchanger provided in a pipe path for taking out blowdown water from a cell cooling water system is passed through a conductivity improving device. The replenishing water is returned to the battery cooling water system.
【0012】この発明の請求項5に係る燃料電池発電設
備の水処理システムは、電池冷却水系統へ戻す補給水と
電池冷却水系統から取り出すブローダウン水との間で熱
交換する熱交換器を設けたものである。According to a fifth aspect of the present invention, in a water treatment system for a fuel cell power generation facility, a heat exchanger for exchanging heat between make-up water returned to the cell cooling water system and blowdown water taken out from the cell cooling water system is provided. It is provided.
【0013】この発明の請求項6に係る燃料電池発電設
備の水処理システムは、燃料電池に送水される冷却水を
直接、補給水によって冷却する熱交換器を設けたもので
ある。According to a sixth aspect of the present invention, there is provided a water treatment system for a fuel cell power generation facility, which is provided with a heat exchanger for directly cooling the cooling water sent to the fuel cell with makeup water.
【0014】この発明の請求項7に係る燃料電池発電設
備の水処理システムは、大気圧に開放され、導電率改善
装置を通して導電率を小さくした補給水を一旦蓄える中
間槽、およびこの中間槽に蓄えられた補給水を電池冷却
水系統に戻す補給水供給ポンプを設けたものである。According to a seventh aspect of the present invention, there is provided a water treatment system for a fuel cell power generation facility, wherein an intermediate tank which is opened to atmospheric pressure and temporarily stores makeup water whose conductivity has been reduced through a conductivity improving device, and the intermediate tank A makeup water supply pump that returns the accumulated makeup water to the battery cooling water system is provided.
【0015】この発明の請求項8に係る燃料電池発電設
備の水処理システムは、補給水供給ポンプにより電池冷
却水系統に戻される補給水の経路からあふれた余剰水
を、補給水を蓄えた中間槽に返すものである。In the water treatment system of the fuel cell power generation facility according to claim 8 of the present invention, the surplus water overflowing from the path of the makeup water returned to the cell cooling water system by the makeup water supply pump is stored in the intermediate It is returned to the tank.
【0016】この発明の請求項9に係る燃料電池発電設
備の水処理システムは、ブローダウン水と新たな補充水
とを一旦蓄える受水槽を設け、中間槽からあふれた補給
水を上記受水槽に返すものである。According to a ninth aspect of the present invention, there is provided a water treatment system for a fuel cell power generation facility, wherein a water receiving tank for temporarily storing blowdown water and new replenishing water is provided, and the replenishing water overflowing from the intermediate tank is supplied to the water receiving tank. To return.
【0017】[0017]
【作用】この発明の請求項1に係る燃料電池発電設備の
水処理システムは、ブローダウン水を取り出す配管路に
設けられた熱交換器が、取り出されたブローダウン水を
冷却し、上記配管路に設けられた弁が、導電率改善装置
に流れる水の温度を検出する温度検出器の出力に応じ
て、該配管路を流れるブローダウン水の流量を調節する
ことによって、導電率改善装置に通水する温度を制御す
る。In the water treatment system for fuel cell power generation equipment according to claim 1 of the present invention, the heat exchanger provided in the pipe line for taking out the blowdown water cools the taken down blowdown water, A valve provided on the control valve adjusts the flow rate of the blowdown water flowing through the pipeline according to the output of the temperature detector that detects the temperature of the water flowing through the conductivity improving device, thereby communicating with the conductivity improving device. Control water temperature.
【0018】この発明の請求項2に係る燃料電池発電設
備の水処理システムは、ブローダウン水を取り出す配管
路に設けられた熱交換器が、取り出されたブローダウン
水を冷却し、上記熱交換器の冷却水の配管路に設けられ
た弁が、導電率改善装置に流れる水の温度を検出する温
度検出器の出力に応じて、上記冷却水の配管路を流れる
熱交換器の冷却水量を調節することによって、導電率改
善装置に通水する温度を制御する。In the water treatment system for fuel cell power generation equipment according to claim 2 of the present invention, the heat exchanger provided in the pipe line for taking out the blowdown water cools the taken down blowdown water, and the heat exchange is performed. A valve provided in the cooling water piping of the heat exchanger measures the amount of cooling water of the heat exchanger flowing through the cooling water piping according to the output of the temperature detector that detects the temperature of the water flowing to the conductivity improving device. By adjusting, the temperature at which water passes through the conductivity improver is controlled.
【0019】この発明の請求項3に係る燃料電池発電設
備の水処理システムは、ブローダウン水を取り出す2つ
以上の配管路のうちの少なくとも1つに設けらた熱交換
器が、該配管路を流れるブローダウン水を冷却し、上記
熱交換器を有する配管路と、上記熱交換器の無い配管路
とのそれぞれに設けられた弁が、導電率改善装置に流れ
る水の温度を検出する温度検出器の出力に応じて、該配
管路を流れるブローダウン水の流量を調節して、冷却さ
れたブローダウン水と冷却されていないブローダウン水
のそれぞれの水量を変化させることによって、導電率改
善装置に通水する水の温度を制御する。According to a third aspect of the present invention, there is provided a water treatment system for a fuel cell power plant, wherein a heat exchanger provided in at least one of the two or more pipe lines for taking out the blowdown water has the pipe line. The temperature at which the blow-down water flowing through the pipe is cooled, and the valves provided in each of the pipeline having the heat exchanger and the pipeline having no heat exchanger detect the temperature of the water flowing to the conductivity improving device. Depending on the output of the detector, the flow rate of blowdown water flowing through the pipeline is adjusted to change the amount of cooled blowdown water and the amount of uncooled blowdown water, thereby improving conductivity. Controls the temperature of the water flowing through the device.
【0020】この発明の請求項4に係る燃料電池発電設
備の水処理システムは、電池冷却水系統からブローダウ
ン水を取り出す配管路に設けた熱交換器の冷却を、導電
率改善装置を通過して上記電池冷却水系統へ戻す補給水
によって行い、上記熱交換器が、ブローダウン水を冷却
するとともに、補給水を加熱する。According to a fourth aspect of the present invention, in a water treatment system for a fuel cell power generation facility, cooling of a heat exchanger provided in a pipe line for taking out blowdown water from a cell cooling water system is passed through a conductivity improving device. The make-up water is returned to the battery cooling water system, and the heat exchanger cools the blowdown water and heats the make-up water.
【0021】この発明の請求項5に係る燃料電池発電設
備の水処理システムは、熱交換器が、電池冷却水系統へ
戻す補給水と、電池冷却水系統から取り出すブローダウ
ン水との間で熱交換し、補給水は加熱されて電池冷却水
系統に戻り、ブローダウン水は冷却して取り出される。In the water treatment system for fuel cell power generation equipment according to claim 5 of the present invention, the heat exchanger heats the makeup water returned to the cell cooling water system and the blowdown water taken out from the cell cooling water system. After replacement, the makeup water is heated and returns to the battery cooling water system, and the blowdown water is cooled and taken out.
【0022】この発明の請求項6に係る燃料電池発電設
備の水処理システムは、熱交換器が、燃料電池に送水さ
れる冷却水と、電池冷却水系統に戻す補給水との間で熱
交換し、冷却水はさらに冷却されて燃料電池に供給さ
れ、補給水は加熱されて電池冷却水系統に戻される。In the water treatment system of the fuel cell power generation facility according to claim 6 of the present invention, the heat exchanger heat-exchanges between the cooling water sent to the fuel cell and the makeup water to be returned to the cell cooling water system. Then, the cooling water is further cooled and supplied to the fuel cell, and the makeup water is heated and returned to the cell cooling water system.
