JP2005172749A - Core monitor - Google Patents

Core monitor Download PDF

Info

Publication number
JP2005172749A
JP2005172749A JP2003416521A JP2003416521A JP2005172749A JP 2005172749 A JP2005172749 A JP 2005172749A JP 2003416521 A JP2003416521 A JP 2003416521A JP 2003416521 A JP2003416521 A JP 2003416521A JP 2005172749 A JP2005172749 A JP 2005172749A
Authority
JP
Japan
Prior art keywords
boiling transition
boiling
fuel assembly
transition
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003416521A
Other languages
Japanese (ja)
Other versions
JP4600722B2 (en
Inventor
Daisuke Goto
大輔 後藤
Akihiro Yamanaka
章広 山中
Kazutaka Hida
和毅 肥田
Takanori Fukahori
貴憲 深堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Nuclear Fuel Japan Co Ltd
Original Assignee
Global Nuclear Fuel Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Nuclear Fuel Japan Co Ltd filed Critical Global Nuclear Fuel Japan Co Ltd
Priority to JP2003416521A priority Critical patent/JP4600722B2/en
Publication of JP2005172749A publication Critical patent/JP2005172749A/en
Application granted granted Critical
Publication of JP4600722B2 publication Critical patent/JP4600722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a core monitor which can realize the control over a core taking into account histories of the boiling transition in fuel assemblies for a boiling water reactor. <P>SOLUTION: The monitor has a boiling transition determination criterion preparation means 9 for preparing a criterion for determining the presence or absence of boiling transition in advance for at least one fuel assembly specified beforehand in the boiling water reactor, a data collection means 6 for collecting data showing the present operating condition of at least one fuel assembly specified beforehand, a boiling transition determination means 10 for determining the presence or absence of the boiling transition in the specified fuel assembly on the basis of the data collected by the means 6 and the criterion obtained by the means 9 and a boiling transition process recording means 11 for recording the process of the boiling transition obtained by the means 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、沸騰水型原子炉(BWR)の炉心監視装置に係り、特に、炉心が過渡変化にさらされた際に、沸騰遷移発生の有無を監視し、沸騰遷移経過・履歴を監視・記録することができる炉心監視装置に関する。   The present invention relates to a boiling water reactor (BWR) core monitoring device, and in particular, when the core is exposed to a transient change, monitors whether or not a boiling transition occurs, and monitors and records the boiling transition progress and history. The present invention relates to a core monitoring device that can perform the above.

一般に、沸騰水型原子炉において、運転中の原子炉の出力分布と熱的余裕とを正確に評価することは、原子炉を安全かつ効率的に運転するために重要である。このため、従来から、炉内に多数の中性子検出器を配置し、この中性子検出器からの検出信号に基づき、フィッティング式や三次元核熱水力モデルなどの物理モデルを用いて炉内の3次元出力分布を求め、さらに限界出力比(CPR)や線出力密度などの熱的余裕を求める炉心監視装置を設けるようにしている。   In general, in a boiling water reactor, it is important to accurately evaluate the power distribution and thermal margin of the operating reactor in order to operate the reactor safely and efficiently. For this reason, conventionally, a large number of neutron detectors are arranged in the furnace, and based on the detection signal from the neutron detector, a physical model such as a fitting formula or a three-dimensional nuclear thermal hydraulic model is used. A core monitoring apparatus is provided for obtaining a dimensional power distribution and further obtaining a thermal margin such as a critical power ratio (CPR) and a linear power density.

BWRの炉心監視装置の一例を図3に示す。原子炉圧力容器1内には、冷却材(減速材)2および炉心3が収容されている。図4はこのようなBWRの炉心の一例を示したものである。図中、101は燃料集合体、102は制御棒、103は中性子検出器集合体の水平方向位置を示しており、この例では、制御棒102は4体の燃料集合体101ごとに1本程度、中性子検出器集合体103は16体の燃料集合体101ごとに1体程度の割合で存在する。   An example of a BWR core monitoring device is shown in FIG. A coolant (moderator) 2 and a core 3 are accommodated in the reactor pressure vessel 1. FIG. 4 shows an example of such a BWR core. In the figure, 101 indicates a fuel assembly, 102 indicates a control rod, 103 indicates a horizontal position of the neutron detector assembly, and in this example, about one control rod 102 is provided for every four fuel assemblies 101. The neutron detector assembly 103 is present at a rate of about one for every 16 fuel assemblies 101.

さて、図3に示すように、炉心3内の中性子検出器集合体103内には、通常は複数の中性子検出器4が設置され、各位置における中性子束を測定できるようになっている。また、中性子検出器集合体103内を移動可能な図示しない中性子検出器も存在し、軸方向の中性子束分布を連続的に測定したり、位置が固定されている中性子検出器4を較正することができる。   Now, as shown in FIG. 3, a plurality of neutron detectors 4 are normally installed in the neutron detector assembly 103 in the core 3 so that the neutron flux at each position can be measured. There is also a neutron detector (not shown) that can move in the neutron detector assembly 103, continuously measuring the axial neutron flux distribution, and calibrating the neutron detector 4 whose position is fixed. Can do.

