JPH081367B2 - Image measurement method - Google Patents

Image measurement method

Info

Publication number
JPH081367B2
JPH081367B2 JP2180196A JP18019690A JPH081367B2 JP H081367 B2 JPH081367 B2 JP H081367B2 JP 2180196 A JP2180196 A JP 2180196A JP 18019690 A JP18019690 A JP 18019690A JP H081367 B2 JPH081367 B2 JP H081367B2
Authority
JP
Japan
Prior art keywords
measurement
target
screen
image
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2180196A
Other languages
Japanese (ja)
Other versions
JPH0466805A (en
Inventor
勝保 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nireco Corp
Original Assignee
Nireco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nireco Corp filed Critical Nireco Corp
Priority to JP2180196A priority Critical patent/JPH081367B2/en
Publication of JPH0466805A publication Critical patent/JPH0466805A/en
Publication of JPH081367B2 publication Critical patent/JPH081367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はTVカメラ等により撮像した画像内の測定対象
物間の相対位置を計測する画像測定方法に関する。
The present invention relates to an image measuring method for measuring a relative position between measuring objects in an image taken by a TV camera or the like.

〔従来の技術〕[Conventional technology]

微細な測定対象を顕微鏡で拡大し、TVカメラで撮像し
た画像を画像解析によって寸法等を測定することは従来
より行われている。このような場合、測定対象をできる
だけ大きく拡大した画像で画像解析を行うことにより解
析精度の向上が期待できる。そこで例えば2つの対象物
間の距離を測定するような場合、この2つの対象物が1
つの画面に入る最大の拡大率で測定が行われる。
It has been conventionally practiced to magnify a fine measurement object with a microscope and measure dimensions of an image captured by a TV camera by image analysis. In such a case, improvement in analysis accuracy can be expected by performing image analysis on an image in which the measurement target is enlarged as much as possible. So, for example, when measuring the distance between two objects, these two objects
The measurement is done at the maximum magnification that fits on one screen.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

例えば、TV受像機に用いられるブラウン管のシャドウ
マスクに形成されたマスク穴ピッチを測定するような場
合、測定対象が1画面に収まる最大の倍率で測定精度が
限定されてしまうが、一方顕微鏡の機能としてはさらに
拡大できる能力を有している場合が多い。
For example, when measuring the mask hole pitch formed in the shadow mask of a cathode ray tube used for TV receivers, the measurement accuracy is limited by the maximum magnification that the measurement target fits on one screen, but the function of the microscope As a result, they often have the ability to expand further.

本発明は、上述の問題点に鑑みてなされたものであ
り、測定対象の一方しか1画面に撮像されないような大
きな拡大率として解析精度を向上させる画像測定方法を
提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an image measurement method that improves the analysis accuracy as a large enlargement ratio such that only one measurement target is imaged on one screen.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため、測定対象毎に別々の画像と
なるよう拡大し、各画像には共通の基準物も撮像し、こ
の基準物を介して各画像の測定対象間の相対位置の測定
を行うようにしたもので、本発明の画像測定方法は、基
準体をはさんで第1対象と第2対象が存在しており、前
記第1対象と前記基準体を1画面に収まるほぼ最大の倍
率で撮像した第1画面において前記第1対象と前記基準
体との相対位置を計測した第1計測値を求め、前記第2
対象と前記基準体を1画面に収まるほぼ最大の倍率で撮
像した第2画面において前記第2大正と前記基準体との
相対位置を計測した第2計測値を求め、この第2計測値
と前記第1計測値とから前記第1対象と前記第2対象と
の相対位置を演算して求めるものである。
In order to achieve the above-mentioned object, each measurement target is enlarged so as to be a separate image, a common reference object is also captured in each image, and the relative position between the measurement objects of each image is measured via this reference object. According to the image measuring method of the present invention, the first object and the second object are present across the reference object, and the first object and the reference object are almost the maximum size that fits on one screen. A first measurement value obtained by measuring the relative position between the first object and the reference body on the first screen imaged at a magnification is obtained, and the second measurement value is obtained.
A second measurement value obtained by measuring the relative position between the second Taisho and the reference body on a second screen obtained by imaging the target and the reference body at a substantially maximum magnification that fits on one screen is obtained. The relative position between the first target and the second target is calculated and obtained from the first measurement value.

〔作 用〕[Work]

上記構成により、第1対象と第2対象の相対位置は、
第1測定値のX座標成分と第2測定値のX座標成分の差
から得られるX座標値と、第1測定値のY座標成分と第
2測定値のY座標成分の差から得られるY座標値とによ
って求めることができる。この場合基準体は第1対象と
第2対象にはさまれた位置にあるので、基準体と第1対
象、又は基準体と第2対象をそれぞれ別の画面に収める
場合、第1対象と第2対象を同一画面に収める場合に比
べ約半分の画面の大きさとなる。このため基準体と第1
対象または基準体と第2対象をそれぞれ別の画面にほぼ
一杯に収める場合、撮像倍率をほぼ2倍にすることがで
き、測定精度もこれに応じて約2倍に向上する。これに
より対象物と基準体とが1つの画像に入っている限界ま
で拡大して測定精度を向上することができる。
With the above configuration, the relative position between the first target and the second target is
An X coordinate value obtained from the difference between the X coordinate component of the first measured value and the X coordinate component of the second measured value, and a Y obtained from the difference between the Y coordinate component of the first measured value and the Y coordinate component of the second measured value. It can be obtained by the coordinate value. In this case, the reference body is located between the first target and the second target. Therefore, when the reference body and the first target or the reference body and the second target are stored in different screens, respectively, The size of the screen is about half that of the case where two objects are fit on the same screen. Therefore, the reference body and the first
When the object or the reference object and the second object are almost completely filled in different screens, the imaging magnification can be almost doubled, and the measurement accuracy is correspondingly improved to approximately double. As a result, the object and the reference body can be expanded to the limit of being included in one image, and the measurement accuracy can be improved.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例による画像測定方法を説明す
る図面である。第1図を説明するのに先立って、計測対
象について説明する。第2図はTV受像機用ブラウン管の
シャドウマスクに形成されたマスク穴の拡大画像であ
る。ブラウン管上に鮮明な映像を得るためにはマスク穴
のピッチを所定の許容値以内に収める必要がある。この
ため製品のピッチ検査が行われる。ところでテレビ映像
は画面の緻密さへの対応と描画の高速性への対応を両立
させる手段としてインタレース(飛び越し走査)を行っ
ている。このため、1画面(1フレーム)を2つのフィ
ールドで構成する。このフィールドは奇数番目の走査線
からなる奇数フィールドと偶数番目の走査線からなる偶
数フィールドから成る。ゆえに第2図においてマスク穴
2と4の隣接ピッチLと共に1つ飛んだピッチP(マス
ク穴1と3)を計測する必要がある。このため第2図に
示すようにマスク穴1〜4が同一画面に入るような拡大
率の画面5からピッチL,Pを測定すればよいが、これら
全てのマスク穴1〜4が入る画面とすると十分な測定精
度が得られない。第1図,第3図〜第5図はこれを解決
した本実施例を示したものであり、第1図はこれら4つ
のマスク穴の相対関係を示し、第3図〜第5図はこれら
のマスク穴1〜4のうち、隣接するマスク穴2つが完全
に画面に入る最大の拡大率の画面を示した図である。
FIG. 1 is a diagram illustrating an image measuring method according to an embodiment of the present invention. Prior to explaining FIG. 1, the measurement target will be described. FIG. 2 is an enlarged image of a mask hole formed in a shadow mask of a cathode ray tube for a TV receiver. In order to obtain a clear image on the cathode ray tube, it is necessary to keep the pitch of the mask holes within a predetermined allowable value. Therefore, the pitch inspection of the product is performed. By the way, television images are interlaced (interlaced scanning) as a means for achieving both high resolution of the screen and high speed of drawing. Therefore, one screen (one frame) is composed of two fields. This field consists of an odd field consisting of odd scan lines and an even field consisting of even scan lines. Therefore, in FIG. 2, it is necessary to measure the pitch P (mask holes 1 and 3) which is skipped by one along with the adjacent pitch L between the mask holes 2 and 4. Therefore, as shown in FIG. 2, the pitches L and P may be measured from the screen 5 having an enlargement ratio such that the mask holes 1 to 4 are in the same screen. Then, sufficient measurement accuracy cannot be obtained. FIGS. 1 and 3 to 5 show this embodiment in which this is solved. FIG. 1 shows the relative relationship of these four mask holes, and FIGS. 3 to 5 show these. FIG. 7 is a diagram showing a screen with a maximum enlargement ratio in which two adjacent mask holes of the mask holes 1 to 4 completely enter the screen.

次に本実施例を用いて計測を行う装置について第6図
により説明する。第6図は画像解析装置の一例を示した
もので、10はXYステージでXYステージ制御部11により制
御され、X軸,Y軸方向の2次元移動を行う。12は自動焦
点機構で自動焦点制御部13により制御され上部に置かれ
た測定対象14に焦点が合うよう上下方向に移動する。15
は拡大率の大きなミクロ用カメラでありカメラコントロ
ール18により制御され、16は拡大率の小さなマクロ用カ
メラでカメラコントロール19により制御される。ミクロ
用カメラ15とマクロ用カメラ16はビデオ切換20により切
換えられる。測定対象14には照明装置17により適切な照
明がなされる。ミクロ用カメラ18,マクロ用カメラ16の
出力はビデオ切換20により切換えられ画像処理部21で処
理されCRT23に表示される。XYステージ10および自動焦
点機構14の動作は演算制御部22で制御されCRT23に表示
される。制御演算部22はパーソナルコンピュータ24によ
り制御されその結果はプリンタ25に出力される。
Next, an apparatus for performing measurement using this embodiment will be described with reference to FIG. FIG. 6 shows an example of the image analysis apparatus. Reference numeral 10 denotes an XY stage which is controlled by the XY stage controller 11 to perform two-dimensional movement in the X-axis and Y-axis directions. An automatic focus mechanism 12 is controlled by an automatic focus control unit 13 and moves vertically so that a measuring object 14 placed on the upper side is focused. Fifteen
Is a micro camera with a large magnification and is controlled by a camera control 18, and 16 is a macro camera with a small magnification and is controlled by a camera control 19. The micro camera 15 and the macro camera 16 are switched by the video switch 20. The measuring object 14 is appropriately illuminated by the illumination device 17. The outputs of the micro camera 18 and the macro camera 16 are switched by the video switch 20, processed by the image processing unit 21, and displayed on the CRT 23. The operations of the XY stage 10 and the automatic focusing mechanism 14 are controlled by the arithmetic and control unit 22 and displayed on the CRT 23. The control calculation unit 22 is controlled by the personal computer 24, and the result is output to the printer 25.

次に上記画像解析装置を用いて、ピッチLおよびPを
計測する方法を説明する。ピッチL,Pを計測するにあた
りマスク穴の長手方向の重心(中心)を通る中心線をCR
T23の走査線と約45度の方向に合わせる。ここで中心線
を求めるにはマクロ用カメラ16に切換え第2図に示す視
野5においてほぼ同一線上にある3個以上のマスク穴の
像の重心に対して回帰直線(厳密には最小自乗法で求め
るが、目視でも十分である)を求めこれを中心線とす
る。約45度とするのは次の理由による。
Next, a method of measuring the pitches L and P using the image analysis device will be described. When measuring the pitches L and P, the center line passing through the center of gravity (center) in the longitudinal direction of the mask hole is CR
Align with the scan line of T23 about 45 degrees. Here, in order to obtain the center line, the macro camera 16 is switched to and a regression line (strictly, the least squares method is applied to the centroids of the images of three or more mask holes that are substantially on the same line in the visual field 5 shown in FIG. It is found, but it is sufficient by visual observation) and this is used as the center line. The reason for setting the angle to about 45 degrees is as follows.

約45度にするのは、画像解析により直線距離を測定す
る場合には、その直線を走査線に対して45度にしてその
直線を表示する画素数を最大にして測定すれば誤差が少
ないことが知られているからである。走査線との角度θ
はおよそ45度でよいがこの角度は計測中は一定値に固定
する。つまり、XYステージ10のX,Y方向への移動は行う
が、測定対象14やXYステージの回転を行わないようにす
る。このように水平走査線に対し約45度に固定した後、
まず、第3図に示すようにピッチPを求める場合は、ミ
クロ用カメラ15に切換えマスク穴1と基準マスク穴2と
が入る最大の拡大率となる視野6にし、基準マスク穴2
を基準としてマスク穴1の重心のX座標X1,Y座標Y1を求
める。なお各マスク穴の重心を求める方法は、公知の方
法による。また計測値X,Yについては正負の符号も考慮
する。次に第4図に示すように基準マスク穴2とマスク
穴3の入る最大拡大率となる視野7とし、同様に基準マ
スク穴2を基準としたX2,Y2の値を求める。これらの計
測値からピッチPは次のように求まる。
About 45 degrees means that when measuring the straight line distance by image analysis, the error will be small if the straight line is set to 45 degrees with respect to the scanning line and the number of pixels displaying that straight line is maximized. Is known. Angle with scanning line θ
Can be about 45 degrees, but this angle is fixed at a constant value during measurement. That is, the XY stage 10 is moved in the X and Y directions, but the measurement target 14 and the XY stage are not rotated. After fixing at about 45 degrees to the horizontal scanning line in this way,
First, when the pitch P is obtained as shown in FIG. 3, the field of view 6 having the maximum expansion rate in which the switching mask hole 1 and the reference mask hole 2 enter the micro camera 15 is set, and the reference mask hole 2 is set.
The X coordinate X 1 and the Y coordinate Y 1 of the center of gravity of the mask hole 1 are obtained with reference to. A known method is used to obtain the center of gravity of each mask hole. For the measured values X and Y, positive and negative signs are also considered. Next, as shown in FIG. 4, a field of view 7 having the maximum expansion rate in which the reference mask hole 2 and the mask hole 3 enter is set, and values of X 2 and Y 2 are similarly obtained with the reference mask hole 2 as a reference. The pitch P is obtained from these measured values as follows.

次にピッチLを求める。第5図に示すようにマスク穴
3を基準とし、マスク穴4のX3,Y3座標を求め、次式よ
りLを求める。このときも正負の符号を考慮する。この
場合基準穴がマスク穴2よりマスク穴3に変わるので
X2,Y2はマスク穴3を原点とした値となり符号が変わ
る。
Next, the pitch L is obtained. As shown in FIG. 5, with the mask hole 3 as a reference, the X 3 and Y 3 coordinates of the mask hole 4 are obtained, and L is obtained from the following equation. Also in this case, positive and negative signs are considered. In this case, the reference hole changes from mask hole 2 to mask hole 3
X 2 and Y 2 are values with the mask hole 3 as the origin, and the sign changes.

上記の例では重心の座標を求めたが、穴の形が直交す
る対称軸を有するときには、水平等分径と垂直等分径の
座標を用いることにより演算を簡略化できる。
In the above example, the coordinates of the center of gravity are obtained, but when the shape of the hole has axes of symmetry that are orthogonal to each other, the calculation can be simplified by using the coordinates of the horizontal equal division and the vertical equal division.

〔発明の効果〕〔The invention's effect〕

以上の説明から明らかなように、本発明は、測定対象
とこれに隣接する基準体が入る大きさ限度まで拡大した
画面で両者の相対位置を測定し、この基準体を介して各
画像の測定対象間の相対位置を測定することにより、1
つの画面に測定対象同志を撮像する場合より、拡大率を
大きくすることができるので測定精度を向上することが
可能となる。
As is clear from the above description, the present invention measures the relative positions of the measurement object and the reference body adjacent to this on a screen enlarged to a size limit that can be entered, and measures each image through this reference body. By measuring the relative position between objects,
It is possible to improve the measurement accuracy because the enlargement ratio can be increased as compared with the case where the measurement targets are imaged on one screen.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例において測定対象間の関係を示
す図、第2図は測定対象のマクロ画像、第3図〜第5図
は測定対象と基準体のミクロ画像、第6図は本実施例を
実施する画像解析装置を示す図である。 1〜4……マスク穴、5〜8……視野 10……XYステージ、12……自動焦点機構 14……測定対象、15……ミクロ用カメラ 16……マクロ用カメラ、21……画像処理部 22……制御演算部、23……CRT
FIG. 1 is a diagram showing a relationship between measurement objects in an embodiment of the present invention, FIG. 2 is a macro image of the measurement object, FIGS. 3 to 5 are micro images of the measurement object and the reference body, and FIG. It is a figure which shows the image analysis apparatus which implements a present Example. 1 to 4 ... Mask hole, 5 to 8 ... Field of view 10 ... XY stage, 12 ... Autofocus mechanism 14 ... Measurement target, 15 ... Micro camera 16 ... Macro camera, 21 ... Image processing Part 22 …… Control calculation part, 23 …… CRT

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基準体をはさんで第1対象と第2対象が存
在しており、前記第1対象と前記基準体を1画面に収ま
るほぼ最大の倍率で撮像した第1画面において前記第1
対象と前記基準体との相対位置を計測した第1計測値を
求め、前記第2対象と前記基準体を1画面に収まるほぼ
最大の倍率で撮像した第2画面において前記第2対象と
前記基準体との相対位置を計測した第2計測値を求め、
この第2計測値と前記第1計測値とから前記第1対象と
前記第2対象との相対位置を演算して求めることを特徴
とする画像測定方法。
1. A first object and a second object are present across a reference object, and the first object and the reference object are imaged at a maximum magnification that fits in one screen, and the first object is displayed on the first object. 1
A first measurement value obtained by measuring the relative position between the target and the reference body is obtained, and the second target and the reference are displayed on the second screen in which the second target and the reference body are imaged at a maximum magnification that fits in one screen. Obtain the second measurement value that measures the relative position with the body,
An image measuring method, characterized in that a relative position between the first target and the second target is calculated from the second measurement value and the first measurement value.
JP2180196A 1990-07-06 1990-07-06 Image measurement method Expired - Fee Related JPH081367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2180196A JPH081367B2 (en) 1990-07-06 1990-07-06 Image measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2180196A JPH081367B2 (en) 1990-07-06 1990-07-06 Image measurement method

Publications (2)

Publication Number Publication Date
JPH0466805A JPH0466805A (en) 1992-03-03
JPH081367B2 true JPH081367B2 (en) 1996-01-10

Family

ID=16079080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2180196A Expired - Fee Related JPH081367B2 (en) 1990-07-06 1990-07-06 Image measurement method

Country Status (1)

Country Link
JP (1) JPH081367B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116402A (en) * 1987-10-30 1989-05-09 Fuji Photo Film Co Ltd Method and apparatus for measuring dimension of rectangular sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116402A (en) * 1987-10-30 1989-05-09 Fuji Photo Film Co Ltd Method and apparatus for measuring dimension of rectangular sheet

Also Published As

Publication number Publication date
JPH0466805A (en) 1992-03-03

Similar Documents

Publication Publication Date Title
US6031941A (en) Three-dimensional model data forming apparatus
JP2760786B2 (en) Scanning electron microscope and method of moving its sample stage
JPS5953500B2 (en) X-ray fluoroscopy equipment
TWI415161B (en) Charged-particle beam imaging system and method of raster scanning a sample on a continuously moving stage for charged- particle beam imaging said sample
KR100240133B1 (en) Imaging apparatus
JP6161798B2 (en) Image acquisition method and image acquisition apparatus using the same
JPH081367B2 (en) Image measurement method
JPH0969973A (en) Position adjusting method for solid-state image pickup element
JP2001155674A (en) Measurement method and correction method of the deviation of electron beam scanning axis with stage moving axis and stage moving error in scanning electron microscope
JPH0365973B2 (en)
JP2000149848A (en) Transmission electron microscope image observation device
JPH087818A (en) Scanning electron microscope
JP3742086B2 (en) Projector having tilt angle measuring device
JP2003214821A (en) Video type width measuring apparatus
US4737640A (en) Electron microscope
JP2775650B2 (en) Tomography equipment
JPH0658221B2 (en) Scanning electron microscope
JP7277267B2 (en) Measuring device, imaging device, measuring system and program
JPS6361108A (en) Apparatus for confirming three-dimensional object
JP2516587B2 (en) Shape identification method
JPH0665016B2 (en) electronic microscope
JPH0341307A (en) Systems for picking up image and preparing drawing
JPH04184849A (en) Electron microscope
WO2020194541A1 (en) Inspection device
JPH01109650A (en) High speed display of secondary charged particle image

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Effective date: 20040414

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040525

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090625

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090625

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100625

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250