【0023】この発明の請求項7に係る燃料電池発電設
備の水処理システムは、水面が大気圧に開放された中間
槽が、導電率改善装置を通して導電率を小さくした補給
水を一旦蓄え、補給水供給ポンプが、導電率改善装置の
出口の水圧に左右されることなく、上記中間槽に蓄えら
れた補給水を電池冷却水系統に送水する。According to a seventh aspect of the present invention, in a water treatment system for a fuel cell power generation facility, an intermediate tank whose water surface is opened to atmospheric pressure temporarily stores and replenishes makeup water whose conductivity has been reduced through a conductivity improving device. The water supply pump sends the makeup water stored in the intermediate tank to the battery cooling water system without being affected by the water pressure at the outlet of the conductivity improving device.
【0024】この発明の請求項8に係る燃料電池発電設
備の水処理システムは、補給水供給ポンプにより電池冷
却水系統に戻される補給水の経路からあふれた余剰水
を、補給水を蓄えた中間槽に返す。In the water treatment system of the fuel cell power generation facility according to claim 8 of the present invention, the surplus water overflowing from the make-up water path returned to the cell cooling water system by the make-up water supply pump is stored in the middle of the place where the make-up water is stored. Return to the tank.
【0025】この発明の請求項9に係る燃料電池発電設
備の水処理システムは、ブローダウン水と新たな補充水
とを一旦蓄える受水槽を設け、中間槽からあふれた補給
水を上記受水槽に返す。In the water treatment system for fuel cell power generation equipment according to claim 9 of the present invention, a water receiving tank for temporarily storing blowdown water and new replenishing water is provided, and the replenishing water overflowing from the intermediate tank is supplied to the water receiving tank. return.
【0026】[0026]
実施例1.以下、この発明の実施例1を図1に基づいて
説明する。図1において、21〜23,25〜31,3
3および200はそれぞれ従来例を示す1〜3,5〜1
1,13および100に対応するものであり、21は燃
料電池、22は燃料電池21の冷却水の気水分離を行う
水蒸気分離器、23は水蒸気分離器22から燃料電池2
1に電池冷却水を送水する電池冷却水循環ポンプ、20
0は燃料電池21で発生した水蒸気を取り扱い、水蒸気
分離器22および電池冷却水循環ポンプ23を有する電
池冷却水系統、25は水蒸気分離器22から取り出され
たブローダウン水と、補充水として使用する市水を混合
して貯留する受水槽、26は受水槽に貯留された水の導
電率を向上させる逆浸透膜27およびこの膜を通過した
再生水の導電率をさらに向上させるイオン交換樹脂28
を有する導電率改善装置、29は受水槽25より導電率
改善装置26に送水するための原水ポンプ、30は導電
率改善装置26を通過した再生水を水蒸気分離器22へ
送水するための補給水供給ポンプ、31は水蒸気分離器
22の水位により補給水量を制御する調節弁、33は補
給水供給ポンプ30の出口側圧力が上昇したときの圧力
開放のための安全弁である。Example 1. Hereinafter, Embodiment 1 of the present invention will be described with reference to FIG. In FIG. 1, 21-23, 25-31, 3
3 and 200 are conventional examples 1 to 3, 5 and 1
1, 13 and 100, 21 is a fuel cell, 22 is a steam separator for separating steam of cooling water of the fuel cell 21, and 23 is a steam separator 22 to the fuel cell 2.
Battery cooling water circulation pump for sending battery cooling water to 1, 20
0 is a battery cooling water system that handles the steam generated in the fuel cell 21 and has a steam separator 22 and a battery cooling water circulation pump 23; 25 is a city used as blowdown water taken out from the steam separator 22 and as supplementary water. A water receiving tank for mixing and storing water, 26 is a reverse osmosis membrane 27 for improving the electric conductivity of the water stored in the water receiving tank, and an ion exchange resin 28 for further improving the electric conductivity of the regenerated water that has passed through this membrane.
, 29 is a raw water pump for sending water from the water receiving tank 25 to the conductivity improving device 26, and 30 is makeup water supply for sending regenerated water passing through the conductivity improving device 26 to the steam separator 22. A pump, 31 is a control valve for controlling the amount of makeup water according to the water level of the steam separator 22, and 33 is a safety valve for releasing the pressure when the outlet side pressure of the makeup water supply pump 30 rises.
【0027】また、図1において34〜37は実施例1
によって付け加えられた部分であり、34a,34bは
水蒸気分離器22からブローダウン水を取り出すブロー
ダウン水配管路、35はブローダウン水配管路34aに
設けられ、市水または工水によってこの配管路を通過す
るブローダウン水を冷却する熱交換器、36a,36b
はこのブローダウン水配管路34a,34bのそれぞれ
に設けられた電動弁、37は導電率改善装置26の入り
口の水温を検出する温度検出器である。Further, in FIG. 1, 34 to 37 are the first embodiment.
34a and 34b are blowdown water pipe lines for extracting blowdown water from the steam separator 22, and 35 is provided in the blowdown water pipe line 34a. These pipe lines are provided by city water or industrial water. Heat exchangers 36a, 36b for cooling the blowdown water passing therethrough
Is a motor-operated valve provided in each of the blowdown water pipes 34a, 34b, and 37 is a temperature detector for detecting the water temperature at the inlet of the conductivity improving device 26.
【0028】次に動作について説明する。従来例と同
様、実施例1による燃料電池設備の水処理システムは、
燃料電池21に通水され冷却する役目を果たす電池冷却
水を電池冷却水系統200にある水蒸気分離器22の内
部に気水分離して蓄えられる。この電池冷却水は、電池
の地絡および冷却管の腐食を防止するため、水蒸気分離
器22の液層部分の一部をブローダウン水として取り出
し、導電率改善装置26を介して導電率の低い水に再生
して入れ換えられる。Next, the operation will be described. Similar to the conventional example, the water treatment system for fuel cell equipment according to the first embodiment is
The cell cooling water, which has a function of cooling water by passing through the fuel cell 21, is separated and stored in the steam separator 22 in the cell cooling water system 200. In order to prevent the ground fault of the battery and the corrosion of the cooling pipe, this battery cooling water takes out a part of the liquid layer portion of the steam separator 22 as blowdown water, and has a low conductivity through the conductivity improving device 26. It is regenerated into water and replaced.
【0029】水蒸気分離器22内の水蒸気は、その余剰
熱を利用して改質器へ送られるため170℃程度の高温
に維持されており、この液層部分であるブローダウン水
も同等の温度を保っている。しかしながら、導電率を小
さく再生する導電率改善装置26の中の逆浸透膜27
は、40℃以上の高温の水を通水すると性能が劣化する
ため、冷却する必要がある。また、季節によってはこの
冷却が行きすぎて逆浸透膜27の通水抵抗が増加し、所
要の通水流量を確保できないことがある。そのため、水
蒸気分離器22から取り出したブローダウン水を2系統
の配管路34a,34bに分岐し、その一方のブローダ
ウン水配管路34aに熱交換器35を設けて冷却し、も
う一方のブローダウン水配管路34bには熱交換器を設
けずそのまま送水し、これらの配管路のブローダウン水
の流量をそれぞれの配管路34a,34bに設けた電動
弁36a,36bにより調整し、その混合水を受水槽2
5に蓄えるようにする。このブローダウン水にさらに受
水槽25で、水蒸気分離器22から改質器などへのスチ
ームに消費される水量を補充するため、補充水として市
水が混合され、原水ポンプ29によってこの受水槽25
に貯留された水を導電率改善装置26に送水し、逆浸透
膜27およびイオン交換樹脂28を通して導電率の向上
が図られる。Since the steam in the steam separator 22 is sent to the reformer by utilizing the surplus heat, the steam is maintained at a high temperature of about 170 ° C., and the blowdown water as the liquid layer portion has the same temperature. Is kept. However, the reverse osmosis membrane 27 in the conductivity improving device 26 that regenerates the conductivity small.