原子炉圧力容器1周辺には、原子炉現状データ測定器5が設置されており、この原子炉現状データ測定器5により、原子炉出力、冷却材全流量、炉内圧力、冷却材温度などの炉心現状データが測定されるようになっている。そして、この炉心現状データ測定器5からの信号S5は、前記各中性子検出器4からの信号S4とともに、データサンプラ(データ収集手段)6に入力され、その出力はさらに炉心性能評価手段7に入力されるようになっている。   Around the reactor pressure vessel 1, a reactor current data measuring device 5 is installed. By this reactor current data measuring device 5, the reactor output, the total coolant flow rate, the reactor pressure, the coolant temperature, etc. Core status data is being measured. The signal S5 from the core current data measuring device 5 is input to the data sampler (data collecting means) 6 together with the signals S4 from the neutron detectors 4, and the output is further input to the core performance evaluating means 7. It has come to be.

炉心性能評価手段7は、このデータサンプラ6からの入力と、あらかじめ入力される炉心および燃料に関する情報をもとに、炉内出力分布や、燃料棒の線出力密度、CPRなどの熱的余裕を評価するようになっている。そして算出された出力分布や熱的余裕は、入出力装置8の表示部に表示されるようになっている。   Based on the input from the data sampler 6 and information on the core and fuel input in advance, the core performance evaluation means 7 provides thermal margins such as the power distribution in the reactor, the linear power density of the fuel rods, and the CPR. It comes to evaluate. The calculated output distribution and thermal margin are displayed on the display unit of the input / output device 8.

ここでは特にCPRについてさらに説明を加える。CPRは、
CPR=(燃料集合体が沸騰遷移に至る出力)/(燃料集合体の実際の出力)
と定義され、この値が1を下回ると沸騰遷移が発生すると予測される。実際には、予測上あるいは運転上の不確定要素もあるため、運転にあたっては、炉心監視上の様々な不確かさや過渡変化を考慮しても、沸騰遷移に至る確率が十分小さくなるよう(つまりCPRが1を下回らないよう)CPRに対する運転制限値が定められている。そして炉心内の全ての燃料集合体について、適切な時間間隔でCPRが計算され、運転制限値以上であることを確認しながら運転が継続される。
Here, a further description will be given particularly regarding CPR. CPR is
CPR = (output at which fuel assembly reaches boiling transition) / (actual output of fuel assembly)
A boiling transition is expected to occur when this value is below 1. Actually, there are also uncertainties in prediction and operation, and therefore, in operation, even if various uncertainties and transient changes in core monitoring are taken into consideration, the probability of reaching a boiling transition is sufficiently small (that is, CPR). The operation limit value for CPR is defined. Then, the CPR is calculated at appropriate time intervals for all the fuel assemblies in the core, and the operation is continued while confirming that it is equal to or greater than the operation limit value.

つまり、従来は、いかなる過渡変化が生じても炉心内の燃料集合体101に沸騰遷移が生じない範囲で炉心が運転されてきたことになる。したがって、運転中に過渡変化が生じ、静定した時点で、プラントに異常がなければ、そのまま炉心の運転継続、あるいは炉心が停止された場合は再起動を行なうことが原則として可能であった。   That is, conventionally, the core has been operated in a range in which no boiling transition occurs in the fuel assembly 101 in the core regardless of any transient change. Therefore, if a transient change occurs during operation and the plant is stabilized, if there is no abnormality in the plant, it is possible in principle to continue the operation of the core as it is or to restart it when the core is stopped.

このような運用は、沸騰遷移に至らない限り、燃料被覆管は飽和冷却材の液相に包囲されて、熱伝達効率の良い核沸騰冷却状態にあり、表面温度の変化は小さく、健全性を保って継続使用が可能であるとの考えに基づくものである。このような限界条件に関する考え方を沸騰遷移基準と呼んでいる。   In such an operation, unless the boiling transition is reached, the fuel cladding is surrounded by the liquid phase of the saturated coolant and is in the nucleate boiling cooling state with good heat transfer efficiency, the change in the surface temperature is small, and the soundness is improved. This is based on the idea that it can be used continuously. This way of thinking about limit conditions is called the boiling transition criterion.

しかしながら、近年、以上とは異なる限界値の考え方が提唱されるようになってきた。そもそもCPRのような熱水力的限界値が設定されるのは、沸騰遷移によって燃料棒被覆管表面が蒸気冷却状態へと移行し熱伝達率が大幅に減少することで、被覆管表面温度が過度に高くなり、被覆管が有意に変形したり、過度の酸化による脆化破損が生じるのを防ぐことを目的とする。   However, in recent years, the idea of limit values different from the above has been proposed. In the first place, the thermohydraulic limit value such as CPR is set because the surface of the fuel rod cladding tube transitions to the steam cooling state due to boiling transition, and the heat transfer coefficient is greatly reduced. The purpose is to prevent the tube from becoming excessively high and causing significant deformation of the cladding tube and embrittlement damage due to excessive oxidation.

したがって、たとえ沸騰遷移が生じたとしても、被覆管温度の上昇が十分小さいか、このような変形や酸化反応が生じない程度の短時間に、燃料棒表面が再度液相で覆われれば(リウェットという)、被覆管の健全性を確保する目的は達成される。このような観点から定められた限界基準を、前述の沸騰遷移基準に対して時間温度基準と呼んでいる。   Therefore, even if a boiling transition occurs, if the temperature of the cladding tube is sufficiently small, or if the fuel rod surface is covered with the liquid phase again in such a short time that such deformation or oxidation reaction does not occur (rewetting) The purpose of ensuring the soundness of the cladding tube is achieved. The limit criterion determined from such a viewpoint is called a time temperature criterion with respect to the boiling transition criterion.

