JPH08136688A - Reactor core performance monitoring system - Google Patents

Reactor core performance monitoring system

Info

Publication number
JPH08136688A
JPH08136688A JP6274720A JP27472094A JPH08136688A JP H08136688 A JPH08136688 A JP H08136688A JP 6274720 A JP6274720 A JP 6274720A JP 27472094 A JP27472094 A JP 27472094A JP H08136688 A JPH08136688 A JP H08136688A
Authority
JP
Japan
Prior art keywords
mcpr
mlhgr
monitoring system
core performance
performance monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6274720A
Other languages
Japanese (ja)
Inventor
Toru Kanazawa
徹 金沢
Koji Nishida
浩二 西田
Akihito Orii
明仁 折井
Masao Chagi
雅夫 茶木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6274720A priority Critical patent/JPH08136688A/en
Publication of JPH08136688A publication Critical patent/JPH08136688A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE: To evaluate the effect of abnormal transient on fuel integrity. CONSTITUTION: MCPR and MLHGR calculation program in a reactor core performance monitoring system is activated simultaneously to the occurrence of an abnormal transient. To enable the calculation program to calculate MCPR and MLHGR in real time as far as possible or just after recovering normal operation even in impossible case, a memory device for storing core state data and LPRM data is provided. For the MCPR calculation, an analytical code capable of calculating the coolant flow after boiling transition is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子炉の高効率運転,
安全性向上に寄与するための炉心性能監視システムに関
する。
BACKGROUND OF THE INVENTION The present invention relates to highly efficient operation of a nuclear reactor,
The present invention relates to a core performance monitoring system for improving safety.

【0002】[0002]

【従来の技術】原子炉燃料の熱的限界値の基準は、以下
の二つである。一つは、燃料被覆管の温度を異常に高く
することなく安定に熱除去できる限界の熱出力、すなわ
ち、冷却材が沸騰遷移を起こさない限界の熱出力であ
り、もう一つは、燃料ペレットの膨張により被覆管に過
大な歪を与えることのない限界の線出力密度である。前
者に対しては最小限界出力比(MCPR:Minimum Crit
ical Power Ratio)、後者には最大線出力密度(MLH
GR:Maximum Linear Heat Generation Ratio)に運転
上の制限値を設けることによって、燃料の健全性を保持
している。ここで、MCPRは燃料集合体の限界熱出力
と運転出力との比のうち炉心内での最小値、また、ML
HGRは局所的な線出力密度の許容最大値である。MC
PRおよびMLHGRのいずれも、異常な過渡変化によ
る出力変化を考慮し、制限値に十分な安全余裕をとって
ある。
2. Description of the Related Art There are two criteria for the thermal limit of reactor fuel. One is the limit heat output that can stably remove heat without raising the temperature of the fuel cladding tube abnormally, that is, the limit heat output that does not cause boiling transition of the coolant, and the other is fuel pellets. This is the limit of linear power density that does not give excessive strain to the cladding tube due to the expansion of. For the former, the minimum critical power ratio (MCPR: Minimum Crit
ical power ratio), the latter being the maximum linear power density (MLH
The soundness of the fuel is maintained by setting an operating limit value in GR (Maximum Linear Heat Generation Ratio). Here, MCPR is the minimum value in the core of the ratio of the limit heat output of the fuel assembly to the operation output, and ML
HGR is the maximum allowable linear power density. MC
Both PR and MLHGR have a sufficient safety margin for the limit value in consideration of the output change due to the abnormal transient change.

【0003】沸騰水型原子炉の場合、MCPRおよびM
LHGRは、プロセス計算機によって1時間ごとに計算
され、運転員に監視されている。図2に、従来の炉心性
能計算の流れの概略を示す。炉心の状態データ(炉心流
量,ヒートバランス,制御棒パタンなど)および局所出
力領域モニタ(LPRM:Local Power Range Monitor)
信号から、三次元シミュレータによって炉心内の出力分
布が計算され、MCPRおよびMLHGRが求められ
る。燃料の限界出力は実規模熱水力試験に基づく実験式
によって計算されている。
For boiling water reactors, MCPR and M
LHGR is calculated by the process computer every hour and is monitored by the operator. FIG. 2 shows an outline of the flow of the conventional core performance calculation. Core status data (core flow rate, heat balance, control rod pattern, etc.) and local power range monitor (LPRM)
From the signal, the power distribution in the core is calculated by a three-dimensional simulator, and MCPR and MLHGR are obtained. The fuel limit output is calculated by an empirical formula based on a full-scale thermal-hydraulic test.