The performance deteriorates when water having a high temperature of 40 ° C. or higher is passed through, and thus needs to be cooled. In addition, depending on the season, this cooling may be excessive and the water flow resistance of the reverse osmosis membrane 27 may increase, so that the required water flow rate may not be secured. Therefore, the blowdown water taken out from the steam separator 22 is branched into two pipe lines 34a and 34b, one of the blowdown water pipe lines 34a is provided with a heat exchanger 35 for cooling, and the other blowdown water is cooled. The water pipe line 34b is supplied as it is without a heat exchanger, and the flow rate of blowdown water in these pipe lines is adjusted by the electric valves 36a and 36b provided in the pipe lines 34a and 34b, respectively, and the mixed water is adjusted. Water tank 2
Try to store in 5. In order to supplement the amount of water consumed by the steam from the steam separator 22 to the reformer in the water receiving tank 25, the blowdown water is mixed with city water as supplementary water, and the raw water pump 29 causes the water receiving tank 25 to mix.
The water stored in the water is sent to the conductivity improving device 26, and the conductivity is improved through the reverse osmosis membrane 27 and the ion exchange resin 28.
【0030】温度検出器37は、この導電率改善装置2
6に通水される水の温度をその入り口で検出する。この
検出された温度により、ブローダウン水配管路34a,
34bに設けられた電動弁36a,36bを、この温度
が所要温度より低い温度となった場合には、電動弁36
aの弁開度を閉方向に、電動弁36bの弁開度を開方向
になるように変化させ、この温度が所要の温度より高い
温度となった場合には、電動弁36aの弁開度を開方向
に、電動弁36bの弁開度を閉方向となるように変化さ
せ、それぞれの配管路34a,34bを通過するブロー
ダウン水の流量を調節して、受水槽25に蓄える。受水
槽25では、さらに補充水として市水が混入されるが、
この補充は水蒸気分離器22から改質器などへ送られる
スチームの消費量に合わせた一定量であり、市水の水温
は上記弁制御の周期程度の期間では一定温度であるた
め、結果的に、補充水の混入は受水槽25の水の温度を
一定温度下げることに働く。この受水槽25の混合水を
原水ポンプ29によって導電率改善装置26に送水する
ので、導電率改善装置26の入り口の水温は所定の範囲
に入るよう制御される。The temperature detector 37 is the conductivity improving device 2
The temperature of the water passed to 6 is detected at the entrance. Due to the detected temperature, the blowdown water piping 34a,
If the temperature becomes lower than the required temperature, the motor-operated valves 36a and 36b provided on the motor-operated valve 36a
When the valve opening of the motor-operated valve 36b is changed to the closing direction and the valve opening of the motor-operated valve 36b is changed to the opening direction, and when this temperature becomes higher than the required temperature, the valve opening of the motor-operated valve 36a is changed. In the opening direction, the valve opening of the motor-operated valve 36b is changed so as to be in the closing direction, the flow rate of the blowdown water passing through the respective pipelines 34a, 34b is adjusted, and the water is stored in the water receiving tank 25. In the receiving tank 25, city water is further mixed as supplementary water,
This replenishment is a constant amount according to the consumption amount of steam sent from the steam separator 22 to the reformer and the like, and the water temperature of the city water is a constant temperature in the period of the cycle of the valve control described above. The mixing of the replenishment water works to lower the temperature of the water in the water receiving tank 25 by a constant temperature. Since the mixed water in the water receiving tank 25 is sent to the conductivity improving device 26 by the raw water pump 29, the water temperature at the inlet of the conductivity improving device 26 is controlled to fall within a predetermined range.
【0031】以上のようにこの実施例1によれば、導電
率改善装置26の逆浸透膜27に通水する水の温度を逆
浸透膜の性能を維持するための適切な温度に保つことが
でき、低水温による逆浸透膜27の通水抵抗増加を避
け、再生水量即ち、補給水の水量不足を来すことなく、
不用意なプラントトリップを避けることができ、また逆
に、高水温による逆浸透膜27の劣化を防ぎ、逆浸透膜
27の寿命を長くすることができるという効果がある。
さらに、冷却されたブローダウン水とそのままの高温の
ブローダウン水の混合率を変化させることによって、所
定の温度に制御するように電動弁36a,36bを制御
するので、ブローダウン水として取り出す全体量を一定
にしたまま、導電率改善装置26の通水温度を制御する
ことができるという効果がある。As described above, according to the first embodiment, the temperature of the water passing through the reverse osmosis membrane 27 of the conductivity improving device 26 can be maintained at an appropriate temperature for maintaining the performance of the reverse osmosis membrane. It is possible to avoid an increase in the water resistance of the reverse osmosis membrane 27 due to the low water temperature, and without causing a shortage of the amount of regenerated water, that is, the amount of makeup water.
There is an effect that an inadvertent plant trip can be avoided, and conversely, deterioration of the reverse osmosis membrane 27 due to high water temperature can be prevented and the life of the reverse osmosis membrane 27 can be extended.
Furthermore, since the motorized valves 36a and 36b are controlled so as to control the temperature to a predetermined temperature by changing the mixing ratio of the cooled blowdown water and the high temperature blowdown water as it is, the total amount taken out as blowdown water. There is an effect that the water flow temperature of the conductivity improving device 26 can be controlled while keeping the above constant.
【0032】また、上記実施例1では、ブローダウン水
の流量をそれぞれの配管路34a,34bに設けた電動
弁36a,36bの弁開度により調整するようにした例
で説明したが、この弁は電磁弁であってもよく、その場
合、温度検出器37の検出する温度により、この温度が
所要温度より低い温度となった場合には、電磁弁36a
を閉に、電磁弁36bを開にし、この温度が所要の温度
より高い温度となった場合には、電磁弁36aを開に、
電動弁36bを閉に切り替えることにより、上記実施例
1と同様の効果を得ることができる。In the first embodiment, the flow rate of blowdown water is adjusted by the valve opening of the motor-operated valves 36a and 36b provided in the pipe lines 34a and 34b. May be a solenoid valve, and in this case, when this temperature becomes lower than the required temperature due to the temperature detected by the temperature detector 37, the solenoid valve 36a
Is closed and the solenoid valve 36b is opened. When this temperature becomes higher than the required temperature, the solenoid valve 36a is opened.
By switching the electric valve 36b to the closed state, the same effect as that of the first embodiment can be obtained.
【0033】また、上記実施例1では、ブローダウン水
の流量を調節することにより、導電率改善装置26の通
水温度を制御したが、熱交換器35を冷却する市水また
は工水の流量を調節することによって、熱交換器35の
熱交換率を変化させて水温の制御を行ってもよい。即
ち、熱交換器35の冷却水側の配管路に設けた電動弁の
開度を、温度検出器37の検出する導電率改善装置26
の入り口の水温に応じて調節することによって、上記実
施例1と同様の効果を得ることができる。In the first embodiment, the flow rate of the blow-down water is adjusted to control the water flow temperature of the conductivity improving device 26. However, the flow rate of city water or industrial water for cooling the heat exchanger 35 is controlled. The water temperature may be controlled by changing the heat exchange rate of the heat exchanger 35 by adjusting the. That is, the conductivity improving device 26 in which the temperature detector 37 detects the opening degree of the motor-operated valve provided in the cooling water side piping of the heat exchanger 35.
By adjusting according to the water temperature at the entrance of the, it is possible to obtain the same effect as in the first embodiment.