時間温度基準では沸騰遷移を許容しているので、当然ながら運転制限に関しては沸騰遷移基準よりも緩い基準であり、このような基準の採用によりBWRの運転自由度を拡大し、経済性を改善することができる。   Since the boiling transition is allowed in the time-temperature standard, of course, the operation restriction is a standard that is looser than the boiling transition standard. By adopting such a standard, the degree of freedom of operation of the BWR is expanded and the economy is improved. be able to.

図5は、燃料被覆管の健全性および再使用の判断基準の例を示す。図5で、横軸は沸騰遷移持続時間、縦軸は燃料被覆管温度である。時間温度基準は、図に示す二つの部分に分けて運用される。   FIG. 5 shows an example of criteria for judging the soundness and reuse of the fuel cladding. In FIG. 5, the horizontal axis represents the boiling transition duration, and the vertical axis represents the fuel cladding tube temperature. The time temperature reference is operated in two parts as shown in the figure.

第1の部分20は健全性の判断基準と呼ばれる。過渡沸騰遷移が発生した場合、燃料被覆管の破損機構は過度の酸化による脆化破損である。したがって、ある程度以下の被覆管温度、沸騰遷移持続時間の範囲であれば、被覆管の変形や酸化の度合いが小さいため、燃料の破損が生じず、事象が収束した後の燃料集合体の取り扱い時においても健全性を維持できる。このような燃料健全性のための判断基準は、燃料被覆管温度と沸騰遷移の持続時間で与えられる。   The first portion 20 is called a soundness criterion. When a transient boiling transition occurs, the failure mechanism of the fuel cladding is brittle failure due to excessive oxidation. Therefore, if the cladding tube temperature and boiling transition duration are within a certain range, the degree of deformation and oxidation of the cladding tube is small, so there is no fuel damage and when handling the fuel assembly after the event has converged. Soundness can be maintained even in Such criteria for fuel integrity are given by the temperature of the fuel cladding and the duration of the boiling transition.

時間温度基準を用いる場合は、基準が適用される運転時の異常な過渡変化時において、全ての燃料が健全性の判断基準を満たすように、通常運転時の運転制限条件が定められる。   When the time temperature reference is used, the operation restriction condition during the normal operation is determined so that all the fuels satisfy the soundness determination criteria at the time of an abnormal transient change during the operation to which the reference is applied.

時間温度基準の第2の部分22は再使用の判断基準である。現実に発生する可能性の高い多くの過渡事象は、速やかに出力が低下してリウェットするため、燃料被覆管の温度上昇は小さく、沸騰遷移持続時間は短い。この場合、燃料棒性能に係る諸特性に有意な変化がないため、事象後の燃料健全性が確保されるだけでなく、燃料集合体を再度使用しても問題は生じない。この再使用の可能性についての判断基準(第2の部分22)も、やはり燃料被覆管温度と沸騰遷移の持続時間で与えられるが、健全性の判断基準(第1の部分20)よりも範囲は小さくなる。   The second part 22 of the time temperature reference is a criterion for reuse. Many transient events that are likely to occur in reality are quickly reduced in power and rewet, so the temperature rise of the fuel cladding is small and the boiling transition duration is short. In this case, since there are no significant changes in the characteristics relating to the fuel rod performance, not only fuel integrity after the event is ensured, but there is no problem even if the fuel assembly is used again. This criterion for reusability (second part 22) is also given by the fuel cladding temperature and the duration of the boiling transition, but is more extensive than the soundness criterion (first part 20). Becomes smaller.

なお、過去において沸騰遷移を経験している燃料については、再使用の判断基準を適用できない場合がある。一般に、同一燃料に対して再使用の判断基準を適用できる回数は制限され、典型的な例としては1回のみ適用が許される。   Note that the criteria for reuse may not be applicable to fuels that have experienced boiling transitions in the past. In general, the number of times a reuse criterion can be applied to the same fuel is limited, and as a typical example, only one application is allowed.

以上述べた時間温度基準の構成を考えるに、健全性の判断基準(第1の部分20)については、あらかじめ適切な運転制限条件を定めることで実際の運転で遵守することができる。しかし、再使用の判断基準(第2の部分22)については、実際に発生した個々の過渡事象の内容によって、また炉内の各々の燃料によって、そしてその燃料の過去における沸騰遷移経験の履歴によって、基準を満足したか否かの判定が異なってくることがわかる。これを正しく判定するには、過渡事象が発生した後、炉心内全燃料の挙動解析を行なう必要があるが、このような解析は、燃料の履歴や初期炉心状態の把握、発生した事象の分析、3次元の炉心シミュレーションといった手順が必要であり、一般にはかなりの時間と手間を要する。   Considering the configuration of the time temperature reference described above, the soundness determination standard (first portion 20) can be observed in actual operation by setting an appropriate operation restriction condition in advance. However, the criteria for reuse (second part 22) depend on the nature of the individual transients that have actually occurred, on each fuel in the furnace and on the history of boiling transition experiences in the past of that fuel. It can be seen that the determination of whether or not the standard is satisfied is different. To determine this correctly, it is necessary to analyze the behavior of all fuel in the core after the occurrence of a transient event. Such analysis involves understanding the fuel history and initial core state, and analyzing the events that have occurred. A procedure such as a three-dimensional core simulation is required, and generally a considerable amount of time and labor are required.

一方、プラント経済性の観点から見れば、速やかに定格運転状態に復帰しなければ稼働率の損失となるので、燃料再使用についての即時の判断ができないことが、時間温度基準を適用する上の課題となっていた。   On the other hand, from the point of view of plant economy, the operating rate will be lost unless the operating state is quickly returned to the rated operating state. It was an issue.