【0004】[0004]

【発明が解決しようとする課題】MCPRおよびMLH
GRには十分な安全余裕がとってあるので、原子炉の定
常運転時には1時間ごとのモニタでよい。しかし、異常
な過渡事象発生時には、炉心特性は数秒から数分のオー
ダで変化するので、1時間おきのモニタでは特性を評価
できない。燃料の信頼性維持の観点からは、異常な過渡
事象時のMCPRおよびMLHGRの経時変化をモニタ
しておくことが望ましい。異常な過渡事象時の炉心特性
を解析しておけば、燃料破損に至らずとも熱的危機にさ
らされた燃料集合体を推定でき、定期検査時などにこの
ような燃料を交換しておくこともできる。
[Problems to be Solved by the Invention] MCPR and MLH
Since the GR has a sufficient safety margin, it is sufficient to monitor every hour during steady operation of the reactor. However, when an abnormal transient event occurs, the core characteristics change on the order of several seconds to several minutes, and therefore the characteristics cannot be evaluated by a monitor every hour. From the viewpoint of maintaining fuel reliability, it is desirable to monitor changes over time in MCPR and MLHGR during abnormal transient events. By analyzing the core characteristics during abnormal transient events, it is possible to estimate the fuel assemblies that have been exposed to a thermal crisis even if the fuel has not been damaged.Replace such fuel during periodic inspections, etc. You can also

【0005】[0005]

【課題を解決するための手段】炉心特性監視システム
に、異常な過渡事象時のMCPRおよびMLHGRの変
化を、現象の推移と同程度の時間ステップで計算する機
能を付加する。
[Means for Solving the Problems] A function for calculating changes in MCPR and MLHGR during an abnormal transient event is added to a core characteristic monitoring system at a time step similar to the transition of a phenomenon.

【0006】[0006]

【作用】MCPRまたはMLHGRを非安全側に推移さ
せると考えられる過渡事象発生時に、警報信号とともに
自動起動される計算プログラムによって経時変化を計算
する。また、計算時間が現象の推移速度に追いつかない
場合には、炉心の状態データを記録しておき、事後に解
析する。これによって、異常な過渡事象の燃料への影響
を判定する。
When a transient event that is considered to shift MCPR or MLHGR to the unsafe side occurs, the change over time is calculated by a calculation program that is automatically activated together with an alarm signal. If the calculation time cannot catch up with the transition speed of the phenomenon, the core state data is recorded and analyzed after the fact. This determines the effect of abnormal transients on fuel.

【0007】[0007]

【実施例】図1に、本発明の計算システムにおけるMC
PRおよびMLHGRの計算の流れを簡略的に示す。従
来のBWR炉心性能監視システムにおけるMCPRおよ
びMLHGRの計算プログラム(図2)は、1時間おき
に起動される。本発明では、図1の計算を行うプログラ
ムを異常な過渡事象発生と同時に起動し、できる限りリ
アルタイムでMCPRおよびMLHGRを計算する。し
たがって、三次元シミュレータには計算高速化の工夫が
必要である。計算が事象の推移速度に追いつけない場合
でも、炉心状態データおよびLPRM出力データを記憶
装置に格納しておくことによって、定常運転復帰後に解
析することができる。また、従来のプログラムでは燃料
の限界出力計算に実験式を用いているが、図1の計算プ
ログラムでは沸騰遷移後の冷却材流動現象を扱える解析
コードなどを用いる。これによって、万一、MCPRが
許容値を下回った場合でも、燃料棒表面温度履歴を推定
できるので燃料の健全性の判断材料となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an MC in a computing system of the present invention.
The calculation flow of PR and MLHGR is shown briefly. The MCPR and MLHGR calculation programs (FIG. 2) in the conventional BWR core performance monitoring system are started every hour. In the present invention, the program for performing the calculation of FIG. 1 is started at the same time as the occurrence of an abnormal transient event, and MCPR and MLHGR are calculated in real time as much as possible. Therefore, it is necessary to devise a high-speed calculation for the 3D simulator. Even if the calculation cannot keep up with the transition speed of the event, by storing the core state data and the LPRM output data in the storage device, it is possible to analyze after returning to the steady operation. Further, in the conventional program, an empirical formula is used to calculate the fuel limit output, but in the calculation program of FIG. 1, an analysis code or the like that can handle the coolant flow phenomenon after the boiling transition is used. As a result, even if the MCPR falls below the allowable value, the fuel rod surface temperature history can be estimated, which serves as a criterion for the fuel integrity.

【0008】[0008]

【発明の効果】炉心性能監視システムに、異常な過渡事
象時のMCPRおよびMLHGRの経時変化を、現象の
推移と同程度の時間ステップで計算する機能を付加する
ことによって、燃料集合体の信頼性維持を図ることがで
きる。
EFFECT OF THE INVENTION By adding to the core performance monitoring system the function of calculating changes in MCPR and MLHGR with time during an abnormal transient event at the same time step as the transition of the phenomenon, the reliability of the fuel assembly is improved. Can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のMCPRおよびMLHGR
の計算のフローチャート。
FIG. 1 shows MCPR and MLHGR according to an embodiment of the present invention.
Calculation flowchart.

【図2】従来の炉心性能監視システムにおけるMCPR
およびMLHGRの計算のフローチャート。
FIG. 2 MCPR in a conventional core performance monitoring system
And a flow chart for calculating MLHGR.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G21C 17/06 GDB X (72)発明者 茶木 雅夫 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所エネルギー研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location G21C 17/06 GDB X (72) Inventor Masao Chaki 7-2-1, Mikamachi, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Energy Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原子炉運転中の炉心性能を監視する計算機
システムにおいて、原子炉燃料の健全性を監視するパラ
メータである最小限界出力比および/または最大線出力
密度の経時変化を1時間より短い時間間隔で計算する機
能を有することを特徴とする原子炉の炉心性能監視シス
テム。
1. A computer system for monitoring core performance during operation of a reactor, wherein the change over time of the minimum critical power ratio and / or the maximum linear power density, which is a parameter for monitoring the health of the reactor fuel, is shorter than 1 hour. A reactor core performance monitoring system having a function of calculating at time intervals.
JP6274720A 1994-11-09 1994-11-09 Reactor core performance monitoring system Pending JPH08136688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6274720A JPH08136688A (en) 1994-11-09 1994-11-09 Reactor core performance monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6274720A JPH08136688A (en) 1994-11-09 1994-11-09 Reactor core performance monitoring system

Publications (1)

Publication Number Publication Date
JPH08136688A true JPH08136688A (en) 1996-05-31

Family

ID=17545638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6274720A Pending JPH08136688A (en) 1994-11-09 1994-11-09 Reactor core performance monitoring system

Country Status (1)

Country Link
JP (1) JPH08136688A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172749A (en) * 2003-12-15 2005-06-30 Global Nuclear Fuel-Japan Co Ltd Core monitor
WO2012095932A1 (en) * 2011-01-12 2012-07-19 株式会社 東芝 Reactor core monitoring system
JP2013047666A (en) * 2011-07-27 2013-03-07 Toshiba Corp System, method, and program for monitoring reactor core
JP2013205379A (en) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd Reactor core analysis program and analysis device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172749A (en) * 2003-12-15 2005-06-30 Global Nuclear Fuel-Japan Co Ltd Core monitor
WO2012095932A1 (en) * 2011-01-12 2012-07-19 株式会社 東芝 Reactor core monitoring system
JP2012145448A (en) * 2011-01-12 2012-08-02 Toshiba Corp Reactor core monitoring system
US9842663B2 (en) 2011-01-12 2017-12-12 Kabushiki Kaisha Toshiba Core monitoring system
JP2013047666A (en) * 2011-07-27 2013-03-07 Toshiba Corp System, method, and program for monitoring reactor core
JP2013205379A (en) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd Reactor core analysis program and analysis device

Similar Documents

Publication Publication Date Title
JPH08136688A (en) Reactor core performance monitoring system
Lehto et al. Safety analysis for the loss-of-flow and loss-of-heat sink without scram tests in EBR-II
Van Tuyle et al. Analyses of unscrammed events postulated for the PRISM design
Crawford et al. RIA testing capability of the transient reactor test facility
Maekawa et al. Operating data monitoring and fatigue evaluation systems and findings for boiling water reactors in Japan
Akter et al. A fuzzy based model for safety assessment of AP-1000 and VVER-1200 nuclear reactors for cold leg break loss of coolant accident with turbine trip
Chang et al. Whole-core damage analysis of EBR-II driver fuel elements following SHRT program
JP2001099976A (en) Device and method for thermal operation margin monitoring for nuclear reactor
Matsumoto et al. Advanced Safety Analysis Methodology-Development of New Core and Safety Analysis Codes
Ma et al. Risk-Informed Analysis for Accident Tolerant Fuel in Pressurized Water Reactors
Güldner et al. Contribution of advanced fuel technologies to improve nuclear power plant operation
Lederman Safety of RBMK reactors: Setting the technical framework
Zheng Study on Methodology and Application of Seismic Level 2 Probabilistic Safety Assessment for Nuclear Power Plants
Chang et al. Evaluation of EBR-II driver-fuel elements following an unprotected station blackout accident
Bimont et al. A new approach for NSSS fatigue life assessment
wpd Page Appendix 1 Thermal Hydraulics 1. Spent Fuel Heatup Analyses Spent fuel heatup analyses model the decay power and configuration of the fuel to characterize the thermal hydraulic phenomena that will occur in the SFP and the building following a postulated loss of water accident. This appendix reviews the existing studies on spent fuel
Ishigami et al. A real-time prediction technique of severe accident progression in containment for emergency response
Perryman et al. LOFT blowdown experiment safety analysis methodology
Araya et al. Accident analyses for design of primary coolant and safety systems in high burn-up full MOX PWR
Varde et al. Risk-based approach to design evaluation-re-assessment of shutdown safety margin
Colby et al. Safety analysis of thorium-based fuels in the General Electric Standard BWR
Evdokimov et al. Workout approaches to develop an expert system for fuel failures monitoring and analysis. Trending of recent data on WWER fuel failures
Fabic Tools for plant safety engineer
Chang et al. Experimental and analytical study of loss-of-flow transients in EBR-II occurring at decay power levels
FUJISHIRO Japan Atomic Energy Research Institute