【0034】実施例2.図2はこの発明の実施例2であ
る燃料電池発電設備の水処理システムを示す系統線図で
あり、実施例1を示す図1の系統線図に対して、ブロー
ダウン水の冷却に市水を用いる熱交換器35の代わり
に、水蒸気分離器22に戻す補給水を使用した熱交換器
38を設けたものである。取り出されたばかりのブロー
ダウン水は、水蒸気分離器22の内部温度約170℃を
保っており、一方、導電率改善装置26の入り口では、
上記実施例1に述べたように逆浸透膜27の性能を維持
するため40℃以下に制御されているので、補給水の水
温は上記ブローダウン水に比べて低い温度に保たれてい
る。熱交換器38はこれらの水の間で熱交換する。Embodiment 2 FIG. FIG. 2 is a system diagram showing a water treatment system of a fuel cell power generation facility according to a second embodiment of the present invention. In contrast to the system diagram of FIG. In place of the heat exchanger 35 using, the heat exchanger 38 using makeup water to be returned to the steam separator 22 is provided. The blow-down water just taken out maintains the internal temperature of the steam separator 22 of about 170 ° C., while at the entrance of the conductivity improving device 26,
Since the reverse osmosis membrane 27 is maintained at a temperature of 40 ° C. or lower as described in Example 1 above, the temperature of the makeup water is kept lower than that of the blowdown water. The heat exchanger 38 exchanges heat between these waters.
【0035】従って実施例2では、実施例1に述べた効
果に加えて、補給水の温度を上昇させて水蒸気分離器2
2の温度と補給水温度の格差を小さくしてから水蒸気分
離器22に戻すので、従来に比べて水蒸気分離器22の
保有熱量を有効に利用することができ、即ち余剰熱が増
え、燃料電池発電設備全体として高い総合熱効率を得る
ことができるという効果がある。Therefore, in the second embodiment, in addition to the effect described in the first embodiment, the temperature of the makeup water is increased to increase the temperature of the water vapor separator 2
Since the difference between the temperature of No. 2 and the makeup water temperature is reduced and then returned to the steam separator 22, the heat quantity of the steam separator 22 can be used more effectively than before, that is, the surplus heat increases and the fuel cell There is an effect that a high total thermal efficiency can be obtained for the entire power generation facility.
【0036】実施例3.図3はこの発明の実施例3であ
る燃料電池発電設備の水処理システムを示す系統線図で
あり、実施例2を示す図2の系統線図に加えて、導電率
改善装置26の出口側に、この装置26によって水処理
された再生水を一旦蓄えておく中間槽39を設けたもの
である。導電率改善装置26を通して処理された再生水
は一旦中間槽39に蓄えられる。中間槽39は、水面が
大気圧に開放されており、補給水供給ポンプ30は、こ
の中間槽39に貯まった再生水を取り込み、補給水とし
て熱交換器38を経て水蒸気分離器22に送水する。補
給水供給ポンプ30は、中間槽39の水位が所定以上に
なったら運転し、また、所定以下になれば停止するよう
にするように運転する。また、中間槽39からオーバー
フローする再生水は排水する。Example 3. 3 is a system diagram showing a water treatment system for a fuel cell power generation facility according to a third embodiment of the present invention. In addition to the system diagram shown in FIG. In addition, an intermediate tank 39 for temporarily storing the reclaimed water treated by the device 26 is provided. The reclaimed water processed through the conductivity improving device 26 is temporarily stored in the intermediate tank 39. The water surface of the intermediate tank 39 is open to the atmospheric pressure, and the makeup water supply pump 30 takes in the regenerated water stored in the intermediate tank 39 and sends it as makeup water to the steam separator 22 via the heat exchanger 38. The makeup water supply pump 30 is operated when the water level in the intermediate tank 39 is above a predetermined level, and is stopped when the water level is below a predetermined level. Further, the reclaimed water overflowing from the intermediate tank 39 is drained.
【0037】以上のように、この実施例3によれば、実
施例1〜実施例2に述べた効果に加え、補給水供給ポン
プ30の入り口圧力は常に大気圧に維持されるとともに
入り口流量が確保されるため、導電率改善装置26の逆
浸透膜27およびイオン交換樹脂28が目詰まりして導
電率改善装置26の出口の水圧が下がり、補給水供給ポ
ンプ30の流量不足、入り口圧負圧によるキャビテーシ
ョンを防ぐことができ、ポンプの不用意な故障がなくな
るという効果がある。また、補給水の必要量の変動は、
中間槽39によって吸収することができるので、導電率
改善装置26を通した再生水の量は、常に一定にするこ
とができ、導電率改善装置26は、瞬間的に必要とされ
る最大必要水量に合わせた再生能力を持つ必要がなく、
小容量化できるという効果がある。As described above, according to the third embodiment, in addition to the effects described in the first and second embodiments, the inlet pressure of the makeup water supply pump 30 is always maintained at atmospheric pressure and the inlet flow rate is kept constant. Since this is ensured, the reverse osmosis membrane 27 and the ion exchange resin 28 of the conductivity improving device 26 are clogged, the water pressure at the outlet of the conductivity improving device 26 decreases, the flow rate of the makeup water supply pump 30 is insufficient, and the inlet pressure negative pressure is reduced. It is possible to prevent cavitation due to the above, and to prevent an accidental failure of the pump. Also, the change in the required amount of makeup water is
Since it can be absorbed by the intermediate tank 39, the amount of reclaimed water that has passed through the conductivity improving device 26 can always be kept constant, and the conductivity improving device 26 can instantaneously reach the maximum required water amount. You don't have to have a combined playback capability,
The effect is that the capacity can be reduced.
【0038】実施例4.図4はこの発明の実施例4であ
る燃料電池発電設備の水処理システムを示す系統線図で
あり、実施例3を示す図3の系統線図に加えて、安全弁
33から排水される余剰水を中間槽39に戻す余剰水水
路40を設けたものである。水蒸気分離器22より消費
される水の量は、燃料電池の発電出力により異なり、ま
た、一定出力であっても消費水量と供給水量の制御タイ
ミングにずれが生ずるため、常に変動している。このた
め、補給水の流量を調節する調節弁31により、水蒸気
分離器22の水位が一定になるように、補給水の水量が
制御されている。水蒸気分離器22での必要な補給水の
量が少ないときは、補給水が余剰となり補給水供給ポン
プ30の吐出圧が異常に高くなってしまうので圧力解放
のために安全弁33を設けて、この回路より余剰水を逃
がしている。しかし、従来の水処理システムではこの余
剰水を系外へ放出していたために、高純度な再生水が無
駄に廃棄されていた。Example 4. 4 is a system diagram showing a water treatment system of a fuel cell power generation facility according to a fourth embodiment of the present invention. In addition to the system diagram of FIG. 3 showing the third embodiment, surplus water discharged from the safety valve 33 is shown. A surplus water channel 40 for returning the water to the intermediate tank 39 is provided. The amount of water consumed by the water vapor separator 22 varies depending on the power generation output of the fuel cell, and even if the output is constant, there is a deviation in the control timing of the amount of consumed water and the amount of supplied water, so it constantly fluctuates. Therefore, the amount of make-up water is controlled by the control valve 31 that adjusts the flow rate of make-up water so that the water level of the steam separator 22 becomes constant. When the required amount of make-up water in the steam separator 22 is small, the make-up water becomes excessive and the discharge pressure of the make-up water supply pump 30 becomes abnormally high. Therefore, a safety valve 33 is provided to release the pressure. Excess water is escaping from the circuit. However, in the conventional water treatment system, since this surplus water was discharged to the outside of the system, the high-purity reclaimed water was wasted.