本発明の目的は、沸騰水型原子炉の燃料集合体における沸騰遷移の履歴を考慮した炉心管理を実現できる炉心監視装置を提供することにある。   An object of the present invention is to provide a core monitoring apparatus that can realize core management in consideration of the history of boiling transition in a fuel assembly of a boiling water reactor.

本発明は上記目的に沿うものであって、請求項1に記載の発明は、複数の燃料集合体を収容する沸騰水型原子炉内のあらかじめ指定した少なくとも一つの燃料集合体について、沸騰遷移の有無を判定する基準をあらかじめ作成する沸騰遷移判定基準作成手段と、前記あらかじめ指定した少なくとも一つの燃料集合体の現在の運転状態を表すデータを収集するデータ収集手段と、前記データ収集手段で収集されたデータおよび、前記沸騰遷移判定基準作成手段で得られた基準に基づいて、前記燃料集合体における沸騰遷移の有無を判定する沸騰遷移判定手段と、前記沸騰遷移判定手段から得られた沸騰遷移の経過を記録する沸騰遷移経過記録手段と、を有すること、を特徴とする。   The present invention is directed to the above object, and the invention according to claim 1 is directed to the boiling transition of at least one fuel assembly designated in advance in a boiling water reactor containing a plurality of fuel assemblies. Boiling transition determination criterion creation means for creating a criterion for determining the presence or absence in advance, data collection means for collecting data representing the current operating state of the at least one fuel assembly designated in advance, and collected by the data collection means Boiling transition determination means for determining whether or not there is a boiling transition in the fuel assembly, and the boiling transition obtained from the boiling transition determination means based on the data obtained and the reference obtained by the boiling transition determination criterion creation means. And boil transition progress recording means for recording the progress.

また、請求項2に記載の発明は、請求項1に記載の炉心監視装置において、前記沸騰遷移経過記録手段により記録された沸騰遷移の履歴に基づいて、前記あらかじめ指定した少なくとも一つの燃料集合体の再使用可能性および健全性を判断する状態判断手段をさらに有すること、を特徴とする。   According to a second aspect of the present invention, in the core monitoring apparatus according to the first aspect, the at least one fuel assembly designated in advance is based on a history of boiling transition recorded by the boiling transition progress recording means. It further has a state judging means for judging reusability and soundness of.

また、請求項3に記載の発明は、請求項1に記載の炉心監視装置において、前記あらかじめ指定した少なくとも一つの燃料集合体についての過去の沸騰遷移の経過に関する情報を記録する沸騰遷移履歴記録手段をさらに有すること、を特徴とする。   Further, the invention according to claim 3 is the core transition monitoring apparatus according to claim 1, wherein the boiling transition history recording means records information on the progress of the past boiling transition for the at least one fuel assembly designated in advance. It further has these.

また、請求項4に記載の発明は、請求項3に記載の炉心監視装置において、前記沸騰遷移経過記録手段および沸騰遷移履歴記録手段により記録された沸騰遷移の履歴に基づいて、前記あらかじめ指定した少なくとも一つの燃料集合体の再使用可能性および健全性を判断する状態判断手段をさらに有すること、を特徴とする。   According to a fourth aspect of the present invention, in the core monitoring apparatus of the third aspect, the predesignated designation is made based on the boiling transition history recorded by the boiling transition progress recording means and the boiling transition history recording means. It further has a state judging means for judging reusability and soundness of at least one fuel assembly.

また、請求項5に記載の発明は、請求項2または4に記載の炉心監視装置において、前記状態判断手段は、燃料被覆管温度と沸騰遷移持続時間の履歴に基づいて、前記あらかじめ指定した少なくとも一つの燃料集合体の再使用可能性および健全性を判断するものであり、前記再使用可能性の要件は前記健全性の要件を必要条件とすること、を特徴とする。   Further, according to a fifth aspect of the present invention, in the core monitoring device according to the second or fourth aspect, the state determining means is configured to perform at least the previously specified based on the history of the fuel cladding tube temperature and the boiling transition duration. The reusability and soundness of one fuel assembly are judged, and the reusability requirement is characterized by the soundness requirement as a prerequisite.

本発明によれば、沸騰水型原子炉の燃料集合体における沸騰推移の履歴を考慮した炉心管理を実現できる炉心監視装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the core monitoring apparatus which can implement | achieve the core management which considered the log | history of the boiling transition in the fuel assembly of a boiling water reactor can be provided.

本発明に係る炉心監視装置の実施の形態について図面を参照して説明する。なお、前述の従来技術と同一もしくは類似の部分、または相互に同一もしくは類似の部分については、同一符号を付して、重複説明は省略する。   An embodiment of a core monitoring apparatus according to the present invention will be described with reference to the drawings. Note that parts that are the same or similar to the above-described conventional technology, or parts that are the same or similar to each other, are given the same reference numerals, and redundant description is omitted.

[第1の実施の形態]
図1は、本発明に係る炉心監視装置の第1実施の形態を示す図であって、図3に示した従来の炉心監視装置に、沸騰遷移に関する判定、記録手段を付加したものである。
[First Embodiment]
FIG. 1 is a diagram showing a first embodiment of a core monitoring apparatus according to the present invention, in which determination and recording means regarding boiling transition are added to the conventional core monitoring apparatus shown in FIG.

本実施の形態においては、炉心性能監視手段7からの出力は、入出力装置8とは別に沸騰遷移判定基準作成手段9にも送られる。以下にこの沸騰遷移判定基準作成手段9の機能を説明する。   In the present embodiment, the output from the core performance monitoring means 7 is sent to the boiling transition determination criterion creating means 9 separately from the input / output device 8. The function of the boiling transition determination criterion creating means 9 will be described below.

前述のように、3次元炉心シミュレーション解析を行なえば、個々の燃料集合体101が沸騰遷移状態にあるか否かを判定することができる。しかし、一般的にはこの解析にはかなりの計算時間が必要であって、過渡変化時において燃料の沸騰遷移監視をリアルタイムで行なう目的には適さない。そこで、炉心性能評価が適切な時間間隔で実施されていることを利用し、その最新の結果をベースとして、その後の炉心状態の変化に応じたCPRを、炉心現状データから短時間で求められるよう定式化しておけば、監視という目的上は好都合である。   As described above, if the three-dimensional core simulation analysis is performed, it can be determined whether or not each fuel assembly 101 is in a boiling transition state. However, in general, this analysis requires a considerable amount of calculation time, and is not suitable for the purpose of monitoring the fuel boiling transition in real time during a transient change. Therefore, using the fact that the core performance evaluation is carried out at an appropriate time interval, based on the latest results, the CPR corresponding to the subsequent change in the core state can be obtained in a short time from the core current data. If formulated, it is convenient for monitoring purposes.

CPRの定義を考えると、沸騰遷移を生じるのはCPR=1の場合ということになるが、種々の不確かさも考慮して、CPR=CPRBTの時に沸騰遷移と判定するならば、
CPR=F(炉心現状データ)
として、
判定関数=F(炉心現状データ)−CPRBT … (1)
という関数形が沸騰遷移判定基準作成手段9の出力となる。ここで下付文字は各々の燃料集合体を示す。
Considering the definition of CPR, a boiling transition occurs when CPR = 1. However, considering various uncertainties, if it is determined that a boiling transition occurs when CPR = CPR BT ,
CPR = F i (core data)
As
Decision function i = F i (core current data) −CPR BT (1)
Is the output of the boiling transition determination criterion creating means 9. Here, the subscript i indicates each fuel assembly.

判定関数は、基本的には対象とする燃料集合体101の数だけ存在することになる。ただし、炉内のいくつかの燃料集合体をまとめて一つの判定関数で代表することもありうる。また、個々の燃料集合体101ごとに沸騰遷移判定をする必要がない場合には炉心全体を一つの判定関数で代表することも考えられる。これは、実際に発生確率の高い過渡事象で沸騰遷移に至る可能性が低い場合などに有用である。というのも判定関数が少ないほど沸騰遷移判定手段10での計算時間が短くなり、監視頻度を高くできるからである。   There are basically as many judgment functions as the number of target fuel assemblies 101. However, several fuel assemblies in the furnace may be collectively represented by one determination function. In addition, when it is not necessary to make a boiling transition determination for each individual fuel assembly 101, it is conceivable that the entire core is represented by a single determination function. This is useful when there is a low possibility of a boiling transition due to a transient event with a high probability of occurrence. This is because the smaller the determination function, the shorter the calculation time in the boiling transition determination means 10 and the higher the monitoring frequency.

沸騰遷移判定基準作成手段9の具体的な出力の例としては、あらかじめ対象となる燃料集合体に共通にいくつかの不定係数を含む適切な式形を決めておき、その不定係数の値を出力するのが現実的である。   As an example of a specific output of the boiling transition determination criterion creating means 9, an appropriate formula form including several indefinite coefficients is determined in advance for the target fuel assembly, and the value of the indefinite coefficient is output. It is realistic to do.

また、判定関数の独立変数である炉心現状データとしては、燃料集合体の限界出力に影響する測定値を用いる。限界出力を大きく左右するパラメータとして、燃料集合体の出力や冷却材流量、圧力、冷却材入口温度があり、これらと相関の大きな測定量として、複数の中性子検出器信号や中性子検出器信号の炉心平均値(あるいは、これらに燃料棒の熱伝達時間を模擬する1次遅れ処理を行なったもの)、原子炉圧力、炉心支持板差圧、炉心冷却材ポンプ回転数、ジェットポンプ駆動水流量、ポンプデッキ差圧、冷却材温度などが考えられる。実際にはこれら全てではなく、影響度の大きいパラメータを選択して用いれば、沸騰遷移判定手段10での計算時間を短縮することができる。   Further, as the core current data that is an independent variable of the determination function, a measured value that affects the limit output of the fuel assembly is used. The parameters that greatly influence the limit output include the fuel assembly output, coolant flow rate, pressure, and coolant inlet temperature, and the cores of multiple neutron detector signals and neutron detector signals are measured quantities that have a large correlation with these parameters. Average values (or those subjected to first-order lag processing that simulates fuel rod heat transfer time), reactor pressure, core support plate differential pressure, core coolant pump speed, jet pump drive water flow rate, pump Deck differential pressure, coolant temperature, etc. can be considered. Actually, if not all of them but a parameter having a large influence is selected and used, the calculation time in the boiling transition determination means 10 can be shortened.

以上では沸騰遷移状態の判定基準として常にCPRを用いているが、これは正確には通常状態から沸騰遷移状態への移行を判断する際に用いるべきパラメータであり、近似的な手法である。沸騰遷移状態から通常状態に移行する場合は、リウェット相関式で判定するのが最も正しい。したがって、沸騰遷移判定基準作成手段9からは、沸騰遷移へ移行する場合とリウェットする場合の判定関数2種類を出力するのも良い。   In the above, CPR is always used as a criterion for determining the boiling transition state. However, this is a parameter to be used when determining the transition from the normal state to the boiling transition state, and is an approximate method. When transitioning from the boiling transition state to the normal state, it is most correct to make a determination using the rewet correlation equation. Therefore, the boiling transition determination criterion creating means 9 may output two types of determination functions when shifting to boiling transition and when rewet.