【0039】この実施例4では、安全弁33から排水さ
れる余剰水を中間槽39に戻す余剰水水路40を設け、
上記余剰水を中間槽39に戻し貯水することにより、余
剰水を再利用するようにしたものである。このように構
成することにより、この実施例4によれば、実施例1〜
実施例3に述べた効果に加え、安全弁33から排出され
る余剰水を中間槽39に戻すようにしたので、補給水の
需要の変動によって、導電率を改善した高純度の再生水
を無駄に余剰水として捨ててしまうことがないという効
果がある。In the fourth embodiment, a surplus water channel 40 for returning surplus water discharged from the safety valve 33 to the intermediate tank 39 is provided,
The surplus water is reused by returning it to the intermediate tank 39 and storing it. With this configuration, according to the fourth embodiment,
In addition to the effect described in the third embodiment, the surplus water discharged from the safety valve 33 is returned to the intermediate tank 39. Therefore, due to fluctuations in the demand for makeup water, high-purity regenerated water with improved conductivity is wastefully surplus. It has the effect of not being thrown away as water.
【0040】実施例5.図5はこの発明の実施例5であ
る燃料電池発電設備の水処理システムを示す系統線図で
あり、実施例4を示す図4の系統線図に加えて、中間槽
39からオーバーフローした再生水を、受水槽25に戻
すオーバーフロー水水路41を設けたものである。中間
槽39に貯水された余剰再生水は供給量と消費量の過不
足により水位変動するがオーバーフローした場合は廃棄
すると無駄になるので、オーバーフロー水水路41を通
して、受水槽25に戻す。このように、実施例5によれ
ば、実施例1〜実施例4に述べた効果に加え、受水槽2
5への市水補充量が少なくて済むとともに市水に比べて
高純度な為、逆浸透膜27およびイオン交換樹脂28の
寿命が長くなるという効果がある。Example 5. FIG. 5 is a system diagram showing a water treatment system of a fuel cell power generation facility according to a fifth embodiment of the present invention. In addition to the system diagram of FIG. The overflow water channel 41 returning to the water receiving tank 25 is provided. The surplus reclaimed water stored in the intermediate tank 39 varies in water level due to excess and deficiency of the supply amount and the consumption amount, but when it overflows, it is wasted if discarded, and is returned to the water receiving tank 25 through the overflow water channel 41. As described above, according to the fifth embodiment, in addition to the effects described in the first to fourth embodiments, the water tank 2
Since the amount of city water to be replenished to 5 is small and the purity is higher than that of city water, the life of the reverse osmosis membrane 27 and the ion exchange resin 28 is extended.
【0041】実施例6.図6はこの発明の実施例6であ
る燃料電池発電設備の水処理システムを示す系統線図で
あり、実施例5を示す図5の系統線図に加えて、水蒸気
分離器22より燃料電池21へ電池冷却水を送水する回
路の途中に、補給水によって電池冷却水を冷却する熱交
換器42を設けたものである。燃料電池21の動作温度
を維持するためには電池冷却水温を所要の温度(約15
0℃)にする必要があるが、従来の水処理システムでは
水蒸気分離器22の冷却水温度を制御するしか方法がな
かった。しかし水蒸気分離器22の余剰熱は2重効用式
吸収式冷凍機に利用するなどの排熱利用の用途があり、
水蒸気分離器22内の水の温度レベルはできるだけ高温
に維持したまま、電池冷却水温を所要の温度にすること
が必要である。Example 6. 6 is a system diagram showing a water treatment system of a fuel cell power generation facility according to a sixth embodiment of the present invention. In addition to the system diagram of FIG. A heat exchanger 42 for cooling the battery cooling water with makeup water is provided in the middle of the circuit for supplying the battery cooling water. In order to maintain the operating temperature of the fuel cell 21, the cell cooling water temperature is set to the required temperature (about 15
However, in the conventional water treatment system, the only method is to control the cooling water temperature of the steam separator 22. However, the surplus heat of the steam separator 22 is used for exhaust heat such as being used in a double-effect absorption refrigerator.
It is necessary to keep the battery cooling water temperature at the required temperature while keeping the temperature level of the water in the steam separator 22 as high as possible.
【0042】このため、この実施例6では電池冷却水回
路に設けた熱交換器42が、補給水の水路から分岐した
補給水を用いて、電池冷却水のみを冷却する。このよう
に、実施例6によれば、実施例1〜実施例5に述べた効
果に加え、熱交換器42において、水蒸気分離器22に
戻される補給水の温度を高めるとともに、電池冷却水を
冷却するので、水蒸気分離器22の保有熱量を高く保っ
たまま、電池冷却水を低い温度に抑えることができ、他
の実施例以上に燃料電池発電設備全体として高い総合熱
効率を得ることができるという効果がある。Therefore, in the sixth embodiment, the heat exchanger 42 provided in the battery cooling water circuit cools only the battery cooling water by using the makeup water branched from the makeup water channel. Thus, according to the sixth embodiment, in addition to the effects described in the first to fifth embodiments, in the heat exchanger 42, the temperature of the makeup water returned to the steam separator 22 is increased and the battery cooling water is removed. Since the cooling is performed, it is possible to keep the cell cooling water at a low temperature while keeping the heat quantity of the steam separator 22 high, and it is possible to obtain higher overall thermal efficiency as the entire fuel cell power generation facility than in the other examples. effective.
【0043】[0043]
【発明の効果】この発明は、以上に説明したように構成
されているので、以下に示すような効果を奏する。Since the present invention is constructed as described above, it has the following effects.
【0044】この発明の請求項1に係る燃料電池発電設
備の水処理システムによれば、ブローダウン水を取り出
す配管路に設けられた熱交換器が、取り出されたブロー
ダウン水を冷却し、上記配管路に設けられた弁が、導電
率改善装置に流れる水の温度を検出する温度検出器の出
力に応じて、該配管路を流れるブローダウン水の流量を
調節するので、導電率改善装置に通水する水の温度を、
導電率改善装置の性能を維持するための適切な温度に保
つことができるという効果がある。According to the water treatment system of the fuel cell power generation facility according to claim 1 of the present invention, the heat exchanger provided in the pipe line for taking out the blowdown water cools the taken down blowdown water, The valve provided in the pipeline adjusts the flow rate of the blowdown water flowing through the pipeline according to the output of the temperature detector that detects the temperature of the water flowing through the conductivity improver. The temperature of the water flowing through
There is an effect that the temperature can be maintained at an appropriate temperature for maintaining the performance of the conductivity improving device.
【0045】この発明の請求項2に係る燃料電池発電設
備の水処理システムによれば、ブローダウン水を取り出
す配管路に設けられた熱交換器が、取り出されたブロー
ダウン水を冷却し、上記熱交換器の冷却水の配管路に設
けられた弁が、導電率改善装置に流れる水の温度を検出
する温度検出器の出力に応じて、上記冷却水の配管路を
流れる熱交換器の冷却水流量を調節するので、導電率改
善装置に通水する水の温度を、導電率改善装置の性能を
維持するための適切な温度に保つことができるという効
果がある。According to the water treatment system of the fuel cell power generation facility according to claim 2 of the present invention, the heat exchanger provided in the pipe line for taking out the blowdown water cools the blowdown water taken out, A valve provided on the cooling water piping of the heat exchanger cools the heat exchanger flowing through the cooling water piping according to the output of the temperature detector that detects the temperature of the water flowing to the conductivity improving device. Since the water flow rate is adjusted, there is an effect that the temperature of the water passing through the conductivity improving device can be maintained at an appropriate temperature for maintaining the performance of the conductivity improving device.
【0046】この発明の請求項3に係る燃料電池発電設
備の水処理システムによれば、ブローダウン水を取り出
す2つ以上の配管路のうちの少なくとも1つに設けらた
熱交換器が、該配管路を流れるブローダウン水を冷却
し、上記熱交換器を有する配管路と、上記熱交換器の無
い配管路とのそれぞれに設けられた弁が、導電率改善装
置に流れる水の温度を検出する温度検出器の出力に応じ
て、該配管路を流れるブローダウン水の流量を調節し
て、冷却されたブローダウン水と冷却されていないブロ
ーダウン水のそれぞれの水量を変化させるので、導電率
改善装置に通水する水の温度を、導電率改善装置の性能
を維持するための適切な温度に保つことができ、さら
に、冷却されたブローダウン水とそのままの高温のブロ
ーダウン水との混合率を変化させることによって、所定
の温度に制御するように上記弁を制御するようにすれ
ば、ブローダウン水として取り出す全体量を一定にした
まま、導電率改善装置の通水温度を制御することもでき
るという効果がある。According to the third aspect of the present invention, in the fuel cell power plant water treatment system, the heat exchanger provided in at least one of the two or more pipe lines for taking out the blowdown water is Cooling the blowdown water flowing through the pipeline, the valves provided in each of the pipeline having the heat exchanger and the pipeline not having the heat exchanger detect the temperature of the water flowing to the conductivity improving device. According to the output of the temperature detector, the flow rate of the blowdown water flowing through the pipe is adjusted to change the amount of each of the cooled blowdown water and the uncooled blowdown water. The temperature of the water passing through the improvement device can be maintained at an appropriate temperature for maintaining the performance of the conductivity improvement device, and further, the cooled blowdown water and the high temperature blowdown water as it is are mixed. Rate By controlling the valve so that the temperature is controlled to a predetermined temperature by controlling the flow rate, it is possible to control the water temperature of the conductivity improving device while keeping the total amount of blowdown water taken out constant. There is an effect.
【0047】この発明の請求項4に係る燃料電池発電設
備の水処理システムによれば、ブローダウン水を取り出
す配管路に設けた熱交換器の冷却を、導電率改善装置を
通過して上記電池冷却水系統へ戻す補給水によって行
い、上記熱交換器が、ブローダウン水を冷却するととも
に、補給水を加熱するので、補給水の温度を上昇させて
電池冷却水系統の温度と補給水温度との格差を小さく
し、電池冷却水系統の保有熱量を有効に利用することが
できるという効果がある。According to the fourth aspect of the present invention, in the water treatment system for the fuel cell power generation facility, the cooling of the heat exchanger provided in the pipe line for taking out the blowdown water is passed through the conductivity improving device to pass through the battery. The make-up water is returned to the cooling water system, and the heat exchanger cools the blowdown water and heats the makeup water, so the temperature of the makeup water is raised to increase the temperature of the battery cooling water system and the makeup water temperature. There is an effect that the difference between the two can be reduced and the amount of heat possessed by the battery cooling water system can be effectively used.
【0048】この発明の請求項5に係る燃料電池発電設
備の水処理システムによれば、熱交換器が、電池冷却水
系統へ戻す補給水と、電池冷却水系統から取り出すブロ
ーダウン水との間で熱交換し、補給水は加熱されて電池
冷却水系統に戻り、ブローダウン水は冷却して取り出さ
れるので、補給水の温度を上昇させて電池冷却水系統の
温度と補給水温度との格差を小さくし、電池冷却水系統
の保有熱量を有効に利用することができるという効果が
ある。According to the water treatment system of the fuel cell power generation facility according to the fifth aspect of the present invention, the heat exchanger is provided between the makeup water returned to the battery cooling water system and the blowdown water taken out from the battery cooling water system. , The makeup water is heated and returns to the battery cooling water system, and the blowdown water is cooled and taken out, so the temperature of the makeup water is increased and the difference between the temperature of the battery cooling water system and the makeup water temperature is increased. It is possible to effectively use the amount of heat possessed by the battery cooling water system by reducing the above.
【0049】この発明の請求項6に係る燃料電池発電設
備の水処理システムによれば、熱交換器が、燃料電池に
供給する冷却水と、電池冷却水系統に戻す補給水との間
で熱交換し、冷却水はさらに冷却されて燃料電池に供給
され、補給水は加熱されて電池冷却水系統に戻されるの
で、電池冷却水系統の保有熱量を高く保ったまま、電池
冷却水を低い温度に抑えることができ、燃料電池発電設
備全体として高い総合熱効率を得ることができるという
効果がある。According to the water treatment system of the fuel cell power generation facility according to the sixth aspect of the present invention, the heat exchanger heats the cooling water supplied to the fuel cell and the makeup water returned to the cell cooling water system. After replacement, the cooling water is further cooled and supplied to the fuel cell, and the make-up water is heated and returned to the battery cooling water system, so the temperature of the battery cooling water is kept low while keeping the heat quantity of the battery cooling water system high. Therefore, there is an effect that high overall thermal efficiency can be obtained for the entire fuel cell power generation facility.
【0050】この発明の請求項7に係る燃料電池発電設
備の水処理システムによれば、水面が大気圧に開放され
た中間槽が、導電率改善装置を通して導電率を小さくし
た補給水を一旦蓄え、補給水供給ポンプが、導電率改善
装置の出口の水圧に左右されることなく、上記中間槽に
蓄えられた補給水を電池冷却水系統に送水するので、導
電率改善装置の出口の水圧が下がり、補給水供給ポンプ
の流量不足、入り口圧負圧によるキャビテーションを防
ぐことができ、ポンプの不用意な故障がなくなるという
効果がある。また、補給水の必要量の変動は、中間槽に
よって吸収することができるので、導電率改善装置を通
した再生水の量は、常に一定にすることができ、導電率
改善装置は、瞬間的に必要とされる最大必要水量に合わ
せた再生能力を持つ必要がなく、小容量化できるという
効果がある。According to the seventh aspect of the present invention, in the water treatment system for a fuel cell power plant, the intermediate tank whose water surface is open to the atmospheric pressure temporarily stores makeup water whose conductivity has been reduced through the conductivity improving device. , The makeup water supply pump sends the makeup water stored in the intermediate tank to the battery cooling water system without being affected by the water pressure at the outlet of the conductivity improving device, so that the water pressure at the outlet of the conductivity improving device is It is possible to prevent a decrease in flow rate, insufficient flow rate of the makeup water supply pump, and cavitation due to the negative pressure of the inlet pressure. Further, since the fluctuation of the required amount of makeup water can be absorbed by the intermediate tank, the amount of reclaimed water that has passed through the conductivity improving device can be kept constant, and the conductivity improving device can instantaneously There is no need to have a regeneration capacity that matches the required maximum amount of water, and there is an effect that the capacity can be reduced.
【0051】この発明の請求項8に係る燃料電池発電設
備の水処理システムによれば、補給水供給ポンプから電
池冷却水系統に戻される補給水の経路からあふれた余剰
水を、補給水を蓄えた中間槽に返すので、補給水の需要
の変動によって、導電率を改善した高純度の再生水を無
駄にすることがないという効果がある。According to the eighth aspect of the present invention, there is provided the water treatment system for the fuel cell power generation facility, wherein the surplus water overflowing from the makeup water route returned from the makeup water supply pump to the cell cooling water system is stored in the makeup water. Since it is returned to the intermediate tank, there is an effect that high-purity reclaimed water with improved conductivity is not wasted due to fluctuations in the demand for makeup water.
【0052】この発明の請求項9に係る燃料電池発電設
備の水処理システムによれば、ブローダウン水と新たな
補充水とを一旦蓄える受水槽を設け、中間槽からあふれ
た補給水を上記受水槽に返すので、受水槽への補充する
補充水量が少なくて済むとともに、高純度なため、導電
率改善装置の寿命が長くなるという効果がある。According to the ninth aspect of the present invention, there is provided the water treatment system for the fuel cell power generation facility, which is provided with a water receiving tank for temporarily storing blowdown water and new replenishing water, and receives the replenishing water overflowing from the intermediate tank. Since the water is returned to the water tank, the amount of replenishing water to be replenished to the water receiving tank is small, and since the purity is high, the life of the conductivity improving device is extended.
【図1】 この発明の実施例1を示す燃料電池発電設備
の水処理システムの系統線図である。FIG. 1 is a systematic diagram of a water treatment system for fuel cell power generation equipment showing Embodiment 1 of the present invention.
【図2】 この発明の実施例2を示す燃料電池発電設備
の水処理システムの系統線図である。FIG. 2 is a system diagram of a water treatment system for fuel cell power generation equipment showing Embodiment 2 of the present invention.
【図3】 この発明の実施例3を示す燃料電池発電設備
の水処理システムの系統線図である。FIG. 3 is a system diagram of a water treatment system for fuel cell power generation equipment showing Embodiment 3 of the present invention.
【図4】 この発明の実施例4を示す燃料電池発電設備
の水処理システムの系統線図である。FIG. 4 is a system diagram of a water treatment system for fuel cell power generation equipment showing Embodiment 4 of the present invention.
【図5】 この発明の実施例5を示す燃料電池発電設備
の水処理システムの系統線図である。FIG. 5 is a system diagram of a water treatment system for fuel cell power generation equipment showing Embodiment 5 of the present invention.
【図6】 この発明の実施例6を示す燃料電池発電設備
の水処理システムの系統線図である。FIG. 6 is a systematic diagram of a water treatment system for fuel cell power generation equipment showing Embodiment 6 of the present invention.
【図7】 従来の燃料電池発電設備の水処理システムを
示す系統線図である。FIG. 7 is a system diagram showing a water treatment system of a conventional fuel cell power generation facility.
21 燃料電池 25 受水槽 26 導電率改善装置 30 補給水供
給ポンプ 34a,34b ブローダウン水配管路 35
熱交換器 36a,36b 電動弁 37
温度検出器 38 熱交換器 39 中間槽 40 余剰水水路 41 オーバー
フロー水水路 42 熱交換器 200 電池冷却
水系統21 Fuel Cell 25 Water Tank 26 Conductivity Improvement Device 30 Makeup Water Supply Pump 34a, 34b Blowdown Water Pipeline 35
Heat exchanger 36a, 36b Motorized valve 37
Temperature detector 38 Heat exchanger 39 Intermediate tank 40 Excess water channel 41 Overflow water channel 42 Heat exchanger 200 Battery cooling water system
Claims (9)
一部をブローダウン水として取り出し、このブローダウ
ン水と新たな補充水とを、導電率改善装置に通して導電
率を小さくして、上記電池冷却水系統へ補給水として戻
す燃料電池発電設備の水処理システムにおいて、上記ブ
ローダウン水を取り出す配管路、上記配管路に設けら
れ、取り出されたブローダウン水を冷却する熱交換器、
上記導電率改善装置に流れる水の温度を検出する温度検
出器、および上記配管路に設けられ、上記温度検出器の
検出する温度により、該配管路を流れるブローダウン水
の流量を調節する弁を備えたことを特徴とする燃料電池
発電設備の水処理システム。1. A part of cooling water is taken out as blowdown water from a cell cooling water system of a fuel cell, and the blowdown water and new supplementary water are passed through a conductivity improving device to reduce the conductivity. In the water treatment system of the fuel cell power generation facility for returning to the battery cooling water system as make-up water, a pipe passage for taking out the blowdown water, a heat exchanger provided in the pipe passage for cooling the taken down blowdown water,
A temperature detector for detecting the temperature of water flowing through the conductivity improving device, and a valve provided in the pipe line for adjusting the flow rate of blowdown water flowing through the pipe line according to the temperature detected by the temperature detector. A water treatment system for a fuel cell power generation facility, which is characterized by being provided.
一部をブローダウン水として取り出し、このブローダウ
ン水と新たな補充水とを、導電率改善装置に通して導電
率を小さくして、上記電池冷却水系統へ補給水として戻
す燃料電池発電設備の水処理システムにおいて、上記ブ
ローダウン水を取り出す配管路、上記配管路に設けら
れ、取り出されたブローダウン水を冷却する熱交換器、
上記導電率改善装置に流れる水の温度を検出する温度検
出器、および上記熱交換器を冷却する冷却水の配管路に
設けられ、上記温度検出器の検出する温度により、上記
冷却水の配管路を流れる熱交換器の冷却水流量を調節す
る弁を備えたことを特徴とする燃料電池発電設備の水処
理システム。2. A part of cooling water is taken out as blowdown water from a cell cooling water system of a fuel cell, and the blowdown water and new replenishing water are passed through a conductivity improving device to reduce the conductivity. In the water treatment system of the fuel cell power generation facility for returning to the battery cooling water system as make-up water, a pipe passage for taking out the blowdown water, a heat exchanger provided in the pipe passage for cooling the taken down blowdown water,
A temperature detector for detecting the temperature of water flowing through the conductivity improving device, and a pipe for cooling water for cooling the heat exchanger, and a pipe for the cooling water depending on the temperature detected by the temperature detector. A water treatment system for a fuel cell power generation facility, which is provided with a valve for adjusting a flow rate of cooling water of a heat exchanger flowing through the water.
一部をブローダウン水として取り出し、このブローダウ
ン水と新たな補充水とを、導電率改善装置に通して導電
率を小さくして、上記電池冷却水系統へ補給水として戻
す燃料電池発電設備の水処理システムにおいて、上記ブ
ローダウン水を取り出す2つ以上の配管路、上記配管路
のうちの少なくとも1つに設けられ、取り出されたブロ
ーダウン水を冷却する熱交換器、上記導電率改善装置に
流れる水の温度を検出する温度検出器、および上記熱交
換器を有する配管路と、上記熱交換器の無い配管路との
それぞれに設けられ、上記温度検出器の検出する温度に
より、該配管路を流れるブローダウン水の流量を調節す
る弁を備えたことを特徴とする燃料電池発電設備の水処
理システム。3. A part of cooling water is taken out as blowdown water from a cell cooling water system of a fuel cell, and the blowdown water and new replenishing water are passed through a conductivity improving device to reduce the conductivity. In the water treatment system of the fuel cell power generation facility for returning to the battery cooling water system as make-up water, at least one of the two or more pipe lines for taking out the blowdown water and the pipe line is provided and taken out. A heat exchanger for cooling blowdown water, a temperature detector for detecting the temperature of water flowing in the conductivity improving device, and a pipeline having the heat exchanger, and a pipeline having no heat exchanger, respectively. A water treatment system for a fuel cell power generation facility, comprising a valve provided to adjust the flow rate of blowdown water flowing through the pipeline according to the temperature detected by the temperature detector.
り出す配管路に設けた熱交換器の冷却を、導電率改善装
置を通過して上記電池冷却水系統へ戻す補給水によって
行うことを特徴とした請求項1または請求項3記載の燃
料電池発電設備の水処理システム。4. A heat exchanger provided in a pipe line for taking out blowdown water from the battery cooling water system is cooled by makeup water which passes through a conductivity improving device and is returned to the battery cooling water system. The water treatment system for fuel cell power generation equipment according to claim 1 or 3.
一部をブローダウン水として取り出し、このブローダウ
ン水と新たな補充水とを、導電率改善装置に通して導電
率を小さくして、上記電池冷却水系統へ補給水として戻
す燃料電池発電設備の水処理システムにおいて、上記補
給水と上記ブローダウン水との間で熱交換する熱交換器
を備えたことを特徴とする燃料電池発電設備の水処理シ
ステム。5. A part of cooling water is taken out as blowdown water from a cell cooling water system of a fuel cell, and the blowdown water and new replenishing water are passed through a conductivity improving device to reduce the conductivity. In a water treatment system of a fuel cell power generation facility for returning as make-up water to the cell cooling water system, a fuel cell power generation characterized by comprising a heat exchanger for exchanging heat between the make-up water and the blowdown water. Equipment water treatment system.
一部をブローダウン水として取り出し、このブローダウ
ン水と新たな補充水とを、導電率改善装置に通して導電
率を小さくして、上記電池冷却水系統へ補給水として戻
す燃料電池発電設備の水処理システムにおいて、上記燃
料電池に送水される冷却水を直接、上記補給水によって
冷却する熱交換器を備えたことを特徴とする燃料電池発
電設備の水処理システム。6. A part of cooling water is taken out as blowdown water from a cell cooling water system of a fuel cell, and the blowdown water and new replenishment water are passed through a conductivity improving device to reduce the conductivity. In the water treatment system of the fuel cell power generation facility for returning to the battery cooling water system as make-up water, a heat exchanger for directly cooling the cooling water sent to the fuel cell by the make-up water is provided. Water treatment system for fuel cell power generation equipment.
一部をブローダウン水として取り出し、このブローダウ
ン水と新たな補充水とを、導電率改善装置に通して導電
率を小さくして、上記電池冷却水系統へ補給水として戻
す燃料電池発電設備の水処理システムにおいて、大気圧
に開放され、上記導電率改善装置を通して導電率を小さ
くした補給水を一旦蓄える中間槽、およびこの中間槽に
蓄えられた補給水を上記電池冷却水系統に戻す補給水供
給ポンプを備えたことを特徴とする燃料電池発電設備の
水処理システム。7. A part of cooling water is taken out as blowdown water from a cell cooling water system of a fuel cell, and the blowdown water and new supplementary water are passed through a conductivity improving device to reduce the conductivity. In the water treatment system of the fuel cell power generation facility for returning as make-up water to the cell cooling water system, an intermediate tank which is opened to atmospheric pressure and temporarily stores make-up water whose conductivity has been reduced through the conductivity improving device, and this intermediate tank A water treatment system for a fuel cell power generation facility, comprising a makeup water supply pump for returning makeup water stored in the cell cooling water system.
に戻される補給水の経路からあふれた余剰水を、補給水
を蓄えた中間槽に返すことを特徴とする請求項7記載の
燃料電池発電設備の水処理システム。8. The fuel cell power generation according to claim 7, wherein the surplus water overflowing from the makeup water path returned to the cell cooling water system by the makeup water supply pump is returned to the intermediate tank storing the makeup water. Equipment water treatment system.
蓄える受水槽を設け、中間槽からあふれた補給水を上記
受水槽に返すことを特徴とする請求項7または請求項8
記載の燃料電池発電設備の水処理システム。9. The water receiving tank for temporarily storing blowdown water and new replenishing water is provided, and the replenishing water overflowing from the intermediate tank is returned to the water receiving tank.
The water treatment system of the fuel cell power generation facility described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6277822A JP2924671B2 (en) | 1994-11-11 | 1994-11-11 | Water treatment system for fuel cell power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6277822A JP2924671B2 (en) | 1994-11-11 | 1994-11-11 | Water treatment system for fuel cell power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08138708A true JPH08138708A (en) | 1996-05-31 |
JP2924671B2 JP2924671B2 (en) | 1999-07-26 |
Family
ID=17588749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6277822A Expired - Lifetime JP2924671B2 (en) | 1994-11-11 | 1994-11-11 | Water treatment system for fuel cell power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2924671B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1073139A2 (en) * | 1999-07-28 | 2001-01-31 | Joh. Vaillant GmbH u. Co. | Water supply system |
JP2002141095A (en) * | 2000-11-02 | 2002-05-17 | Matsushita Electric Ind Co Ltd | Solid polymer fuel cell system and its operating method |
JP2002270194A (en) * | 2001-03-09 | 2002-09-20 | Matsushita Electric Ind Co Ltd | Fuel cell cogeneration system |
JP2005285782A (en) * | 2005-05-20 | 2005-10-13 | Matsushita Electric Ind Co Ltd | Solid polymer type fuel cell system and its operation method |
JP2007194085A (en) * | 2006-01-19 | 2007-08-02 | Matsushita Electric Ind Co Ltd | Fuel-cell power generation system, its operation method, program, and storage medium |
JP2008016320A (en) * | 2006-07-06 | 2008-01-24 | Matsushita Electric Ind Co Ltd | Fuel cell system |
JP2011181514A (en) * | 2011-04-28 | 2011-09-15 | Panasonic Corp | Fuel cell cogeneration system |
CN113606646A (en) * | 2021-07-07 | 2021-11-05 | 华电电力科学研究院有限公司 | Automatic control system and method for drainage recovery of heat supply network |
-
1994
- 1994-11-11 JP JP6277822A patent/JP2924671B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1073139A2 (en) * | 1999-07-28 | 2001-01-31 | Joh. Vaillant GmbH u. Co. | Water supply system |
EP1073139A3 (en) * | 1999-07-28 | 2004-01-07 | Vaillant GmbH | Water supply system |
JP2002141095A (en) * | 2000-11-02 | 2002-05-17 | Matsushita Electric Ind Co Ltd | Solid polymer fuel cell system and its operating method |
JP2002270194A (en) * | 2001-03-09 | 2002-09-20 | Matsushita Electric Ind Co Ltd | Fuel cell cogeneration system |
JP2005285782A (en) * | 2005-05-20 | 2005-10-13 | Matsushita Electric Ind Co Ltd | Solid polymer type fuel cell system and its operation method |
JP2007194085A (en) * | 2006-01-19 | 2007-08-02 | Matsushita Electric Ind Co Ltd | Fuel-cell power generation system, its operation method, program, and storage medium |
JP2008016320A (en) * | 2006-07-06 | 2008-01-24 | Matsushita Electric Ind Co Ltd | Fuel cell system |
JP2011181514A (en) * | 2011-04-28 | 2011-09-15 | Panasonic Corp | Fuel cell cogeneration system |
CN113606646A (en) * | 2021-07-07 | 2021-11-05 | 华电电力科学研究院有限公司 | Automatic control system and method for drainage recovery of heat supply network |
Also Published As
Publication number | Publication date |
---|---|
JP2924671B2 (en) | 1999-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110799673B (en) | Method for operating a water electrolysis installation | |
JP3835362B2 (en) | Fuel cell system | |
CN114087904B (en) | Electric hydrogen production waste heat utilization device and method | |
JP2000208157A (en) | Fuel cell operation system | |
JPH08138708A (en) | Water treatment system of fuel cell power generating facility | |
CN115679377A (en) | Take waste heat recovery's brineelectrolysis hydrogen manufacturing system | |
KR20130102088A (en) | Water treatment system and water treatment method | |
JP4098484B2 (en) | Fuel cell system | |
JP4225112B2 (en) | Fuel cell cogeneration system | |
JP3739899B2 (en) | Fuel cell power plant and operation control method thereof | |
JP2007087623A (en) | Fuel cell power generation system and method for operating same | |
JP2010033880A (en) | Fuel cell | |
JP5025929B2 (en) | Fuel cell power generation system | |
JP2004214085A (en) | Humidifying system for fuel cell | |
JP2811905B2 (en) | Steam generator for fuel cell power generation system | |
JP2004311347A (en) | Cooling system for fuel cell | |
EP1202006A2 (en) | Absorption refrigerator | |
JP2004349248A (en) | Cooling device of fuel cell | |
JP2006049140A (en) | Fuel cell system | |
JP5369752B2 (en) | Fuel cell power generator | |
JP3574611B2 (en) | Exhaust heat recovery system | |
CN218756068U (en) | Take waste heat recovery's brineelectrolysis hydrogen manufacturing system | |
US20070031708A1 (en) | Fuel cell cogeneration system | |
JP2002280031A (en) | Fuel cell cogeneration system | |
JP4408269B2 (en) | Waste heat recovery system and cogeneration system |