沸騰遷移判定手段10では、沸騰遷移判定基準作成手段9から出力された判定関数と、データサンプラ6から出力される必要な炉心現状データを用いて、対象となる燃料集合体(あるいは炉心)の状態をリアルタイムで判定する。   The boiling transition determination means 10 uses the determination function output from the boiling transition determination reference creation means 9 and the necessary core current data output from the data sampler 6, and the state of the target fuel assembly (or core). Is determined in real time.

例えば判定関数が前記の式(1)であれば、
判定関数>0 のときは、通常状態、
判定関数≦0 のときは、沸騰遷移状態、
と判定され、燃料集合体ごとの判定結果が沸騰遷移経過記録手段11に送られる。
For example, if the determination function is the above equation (1),
When the judgment function> 0, the normal state,
When the decision function ≦ 0, the boiling transition state,
The determination result for each fuel assembly is sent to the boiling transition progress recording means 11.

沸騰遷移経過記録手段11では、監視開始信号入力後の判定結果の時間的経過を記録する。なお、通常状態から沸騰遷移状態に、あるいは沸騰遷移状態から通常状態に移行した時に、その時刻を記録すれば記録量を削減することができる。   The boiling transition progress recording means 11 records the time course of the determination result after the monitoring start signal is input. If the time is recorded when the normal state is changed to the boiling transition state or when the boiling transition state is changed to the normal state, the recording amount can be reduced.

沸騰遷移経過記録手段11に記録された沸騰遷移経過信号は、状態判断手段12に送られる。状態判断手段12では、対象となる各燃料集合体が経験した沸騰遷移の回数や各回の持続時間を調べ、時間温度基準に照らして、沸騰遷移経験の有無、再使用可能性、健全性などを判断し、結果は、入出力装置8の表示部に表示される。   The boiling transition progress signal recorded in the boiling transition progress recording means 11 is sent to the state determination means 12. In the state judging means 12, the number of boiling transitions experienced by each target fuel assembly and the duration of each time are examined, and the presence / absence of boiling transition experience, reusability, soundness, etc. are checked against the time temperature reference. The result is displayed on the display unit of the input / output device 8.

以上のような構成をとることにより、運転員は常に監視対象燃料の健全性、再使用性を確認することができ、プラントに過渡事象が発生した場合でも、運転復帰できるかプラント停止しなければならないかを速やかに、かつ正確に判断することができる。実際には、ほとんどの過渡事象において沸騰遷移は生じないため、本実施の形態を用いることで、再使用性の確認に要する時間がほとんどなくなり、プラント稼働率を向上することができる。   By adopting the configuration as described above, the operator can always check the soundness and reusability of the fuel to be monitored, and even if a transient event occurs in the plant, the operator must return to operation or stop the plant. It is possible to quickly and accurately determine whether or not it will occur. Actually, since boiling transition does not occur in most transient events, by using this embodiment, almost no time is required for confirmation of reusability, and the plant operating rate can be improved.

[第2の実施の形態]
図2は、本発明に係る炉心監視装置の第2実施の形態を示す。本実施の形態においては、図1に示した炉心監視装置に、沸騰遷移履歴記録手段13を付加している。沸騰遷移履歴記録手段13には監視開始信号の入力以前における各燃料集合体の沸騰遷移履歴が入力されており、状態判断手段12は、この履歴と、沸騰遷移経過記録手段11に記録された監視開始信号入力後の沸騰遷移経過を照らし合わせて、対象燃料集合体の沸騰遷移経験の有無、再使用可能性、健全性などを判断し、結果は、入出力装置8の表示部に表示される。
[Second Embodiment]
FIG. 2 shows a second embodiment of the core monitoring apparatus according to the present invention. In the present embodiment, a boiling transition history recording means 13 is added to the core monitoring apparatus shown in FIG. The boiling transition history recording means 13 receives the boiling transition history of each fuel assembly before the monitoring start signal is input, and the state determination means 12 monitors the history and the monitoring recorded in the boiling transition progress recording means 11. The presence / absence of boiling transition experience of the target fuel assembly, reusability, soundness, etc. are determined by comparing the boiling transition process after the start signal is input, and the result is displayed on the display unit of the input / output device 8. .

本実施の形態によれば、例えば過去の運転サイクル中において沸騰遷移を経験した燃料集合体についても正しい判断を下すことができる。   According to the present embodiment, for example, a correct determination can be made for a fuel assembly that has experienced a boiling transition during a past operation cycle.

本発明に係る炉心監視装置の第1の実施の形態を示すブロック図。The block diagram which shows 1st Embodiment of the core monitoring apparatus which concerns on this invention. 本発明に係る炉心監視装置の第2の実施の形態を示すブロック図。The block diagram which shows 2nd Embodiment of the core monitoring apparatus which concerns on this invention. 従来の炉心監視装置を示すブロック図。The block diagram which shows the conventional core monitoring apparatus. BWRの炉心配置を示す模式的平断面図。The typical plane sectional view showing the core arrangement of BWR. 時間温度基準を構成する二つの判断基準の例を示すグラフ。The graph which shows the example of two judgment criteria which comprise time temperature reference | standard.

符号の説明Explanation of symbols

1…原子炉圧力容器、2…冷却材、3…炉心部分、4…中性子検出器、5…原子炉現状データ測定器、6…データサンプラ(データ収集手段)、7…炉心性能評価手段、8…入出力装置、9…沸騰遷移判定基準作成手段、10…沸騰遷移判定手段、11…沸騰遷移経過記録手段、12…状態判断手段、13…沸騰遷移履歴記録手段、20…健全性の判定基準(第1の部分)、22…再使用の判定基準(第2の部分)、101…燃料集合体、102…制御棒、103…中性子検出器集合体、S4…各中性子検出器4からの信号、S5…炉心現状データ測定器5からの信号。   DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Coolant, 3 ... Core part, 4 ... Neutron detector, 5 ... Reactor present state data measuring device, 6 ... Data sampler (data collection means), 7 ... Core performance evaluation means, 8 DESCRIPTION OF SYMBOLS Input / output device, 9 ... Boiling transition judgment reference preparation means, 10 ... Boiling transition judgment means, 11 ... Boiling transition progress recording means, 12 ... State judgment means, 13 ... Boiling transition history recording means, 20 ... Soundness judgment standard (First part), 22 ... reuse criteria (second part), 101 ... fuel assembly, 102 ... control rod, 103 ... neutron detector assembly, S4 ... signal from each neutron detector 4 , S5: Signal from the core current data measuring device 5.

Claims (5)

複数の燃料集合体を収容する沸騰水型原子炉内のあらかじめ指定した少なくとも一つの燃料集合体について、沸騰遷移の有無を判定する基準をあらかじめ作成する沸騰遷移判定基準作成手段と、
前記あらかじめ指定した少なくとも一つの燃料集合体の現在の運転状態を表すデータを収集するデータ収集手段と、
前記データ収集手段で収集されたデータおよび、前記沸騰遷移判定基準作成手段で得られた基準に基づいて、前記燃料集合体における沸騰遷移の有無を判定する沸騰遷移判定手段と、
前記沸騰遷移判定手段から得られた沸騰遷移の経過を記録する沸騰遷移経過記録手段と、
を有すること、を特徴とする炉心監視装置。
A boiling transition determination criterion creating means for creating in advance a criterion for determining the presence or absence of boiling transition for at least one fuel assembly designated in advance in a boiling water reactor containing a plurality of fuel assemblies;
Data collecting means for collecting data representing a current operating state of the at least one fuel assembly designated in advance;
Boiling transition determination means for determining whether or not there is a boiling transition in the fuel assembly, based on the data collected by the data collection means and the criterion obtained by the boiling transition determination criterion creation means;
Boiling transition progress recording means for recording the progress of boiling transition obtained from the boiling transition determination means;
A core monitoring device characterized by comprising:
請求項1に記載の炉心監視装置において、前記沸騰遷移経過記録手段により記録された沸騰遷移の履歴に基づいて、前記あらかじめ指定した少なくとも一つの燃料集合体の再使用可能性および健全性を判断する状態判断手段をさらに有すること、を特徴とする炉心監視装置。   2. The core monitoring apparatus according to claim 1, wherein reusability and soundness of the at least one fuel assembly designated in advance are determined based on a boiling transition history recorded by the boiling transition progress recording means. A core monitoring apparatus, further comprising a state determining means. 請求項1に記載の炉心監視装置において、前記あらかじめ指定した少なくとも一つの燃料集合体についての過去の沸騰遷移の経過に関する情報を記録する沸騰遷移履歴記録手段をさらに有すること、を特徴とする炉心監視装置。   2. The core monitoring apparatus according to claim 1, further comprising a boiling transition history recording means for recording information relating to the progress of a past boiling transition for the at least one fuel assembly designated in advance. apparatus. 請求項3に記載の炉心監視装置において、前記沸騰遷移経過記録手段および沸騰遷移履歴記録手段により記録された沸騰遷移の履歴に基づいて、前記あらかじめ指定した少なくとも一つの燃料集合体の再使用可能性および健全性を判断する状態判断手段をさらに有すること、を特徴とする炉心監視装置。   4. The reactor core monitoring apparatus according to claim 3, wherein the at least one fuel assembly designated in advance is reusable based on the boiling transition history recorded by the boiling transition progress recording means and the boiling transition history recording means. And a state determining means for determining soundness, further comprising a core monitoring device. 請求項2または4に記載の炉心監視装置において、前記状態判断手段は、燃料被覆管温度と沸騰遷移持続時間の履歴に基づいて、前記あらかじめ指定した少なくとも一つの燃料集合体の再使用可能性および健全性を判断するものであり、前記再使用可能性の要件は前記健全性の要件を必要条件とすること、を特徴とする炉心監視装置。

5. The core monitoring device according to claim 2, wherein the state determination unit is configured to reusability of the at least one fuel assembly designated in advance based on a history of fuel cladding tube temperature and boiling transition duration and A core monitoring apparatus for judging soundness, wherein the reusability requirement is a prerequisite for the soundness requirement.

JP2003416521A 2003-12-15 2003-12-15 Core monitoring device Expired - Fee Related JP4600722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003416521A JP4600722B2 (en) 2003-12-15 2003-12-15 Core monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003416521A JP4600722B2 (en) 2003-12-15 2003-12-15 Core monitoring device

Publications (2)

Publication Number Publication Date
JP2005172749A true JP2005172749A (en) 2005-06-30
JP4600722B2 JP4600722B2 (en) 2010-12-15

Family

ID=34735694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003416521A Expired - Fee Related JP4600722B2 (en) 2003-12-15 2003-12-15 Core monitoring device

Country Status (1)

Country Link
JP (1) JP4600722B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064976A (en) * 2005-08-31 2007-03-15 Westinghouse Electric Sweden Ab Method for estimating dryout characteristic in light water nuclear reactor
JP2008191002A (en) * 2007-02-05 2008-08-21 Nuclear Fuel Ind Ltd Method and means for judging integrity of fuel rod
JP2012141207A (en) * 2010-12-28 2012-07-26 Global Nuclear Fuel-Japan Co Ltd Method for predicting boiling transition location in axial direction

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154498A (en) * 1979-05-21 1980-12-02 Nippon Atomic Ind Group Co Thermal operation margin monitoring device of bwr type reactor
JPS59107294A (en) * 1982-12-13 1984-06-21 株式会社東芝 Reactor monitoring device
JPS63108297A (en) * 1986-10-27 1988-05-13 株式会社東芝 Fuel soundness monitor in nuclear reactor core
JPH08136688A (en) * 1994-11-09 1996-05-31 Hitachi Ltd Reactor core performance monitoring system
JP2001296382A (en) * 1999-12-30 2001-10-26 General Electric Co <Ge> Method and system for generating thermal-mechanical limits for the operation of nuclear fuel rods
JP2002257973A (en) * 2000-12-29 2002-09-11 Global Nuclear Fuel Americas Llc Method, system, and program for evaluating operation limit minimum critical power ratio
JP2003161796A (en) * 2001-11-27 2003-06-06 Global Nuclear Fuel-Japan Co Ltd Method and device for evaluating thermal characteristics of fuel rod
JP2004301585A (en) * 2003-03-31 2004-10-28 Toshiba Corp System for evaluating soundness of nuclear fuel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154498A (en) * 1979-05-21 1980-12-02 Nippon Atomic Ind Group Co Thermal operation margin monitoring device of bwr type reactor
JPS59107294A (en) * 1982-12-13 1984-06-21 株式会社東芝 Reactor monitoring device
JPS63108297A (en) * 1986-10-27 1988-05-13 株式会社東芝 Fuel soundness monitor in nuclear reactor core
JPH08136688A (en) * 1994-11-09 1996-05-31 Hitachi Ltd Reactor core performance monitoring system
JP2001296382A (en) * 1999-12-30 2001-10-26 General Electric Co <Ge> Method and system for generating thermal-mechanical limits for the operation of nuclear fuel rods
JP2002257973A (en) * 2000-12-29 2002-09-11 Global Nuclear Fuel Americas Llc Method, system, and program for evaluating operation limit minimum critical power ratio
JP2003161796A (en) * 2001-11-27 2003-06-06 Global Nuclear Fuel-Japan Co Ltd Method and device for evaluating thermal characteristics of fuel rod
JP2004301585A (en) * 2003-03-31 2004-10-28 Toshiba Corp System for evaluating soundness of nuclear fuel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064976A (en) * 2005-08-31 2007-03-15 Westinghouse Electric Sweden Ab Method for estimating dryout characteristic in light water nuclear reactor
JP2008191002A (en) * 2007-02-05 2008-08-21 Nuclear Fuel Ind Ltd Method and means for judging integrity of fuel rod
JP2012141207A (en) * 2010-12-28 2012-07-26 Global Nuclear Fuel-Japan Co Ltd Method for predicting boiling transition location in axial direction

Also Published As

Publication number Publication date
JP4600722B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
Hashemian On-line monitoring applications in nuclear power plants
EP2613324B1 (en) Critical heat flux prediction device, critical heat flux prediction method and safety evaluation system
US6611572B2 (en) Determination of operating limit minimum critical power ratio
US8149983B2 (en) Method for analysis of pellet-cladding interaction
EP2286414B1 (en) A method of and an apparatus for monitoring the operation of a nuclear reactor
JP5424526B2 (en) Method for estimating dryout characteristics in a nuclear light water reactor, computer program product, nuclear energy plant and operation method
JP6099876B2 (en) Core analysis program and analysis device
JP2018136226A (en) Device, method, and program for atomic reactor risk management
JP4600722B2 (en) Core monitoring device
JP2005283269A (en) Transient boiling transition monitoring system for boiling water nuclear reactor and monitoring method
EP2071581A2 (en) Method and apparatus for determination of safety limit minimum critical power ratio for a nuclear fuel core
EP1031159B1 (en) A method and a device for evaluating the integrity of the nuclear fuel in a nuclear plant
US8983810B2 (en) Apparatus, method and program for monitoring nuclear thermal hydraulic stability of nuclear reactor
JP4707826B2 (en) Boiling water reactor monitoring and control system
JP2001099976A (en) Device and method for thermal operation margin monitoring for nuclear reactor
JP3871733B2 (en) Reactor core monitoring device
JP2004301585A (en) System for evaluating soundness of nuclear fuel
US20050013399A1 (en) Method and a device for evaluating the integrity of a control substance in a nuclear plant
Ramuhalli et al. Technical report on preliminary methodology for enhancing risk monitors with integrated equipment condition assessment
Karim et al. Preliminary study on fault detection using artificial neural network for water-cooled reactors
JPH02130498A (en) Thermal operation margin monitor of boiling water reactor
Monson EBR-II INITIAL OPERATION_HIGH LIGHTS
Herer Questions relative to chf testing for new pressurized water reactor advanced fuel assemblies
JPH08136688A (en) Reactor core performance monitoring system
Guler Yigitoglu A Methodology for Modeling Nuclear Power Plant Passive Component Aging in Probabilistic Risk Assessment under the Impact of Operating Conditions, Surveillance and Maintenance Activities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees