JPH08136483A - Thermal conductivity measuring apparatus - Google Patents

Thermal conductivity measuring apparatus

Info

Publication number
JPH08136483A
JPH08136483A JP27200494A JP27200494A JPH08136483A JP H08136483 A JPH08136483 A JP H08136483A JP 27200494 A JP27200494 A JP 27200494A JP 27200494 A JP27200494 A JP 27200494A JP H08136483 A JPH08136483 A JP H08136483A
Authority
JP
Japan
Prior art keywords
measured
barrel
thermal conductivity
temperature
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27200494A
Other languages
Japanese (ja)
Inventor
Eiji Kawai
栄二 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP27200494A priority Critical patent/JPH08136483A/en
Publication of JPH08136483A publication Critical patent/JPH08136483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE: To evaluate the thermal conductivity of resin at high precision in the conditions of optional pressure and uniform density by heating a barrel and applying a prescribed pressure on an object to be measured. CONSTITUTION: The inside of a barrel storage part 1a is filled with an object 2 to be measured, which is resin, and the barrel 1 is heated by a heating plate 3. Consequently, while air being prevented from being mixed with the object 2 to be measured for uniform measurement, the object 2 to be measured is heated to at least thermal deformation temperature and melted. At that time, prescribed pressure is so applied to the object 2 to be measured by a load cell 8 and a piston 7 as not to cause density change due to the thermal expansion. After that, cooling water is made to circulate in the probe 4 to cool the probe 4 and forcedly cool the object 2 to be measured. At the same time, an electric power source for the heating plate 3 is turned off to cool the barrel 1 and limit the temperature rise of the object 2 to be measured at the most to near normal temperature and then the thermal conductivity of the object 2 to be measured is strated. Next, voltage is to a heater 5 to raise the temperature of the object 2 to be measured and the temperature rise is measured by a thermocouple 6 to measure the thermal conductivity. As a result, thermal conductivity of resin can be measured highly precisely in the condition of uniform density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱伝導率測定装置に係
り、詳しくは、温度と圧力依存性を考慮した熱伝導率測
定技術に適用することができ、特に、任意の圧力下で、
かつ密度一定の条件のもとで樹脂の熱伝導率を精度良く
評価することができ、温度と圧力に依存した熱伝導率変
化を精度良く評価することができる熱伝導率測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal conductivity measuring device, and more particularly, it can be applied to a thermal conductivity measuring technique considering temperature and pressure dependency, and in particular, under an arbitrary pressure,
Further, the present invention relates to a thermal conductivity measuring device capable of accurately evaluating the thermal conductivity of a resin under the condition of a constant density and accurately evaluating a change in thermal conductivity depending on temperature and pressure.

【0002】[0002]

【従来の技術】従来の樹脂あるいは樹脂を含む粉体(例
えばトナー等)の熱伝導率測定は、常温法で行う場合、
被測定物を熱あるいは圧力により固体化させ、ブロック
として測定したり、高温域測定法で行う場合、粉体より
徐々に熱を加えることにより測定している。これらの常
温法や高温域測定法による熱伝導率測定方法において
は、常に被測定物に強制的に圧力を加えることなく、熱
伝導率測定を行っており、これらの測定方法のうち、後
者の高温域測定では、熱膨張による体積変化を無視して
熱伝導率を評価している。
2. Description of the Related Art Conventionally, the thermal conductivity of resin or powder containing resin (for example, toner) is measured by a room temperature method.
The object to be measured is solidified by heat or pressure and measured as a block, or when the measurement is carried out in a high temperature range, the measurement is carried out by gradually applying heat from the powder. In these methods for measuring thermal conductivity by the room temperature method or the high temperature region measuring method, the thermal conductivity is always measured without forcibly applying pressure to the object to be measured. In high temperature measurement, the thermal conductivity is evaluated by ignoring the volume change due to thermal expansion.

【0003】ここで、従来の熱伝導率測定装置を図面を
用いて説明する。図4は従来の熱伝導率測定装置の構造
を示す断面図である。図4において、101はバレル収
納部101aに樹脂あるいは樹脂を含む粉体からなる被
測定物102を収納するバレルであり、103はバレル
101周囲に設けられたバレル101を加熱する加熱板
である。
A conventional thermal conductivity measuring device will be described with reference to the drawings. FIG. 4 is a sectional view showing the structure of a conventional thermal conductivity measuring device. In FIG. 4, reference numeral 101 is a barrel for housing a measured object 102 made of resin or powder containing resin in a barrel housing portion 101a, and 103 is a heating plate provided around the barrel 101 for heating the barrel 101.

【0004】104はバレル収納部101a内のバレル
底板101b上にバレル底板101bに対して垂直方向
に設けられたプローブであり、105はプローブ104
内にプローブ104と同一方向で、かつ直線状に設けら
れたプローブ104を加熱する棒状のヒータである。1
06はバレル101内を通ってバレル収納部101a側
部にまで設けられたバレル収納部101a内の被測定物
102の温度を測定する熱電対であり、101cはバレ
ル蓋である。
Reference numeral 104 is a probe provided on the barrel bottom plate 101b in the barrel housing 101a in a direction perpendicular to the barrel bottom plate 101b, and 105 is a probe 104.
It is a rod-shaped heater that heats the probe 104 provided in the same direction as the probe 104 and linearly. 1
Reference numeral 06 is a thermocouple that passes through the barrel 101 and is provided up to the side of the barrel storage portion 101a to measure the temperature of the object 102 to be measured in the barrel storage portion 101a, and 101c is a barrel lid.

【0005】従来では、被測定物102をバレル101
のバレル収納部101a内に充填してバレル蓋101c
でバレル収納部101aを塞いだ後、バレル101周囲
に設けた加熱板103でバレル101を通して被測定物
102を熱変形温度以上に加熱する。その後、加熱板1
03の電源をOFFして、自然放冷により被測定物10
2を常温まで冷却した後、被測定物102の熱伝導率測
定を開始する。
Conventionally, the object to be measured 102 is placed on the barrel 101.
Barrel cover 101c
After the barrel housing portion 101a is closed with, the object to be measured 102 is heated to a temperature not lower than the thermal deformation temperature through the barrel 101 by the heating plate 103 provided around the barrel 101. After that, heating plate 1
Turn off the power of 03 and let the object to be measured 10 cool by itself.
After cooling 2 to room temperature, measurement of the thermal conductivity of the DUT 102 is started.

【0006】熱伝導率測定は、プローブ104内に設け
たヒータ105に印加電圧を与えることでバレル収納部
101a内の被測定物102を昇温させ、バレル101
に設けた熱電対106により被測定物102の温度上昇
を測定することにより行う。熱伝導率は、被測定物10
2の測定温度、熱電対106とプローブ104間の間
隔、及びヒータ105の印加電圧と印加時間から算出す
る。
To measure the thermal conductivity, an applied voltage is applied to the heater 105 provided in the probe 104 to raise the temperature of the object 102 to be measured in the barrel housing 101a, and the barrel 101 is heated.
The temperature rise of the object 102 to be measured is measured by the thermocouple 106 provided at the position. The thermal conductivity is 10
It is calculated from the measured temperature of 2, the distance between the thermocouple 106 and the probe 104, and the applied voltage and application time of the heater 105.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た従来の熱伝導率測定装置では、常に被測定物102に
強制的に圧力を加えることなく、大気圧下で熱伝導率測
定を行っており、特に高温域で測定を行う際、樹脂の熱
膨張による体積変化を無視して熱伝導率を評価してい
る。
However, in the above-mentioned conventional thermal conductivity measuring device, the thermal conductivity is measured under atmospheric pressure without always forcibly applying pressure to the object 102 to be measured, Especially when the measurement is performed in the high temperature range, the thermal conductivity is evaluated by ignoring the volume change due to the thermal expansion of the resin.

【0008】このため、密度が一定の条件のもとで熱伝
導率の評価を行い難く、温度と圧力に依存した熱伝導率
変化を精度良く評価し難いという問題があった。従っ
て、例えば、樹脂を加圧成形する際、圧力を考慮した熱
伝導率を加味して、加圧成形条件をシミュレーションし
て求めることができなかった。そこで、本発明は、任意
の圧力下で、かつ密度一定の条件のもとで樹脂の熱伝導
率を精度良く評価することができ、温度と圧力に依存し
た熱伝導率変化を精度良く評価することができる熱伝導
率測定装置を提供することを目的としている。
Therefore, there is a problem that it is difficult to evaluate the thermal conductivity under the condition that the density is constant, and it is difficult to accurately evaluate the change of the thermal conductivity depending on the temperature and the pressure. Therefore, for example, when the resin is pressure-molded, it was not possible to obtain the pressure-molding condition by simulating the pressure-molding condition in consideration of the thermal conductivity. Therefore, the present invention can accurately evaluate the thermal conductivity of the resin under an arbitrary pressure and under the condition that the density is constant, and accurately evaluate the thermal conductivity change depending on the temperature and the pressure. It is an object of the present invention to provide a thermal conductivity measuring device that can be used.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
樹脂あるいは樹脂を含む粉体混合物からなる被測定物の
熱伝導率を測定する熱伝導率測定装置において、前記被
測定物を収納するバレル収納部を有するバレルと、該バ
レル周囲に設けた該バレルを加熱する第1の加熱手段
と、前記バレル収納部内の前記バレルの底板上に設けた
プローブと、該プローブ内に設けた該プローブを加熱す
る第2の加熱手段と、前記バレル内に設けた前記被測定
物の温度を測定する温度測定手段と、前記バレル収納部
内に充填した前記被測定物に所定の圧力を加える押圧手
段とを有することを特徴とするものである。
According to the first aspect of the present invention,
In a thermal conductivity measuring device for measuring the thermal conductivity of an object to be measured, which comprises a resin or a powder mixture containing the resin, a barrel having a barrel housing part for accommodating the object to be measured, and the barrel provided around the barrel. A heating means for heating the probe, a probe provided on the bottom plate of the barrel in the barrel housing, a second heating means for heating the probe provided in the probe, and a heating means provided in the barrel. It has a temperature measuring means for measuring the temperature of the object to be measured and a pressing means for applying a predetermined pressure to the object to be measured filled in the barrel housing portion.

【0010】請求項2記載の発明は、上記請求項1記載
の発明において、前記温度測定手段は、少なくとも2つ
以上の温度センサーからなることを特徴とするものであ
る。請求項3記載の発明は、上記請求項1,2記載の発
明において、前記第2の加熱手段は、前記プローブ内に
円周上に配置したヒータからなることを特徴とするもの
である。
According to a second aspect of the present invention, in the above-mentioned first aspect of the invention, the temperature measuring means comprises at least two or more temperature sensors. According to a third aspect of the present invention, in the first and second aspects of the present invention, the second heating means includes a heater arranged circumferentially in the probe.

【0011】請求項4記載の発明は、上記請求項1乃至
3記載の発明において、前記プローブは、冷却媒体を通
す溝を設けてなることを特徴とするものである。請求項
5記載の発明は、上記請求項1乃至4記載の発明におい
て、前記温度測定手段による測定温度に基づいて、前記
被測定物の温度上昇を制限する温度上昇制限手段を有す
ることを特徴とするものである。
A fourth aspect of the present invention is characterized in that, in the first to third aspects of the present invention, the probe is provided with a groove for passing a cooling medium. The invention according to claim 5 is the invention according to any one of claims 1 to 4, characterized by further comprising temperature rise limiting means for limiting the temperature rise of the object to be measured based on the temperature measured by the temperature measuring means. To do.

【0012】[0012]

【作用】請求項1記載の発明では、被測定物を収納する
バレル収納部を有するバレルと、バレル周囲に設けたバ
レルを加熱する第1の加熱手段と、バレル収納部内のバ
レルの底板上に設けたプローブと、プローブ内に設けた
プローブを加熱する第2の加熱手段と、バレル内に設け
た被測定物の温度を測定する温度測定手段と、バレル収
納部内に充填した被測定物に所定の圧力を加える押圧手
段とを有するように構成する。
According to the first aspect of the present invention, the barrel having the barrel housing portion for housing the object to be measured, the first heating means for heating the barrel provided around the barrel, and the bottom plate of the barrel in the barrel housing portion are provided. The probe provided, the second heating means for heating the probe provided in the probe, the temperature measuring means for measuring the temperature of the object to be measured provided in the barrel, and the object to be measured filled in the barrel housing portion are predetermined. And a pressing means for applying pressure.

【0013】このため、特に高温域で熱伝導率測定を行
う際、押圧手段によりバレル収納部に充填した被測定物
に任意の圧力を適宜加えることにより、樹脂の熱膨張に
よる体積変化を抑えて、密度が一定の条件のもとで樹脂
の熱伝導率を精度良く評価することができる。従って、
温度と圧力に依存した熱伝導率変化を精度良く評価する
ことができる。例えば、樹脂を加圧成形する際、温度だ
けでなく圧力を考慮した熱伝導率を加味して、加圧成形
条件をシミュレーションして求めることができる。
For this reason, when the thermal conductivity is measured particularly in a high temperature range, an arbitrary pressure is appropriately applied to the object to be measured filled in the barrel housing portion by the pressing means to suppress the volume change due to the thermal expansion of the resin. The thermal conductivity of the resin can be accurately evaluated under the condition that the density is constant. Therefore,
It is possible to accurately evaluate changes in thermal conductivity depending on temperature and pressure. For example, when the resin is pressure-molded, it can be obtained by simulating the pressure-molding conditions in consideration of the thermal conductivity in consideration of not only the temperature but also the pressure.

【0014】請求項2記載の発明では、温度測定手段
を、少なくとも2つ以上の温度センサーからなるように
構成する。このため、複数の温度センサーを適宜配置し
て構成することにより、仮にバレル収納部内に充填した
被測定物の樹脂に温度分布が生じていたとしても、測定
した複数箇所の温度を平均化することができるので、従
来の1つの温度センサーで測定する場合よりも、測定誤
差を小さくして信頼性の高い熱伝導率測定を行うことが
できる。
According to the second aspect of the invention, the temperature measuring means is composed of at least two temperature sensors. Therefore, by arranging and arranging a plurality of temperature sensors appropriately, even if the temperature distribution occurs in the resin of the measured object filled in the barrel housing portion, it is possible to average the measured temperatures at a plurality of points. Therefore, the measurement error can be made smaller and the thermal conductivity measurement can be performed with higher reliability than in the case of measuring with one conventional temperature sensor.

【0015】請求項3記載の発明では、第2の加熱手段
を、プローブ内に円周上に配置したヒータからなるよう
に構成する。このため、プローブ内にヒータを円周上に
配置することにより、従来の棒状のヒータを配置する場
合よりも、プローブを均一に、かつ速く加熱することが
できる。従って、このプローブを介して被測定物を効率
良く加熱することができる。
According to the third aspect of the invention, the second heating means is constituted by a heater arranged circumferentially in the probe. Therefore, by arranging the heater on the circumference of the probe, the probe can be heated uniformly and faster than the case of arranging the conventional rod-shaped heater. Therefore, the object to be measured can be efficiently heated through this probe.

【0016】次に、粉体の被測定物の熱伝導率を測定す
る場合、常温〜低温域においては粒子間の空気層が断熱
材の役割りをし、被測定物の正確な熱伝導率より低い値
となる。これを避けるため、一度、高温域まで溶融加熱
して、冷却することが行われる。この試料作りには、従
来は、加熱手段をOFFして自然放冷で行っていたた
め、冷却時間に長時間を要し、測定効率が悪かった。
Next, when measuring the thermal conductivity of a powder measurement object, the air layer between the particles acts as a heat insulating material in the normal temperature to low temperature range, and the accurate thermal conductivity of the measurement object is measured. It will be a lower value. In order to avoid this, once melting and heating to a high temperature region, cooling is performed. Conventionally, in order to prepare this sample, the heating means is turned off and the sample is naturally cooled. Therefore, a long cooling time is required and the measurement efficiency is poor.

【0017】そこで、請求項4記載の発明では、プロー
ブを、冷却媒体を通す溝を設けてなるように構成する。
このため、プローブに設けた溝内に冷却媒体を流してプ
ローブを強制的に冷却することにより、従来の自然放冷
を行う場合よりも、プローブを速く冷却することができ
る。従って、プローブを速く加熱することにより、プロ
ーブと接触する被測定物を速く冷却することができるた
め、試料作成時間を短縮して効率の良い試料作りを行う
ことができる。
Therefore, in the invention according to the fourth aspect, the probe is configured to have a groove through which the cooling medium passes.
Therefore, by forcing the cooling medium to flow through the groove provided in the probe to cool the probe, it is possible to cool the probe faster than in the case where natural cooling is performed conventionally. Therefore, by heating the probe quickly, the object to be measured in contact with the probe can be cooled quickly, so that the sample preparation time can be shortened and efficient sample preparation can be performed.

【0018】請求項5記載の発明では、温度上昇制限手
段により、温度測定手段による測定温度に基づいて、被
測定物の温度上昇を制限するように構成する。このた
め、バレルを加熱する第1の加熱手段の印加時間を限定
して被測定物の温度上昇を制限することにより、バレル
に熱が加わることにより生じるプローブのヒータを印加
しても樹脂温度が上り難くなってしまうという弊害を生
じ難くすることができる。
According to the fifth aspect of the present invention, the temperature rise limiting means limits the temperature rise of the object to be measured based on the temperature measured by the temperature measuring means. Therefore, by limiting the application time of the first heating means for heating the barrel and limiting the temperature rise of the object to be measured, even if the heater of the probe generated by the heat applied to the barrel is applied, the resin temperature remains It is possible to prevent the adverse effect that it is difficult to climb up.

【0019】[0019]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明に係る一実施例の熱伝導率測定装置
の構造を示す断面図、図2は図1に示すプローブの構造
を示す断面図である。図1,2において、1はポリカー
ボネートやPBS(ポリブタジエン・スチレン)等の樹
脂あるいは樹脂を含むトナー等の半導体混合物からなる
被測定物2を収納するバレル収納部1aを有するバレル
であり、3はバレル1周囲に設けられたバレル1を加熱
する加熱板である。4はバレル収納部1a内のバレル底
板1b上にバレル底板1bに対して垂直方向に設けられ
たプローブであり、5はプローブ4内に円周上に配置し
て設けられたプローブ4を加熱するヒータである。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a sectional view showing the structure of a thermal conductivity measuring apparatus according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the structure of the probe shown in FIG. In FIGS. 1 and 2, 1 is a barrel having a barrel housing portion 1a for housing a DUT 2 made of a semiconductor mixture such as a resin such as polycarbonate or PBS (polybutadiene styrene) or a toner containing the resin, and 3 is a barrel. 1 is a heating plate that heats a barrel 1 provided around the same. Reference numeral 4 denotes a probe provided on the barrel bottom plate 1b in the barrel housing 1a in a direction perpendicular to the barrel bottom plate 1b, and 5 heats the probe 4 provided on the circumference of the probe 4. It is a heater.

【0020】6はバレル1内を通ってバレル収納部1a
側部にまで設けられたバレル収納部1a内の被測定物2
の温度を測定する熱電対であり、この熱電対6は、バレ
ル収納部1aの上部、中部、下部の各々3箇所に3本設
けられている。7,8はバレル収納部1a内の被測定物
2に任意の圧力を加えるための各々ピストン、ロードセ
ルであり、9はプローブ4内に設けられた冷却媒体を流
すための溝である。
Reference numeral 6 passes through the inside of the barrel 1 and a barrel storage portion 1a.
Object to be measured 2 in barrel storage 1a provided up to the side
Is a thermocouple for measuring the temperature of the thermocouple, and three thermocouples 6 are provided at each of the upper portion, the middle portion, and the lower portion of the barrel housing portion 1a. Reference numerals 7 and 8 are pistons and load cells for applying an arbitrary pressure to the object to be measured 2 in the barrel housing portion 1a, and 9 is a groove provided in the probe 4 for flowing a cooling medium.

【0021】次に、本実施例の熱伝導率測定装置におけ
る熱伝導率測定方法について説明する。本実施例では、
まず、被測定物2をバレル1のバレル収納部1a内に充
填し、バレル1周囲に設けた加熱板3でバレル1を加熱
することにより、バレル収納部1aに充填した被測定物
2を熱変形温度以上に加熱して溶融する。ここで、被測
定物2を熱変形温度以上に加熱して溶融しているのは、
被測定物2を熱変形温度以上にすると、被測定物2中に
空気層が混入して被測定物2の均一な測定を行い難くな
るので、被測定物2を溶融し、空気層を混入し難くして
均一な測定を行うためである。
Next, a thermal conductivity measuring method in the thermal conductivity measuring apparatus of this embodiment will be described. In this embodiment,
First, the device under test 2 filled in the barrel storage part 1a is heated by filling the device under test 2 into the barrel storage part 1a of the barrel 1 and heating the barrel 1 with the heating plate 3 provided around the barrel 1. Melts by heating above the deformation temperature. Here, what is being melted by heating the DUT 2 above the thermal deformation temperature is
When the object to be measured 2 has a thermal deformation temperature or higher, an air layer is mixed into the object to be measured 2 and it becomes difficult to perform uniform measurement of the object to be measured 2. Therefore, the object to be measured 2 is melted and the air layer is mixed. This is because it is difficult to perform and uniform measurement is performed.

【0022】この時、温度上昇により被測定物2が熱膨
張で体積変化を起こして密度変化を生じるのを抑えるた
めに、ロードセル8とピストン7によりバレル収納部1
a内の被測定物2に所定の圧力を付加しておく。この
後、プローブ4の内部に設けた冷却媒体を通す溝9に水
等の冷却媒体を循環させて、プローブ4を強制的に冷却
し、この強制冷却されるプローブ4を通してバレル収納
部1a内の被測定物2を強制的に冷却する。
At this time, in order to suppress the volume change of the DUT 2 due to the thermal expansion due to the temperature rise and the density change, the barrel cell 1 and the piston 7 are used to prevent the change in density.
A predetermined pressure is applied to the DUT 2 in a. After that, a cooling medium such as water is circulated in the groove 9 for passing the cooling medium provided inside the probe 4 to forcibly cool the probe 4, and the forcedly cooled probe 4 is passed through the inside of the barrel housing portion 1a. The DUT 2 is forcibly cooled.

【0023】次に、この強制冷却と同時に、被測定物2
の温度上昇を制限するために、加熱板3の電源をoff
するか、あるいはバレル1に設けた熱電対6による設定
温度を常温付近にセットし、コントローラによりバレル
1を冷却する。そして、被測定物2が常温に冷却された
後、被測定物2の熱伝導率測定を開始する。次に、プロ
ーブ4内に設けたヒータ5に印加電圧を与えることでバ
レル収納部1a内の被測定物2を昇温させ、バレル1に
設けた熱電対6により被測定物2の温度上昇を測定する
ことにより、熱伝導率測定を行う。そして、この被測定
物2の測定温度、熱電対6とプローブ4間の間隔、及び
ヒータ5の印加電圧とその印加時間から熱伝導率を算出
する。
Next, simultaneously with the forced cooling, the object to be measured 2
In order to limit the temperature rise of the
Alternatively, the temperature set by the thermocouple 6 provided in the barrel 1 is set to around room temperature, and the barrel 1 is cooled by the controller. Then, after the DUT 2 is cooled to room temperature, the thermal conductivity measurement of the DUT 2 is started. Next, an applied voltage is applied to the heater 5 provided in the probe 4 to raise the temperature of the DUT 2 in the barrel housing portion 1a, and the thermocouple 6 provided in the barrel 1 raises the temperature of the DUT 2. The thermal conductivity is measured by measuring. Then, the thermal conductivity is calculated from the measured temperature of the DUT 2, the distance between the thermocouple 6 and the probe 4, the applied voltage of the heater 5 and the applied time thereof.

【0024】なお、本実施例においては、ヒータ5に与
える印加電圧と印加時間は、被測定物2の熱伝導率によ
り変更することが望ましい。熱伝導率の良いものは、図
3に示す如く、ケース1の直線上に温度が上昇するのに
対し、熱伝導率の悪いものは、ケース2のように曲線を
描くことになる。この傾きから熱伝導率を算出するた
め、ケース1の場合は問題ないが、ケース2の場合は印
加時間の短い領域の傾きと長い領域では傾きが異なる。
本実施例では、印加時間の短い領域を被測定物2の熱伝
導率と考え、長い領域をバレル1による影響と考える。
よって、ケース2の場合は、短い印加時間で測定するこ
とを条件とする。
In this embodiment, the applied voltage and the applied time to the heater 5 are preferably changed according to the thermal conductivity of the DUT 2. As shown in FIG. 3, the one having good thermal conductivity rises in temperature on the straight line of the case 1, while the one having poor thermal conductivity draws a curve like the case 2. Since the thermal conductivity is calculated from this slope, there is no problem in case 1, but in case 2 the slope is different between the region where the application time is short and the region where the application time is long.
In the present embodiment, the region where the application time is short is considered to be the thermal conductivity of the DUT 2, and the long region is considered to be the influence of the barrel 1.
Therefore, in the case of Case 2, the condition is that measurement is performed in a short application time.

【0025】このように、本実施例(請求項1)では、
被測定物2を収納するバレル収納部1aを有するバレル
1と、バレル1周囲に設けたバレル1を加熱する加熱板
3と、バレル収納部1a内のバレル底板1b上に設けた
プローブ4と、プローブ4内に設けたプローブ4を加熱
するヒータ5と、バレル1内に設けた被測定物2の温度
を測定する熱電対6と、バレル収納部1a内に充填した
被測定物2に所定の圧力を加えるピストン7及びロード
セル8とを有するように構成している。
Thus, in this embodiment (claim 1),
A barrel 1 having a barrel housing portion 1a for housing the DUT 2, a heating plate 3 for heating the barrel 1 provided around the barrel 1, a probe 4 provided on a barrel bottom plate 1b in the barrel housing portion 1a, A heater 5 provided in the probe 4 for heating the probe 4, a thermocouple 6 provided in the barrel 1 for measuring the temperature of the object 2 to be measured, and the object 2 to be filled in the barrel housing 1a are provided with a predetermined size. It is configured to have a piston 7 for applying pressure and a load cell 8.

【0026】このため、特に高温域で熱伝導率測定を行
う際、ピストン7及びロードセル8によりバレル収納部
1aに充填した被測定物2に任意の圧力を適宜加えて一
定に保持する(ピストン7位置を一定に保持する)こと
により、被測定物2の樹脂の熱膨張による体積変化を抑
えて密度が一定の条件のもとで被測定物2の熱伝導率を
精度良く評価することができる。従って、温度と圧力に
依存した熱伝導率変化を精度良く評価することができ
る。例えば、樹脂を加圧成形する際、温度だけでなく圧
力を考慮した熱伝導率を加味して、加圧成形条件をシミ
ュレーションして求めることができる。
Therefore, particularly when the thermal conductivity is measured in a high temperature range, an arbitrary pressure is appropriately applied to the object to be measured 2 filled in the barrel housing 1a by the piston 7 and the load cell 8 to keep it constant (piston 7). By keeping the position constant), the volume change due to the thermal expansion of the resin of the DUT 2 can be suppressed, and the thermal conductivity of the DUT 2 can be accurately evaluated under the condition that the density is constant. . Therefore, the change in thermal conductivity depending on temperature and pressure can be accurately evaluated. For example, when the resin is pressure-molded, it can be obtained by simulating the pressure-molding conditions in consideration of the thermal conductivity in consideration of not only the temperature but also the pressure.

【0027】本実施例(請求項2)は、被測定物2の温
度測定を、3本の熱電対6からなるように構成してい
る。このため、3本の熱電対3を適宜配置して構成する
ことにより、仮に被測定物2内に温度分布が生じていた
としても、測定した3箇所の温度を平均化することがで
きるので、従来の1本の熱電対で測定する場合よりも、
測定誤差性を小さくして信頼性の高い熱伝導率測定を行
うことができる。
In this embodiment (claim 2), the temperature of the object to be measured 2 is measured by three thermocouples 6. Therefore, by appropriately disposing the three thermocouples 3 and arranging them, even if the temperature distribution is generated in the DUT 2, it is possible to average the temperatures at the three measured points. Compared with the case of measuring with one conventional thermocouple,
It is possible to reduce the measurement error and perform highly reliable thermal conductivity measurement.

【0028】本実施例(請求項3)は、プローブ4内の
ヒータ5を、プローブ4内に円周上に配置してなるよう
に構成している。このため、プローブ4内にヒータ5を
円周上に配置することにより、従来の棒状のヒータを配
置する場合よりも、プローブ5を均一に、かつ速く加熱
することができる。従って、このプローブ5を介して被
測定物2を効率良く加熱することができる。
In this embodiment (claim 3), the heater 5 in the probe 4 is arranged on the circumference of the probe 4. Therefore, by arranging the heater 5 on the circumference in the probe 4, it is possible to heat the probe 5 uniformly and faster than when the conventional rod-shaped heater is arranged. Therefore, the DUT 2 can be efficiently heated via the probe 5.

【0029】本実施例(請求項4)は、プローブ5内に
冷却媒体を通す溝9を設けてなるように構成している。
このため、プローブ5に設けた溝9内に冷却媒体を流し
てプローブ5を強制的に冷却することにより、従来の自
然放冷を行う場合よりも、プローブ5を速く冷却するこ
とができる。従って、このプローブ5を介して被測定物
2を速く冷却することができるため、試料作成時間を短
縮して効率の良い試料作りを行うことができる。
In this embodiment (claim 4), a groove 9 for passing a cooling medium is provided in the probe 5.
For this reason, by forcing the cooling medium to flow through the groove 9 provided in the probe 5 to cool the probe 5, the probe 5 can be cooled faster than in the case of performing conventional natural cooling. Therefore, since the DUT 2 can be cooled quickly through the probe 5, the sample preparation time can be shortened and the sample preparation can be performed efficiently.

【0030】本実施例(請求項5)は、熱電対6による
測定温度に基づいて、加熱板3の電源をOFFしたり、
バレル1の設定温度を制御するように加熱板3の電源を
ON/OFFするように制御したりすることにより、被
測定物2の温度上昇を制限するように構成している。こ
のため、バレル1を加熱する加熱板3印加時間を限定し
て被測定物2の温度上昇を制限することにより、バレル
1に熱が加わることにより生じるプローブ4のヒータ5
を印加しても樹脂温度が上り難くなってしまうという弊
害を生じ難くすることができる。
In this embodiment (Claim 5), the heating plate 3 is turned off based on the temperature measured by the thermocouple 6,
The temperature rise of the DUT 2 is limited by controlling the power supply of the heating plate 3 to turn ON / OFF so as to control the set temperature of the barrel 1. Therefore, by limiting the application time of the heating plate 3 for heating the barrel 1 to limit the temperature rise of the DUT 2, the heater 5 of the probe 4 caused by the heat applied to the barrel 1
It is possible to prevent the adverse effect that the resin temperature is hard to rise even if is applied.

【0031】[0031]

【発明の効果】本発明によれば、任意の圧力下で、かつ
密度一定の条件のもとで樹脂の熱伝導率を評価すること
ができ、温度と圧力に依存した熱伝導率変化を精度良く
評価することができるという効果がある。
According to the present invention, the thermal conductivity of a resin can be evaluated under an arbitrary pressure and under a constant density condition, and the thermal conductivity change depending on temperature and pressure can be accurately measured. The effect is that it can be evaluated well.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の熱伝導率測定装置の構
造を示す断面図である。
FIG. 1 is a cross-sectional view showing the structure of a thermal conductivity measuring apparatus according to an embodiment of the present invention.

【図2】図1に示すプローブの構造を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing the structure of the probe shown in FIG.

【図3】被測定物の熱伝導率の良いものと悪いものにお
けるヒータへの電圧印加時間に対する熱電対の測定温度
結果を示す図である。
FIG. 3 is a diagram showing measured temperature results of a thermocouple with respect to a voltage application time to a heater when a measured object has good thermal conductivity and when the measured object has poor thermal conductivity.

【図4】従来の熱伝導率測定装置の構造を示す断面図で
ある。
FIG. 4 is a cross-sectional view showing the structure of a conventional thermal conductivity measuring device.

【符号の説明】 1 バレル 1a バレル収納部 1b バレル底板 2 被測定物 3 加熱板 4 プローブ 5 ヒータ 6 熱電対 7 ピストン 8 ロードセル 9 溝[Explanation of reference symbols] 1 barrel 1a barrel housing 1b barrel bottom plate 2 DUT 3 heating plate 4 probe 5 heater 6 thermocouple 7 piston 8 load cell 9 groove

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】樹脂あるいは樹脂を含む粉体混合物からな
る被測定物の熱伝導率を測定する熱伝導率測定装置にお
いて、前記被測定物を収納するバレル収納部を有するバ
レルと、該バレル周囲に設けた該バレルを加熱する第1
の加熱手段と、前記バレル収納部内の前記バレルの底板
上に設けたプローブと、該プローブ内に設けた該プロー
ブを加熱する第2の加熱手段と、前記バレル内に設けた
前記被測定物の温度を測定する温度測定手段と、前記バ
レル収納部内に充填した前記被測定物に所定の圧力を加
える押圧手段とを有することを特徴とする熱伝導率測定
装置。
1. A thermal conductivity measuring device for measuring the thermal conductivity of an object to be measured, which comprises a resin or a powder mixture containing the resin, and a barrel having a barrel accommodating portion for accommodating the object to be measured, and the periphery of the barrel. For heating the barrel provided in the first
Heating means, a probe provided on the bottom plate of the barrel in the barrel housing, second heating means for heating the probe provided in the probe, and the object to be measured provided in the barrel. A thermal conductivity measuring device comprising: a temperature measuring means for measuring a temperature; and a pressing means for applying a predetermined pressure to the object to be measured filled in the barrel housing portion.
【請求項2】前記温度測定手段は、少なくとも2つ以上
の温度センサーからなることを特徴とする請求項1記載
の熱伝導率測定装置。
2. The thermal conductivity measuring device according to claim 1, wherein the temperature measuring means comprises at least two temperature sensors.
【請求項3】前記第2の加熱手段は、前記プローブ内に
円周上に配置したヒータからなることを特徴とする請求
項1,2記載の熱伝導率測定装置。
3. The thermal conductivity measuring device according to claim 1, wherein the second heating means comprises a heater arranged on the circumference of the probe.
【請求項4】前記プローブは、冷却媒体を通す溝を設け
てなることを特徴とする請求項1乃至3記載の熱伝導率
測定装置。
4. The thermal conductivity measuring device according to claim 1, wherein the probe is provided with a groove through which a cooling medium passes.
【請求項5】前記温度測定手段による測定温度に基づい
て、前記被測定物の温度上昇を制限する温度上昇制限手
段を有することを特徴とする請求項1乃至4記載の熱伝
導率測定装置。
5. The thermal conductivity measuring device according to claim 1, further comprising a temperature rise limiting means for limiting the temperature rise of the object to be measured based on the temperature measured by the temperature measuring means.
JP27200494A 1994-11-07 1994-11-07 Thermal conductivity measuring apparatus Pending JPH08136483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27200494A JPH08136483A (en) 1994-11-07 1994-11-07 Thermal conductivity measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27200494A JPH08136483A (en) 1994-11-07 1994-11-07 Thermal conductivity measuring apparatus

Publications (1)

Publication Number Publication Date
JPH08136483A true JPH08136483A (en) 1996-05-31

Family

ID=17507808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27200494A Pending JPH08136483A (en) 1994-11-07 1994-11-07 Thermal conductivity measuring apparatus

Country Status (1)

Country Link
JP (1) JPH08136483A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030092971A (en) * 2002-05-31 2003-12-06 김광우 A testing method and equipment of thermal conduction for plate glass
KR100706882B1 (en) * 2005-08-26 2007-04-12 한국생산기술연구원 Method and apparatus for calculating thermal conductivity of thermal barrier coatings
CN100409003C (en) * 2001-10-10 2008-08-06 株式会社日立制作所 Resin thermal impedance testing method and tester using same
CN102175712A (en) * 2011-01-21 2011-09-07 重庆大学 Measuring system and method for interface heating power coupling heat transfer coefficients
CN102507640A (en) * 2011-10-18 2012-06-20 哈尔滨工业大学 Shear rate-variable liquid heat transfer coefficient measuring device and method
CN104215654A (en) * 2014-09-11 2014-12-17 中国科学院地球化学研究所 New method for measuring heat conductivity coefficient of micro powder sample under variable temperature and variable pressure conditions
CN106153672A (en) * 2016-06-08 2016-11-23 东南大学 Voluminous powder material thermal conductivity measurement apparatus based on one-dimensional heat conduction principle and method
JP2017062129A (en) * 2015-09-24 2017-03-30 株式会社東洋精機製作所 Method for measuring thermal conductivity and measurement device
KR20220026914A (en) * 2020-08-26 2022-03-07 한국원자력연구원 Appartus and method for testing heat transfer coefficient

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409003C (en) * 2001-10-10 2008-08-06 株式会社日立制作所 Resin thermal impedance testing method and tester using same
KR20030092971A (en) * 2002-05-31 2003-12-06 김광우 A testing method and equipment of thermal conduction for plate glass
KR100706882B1 (en) * 2005-08-26 2007-04-12 한국생산기술연구원 Method and apparatus for calculating thermal conductivity of thermal barrier coatings
CN102175712A (en) * 2011-01-21 2011-09-07 重庆大学 Measuring system and method for interface heating power coupling heat transfer coefficients
CN102507640A (en) * 2011-10-18 2012-06-20 哈尔滨工业大学 Shear rate-variable liquid heat transfer coefficient measuring device and method
CN104215654A (en) * 2014-09-11 2014-12-17 中国科学院地球化学研究所 New method for measuring heat conductivity coefficient of micro powder sample under variable temperature and variable pressure conditions
JP2017062129A (en) * 2015-09-24 2017-03-30 株式会社東洋精機製作所 Method for measuring thermal conductivity and measurement device
CN106153672A (en) * 2016-06-08 2016-11-23 东南大学 Voluminous powder material thermal conductivity measurement apparatus based on one-dimensional heat conduction principle and method
KR20220026914A (en) * 2020-08-26 2022-03-07 한국원자력연구원 Appartus and method for testing heat transfer coefficient

Similar Documents

Publication Publication Date Title
US4840495A (en) Method and apparatus for measuring the thermal resistance of an element such as large scale integrated circuit assemblies
Murashko et al. Determination of the through-plane thermal conductivity and specific heat capacity of a Li-ion cylindrical cell
CN101495821A (en) Temperature sensing and prediction in ic sockets
JPH08136483A (en) Thermal conductivity measuring apparatus
JP2005249427A (en) Thermophysical property measuring method and device
US20060045165A1 (en) Thermal interface material characterization system and method
EP0634649A2 (en) Method and apparatus for thermal conductivity measurements
Cheheb et al. Thermal conductivity of rubber compounds versus the state of cure
CN106872898A (en) Electrokinetic cell monomer interface thermal resistance method for rapidly testing
HU186066B (en) Method and apparatus for measuring coefficient of heat transfer
US4861167A (en) Line-heat-source thermal conductivity measuring system
US3592060A (en) Apparatus and method for measuring the thermal conductivity of insulating material
KR20220013309A (en) Method and System for Predicting Battery Behavior Based on Battery Parameter Measurement
JPH0228522A (en) Electronic balance
US3114255A (en) Thermal conductivity apparatus
JPH07274938A (en) Temperature control device for observing cell and biological ingredient
US4244207A (en) Temperature standard
WO2007081627A2 (en) Thin film calorimeter
Findlay et al. Temperature measurements of a graphite furnace used in flameless atomic absorption
JP3146357B2 (en) Precise measurement method of thermal conductivity of liquid material using short-time microgravity environment
JP2007309750A (en) Blackbody furnace
KR100290274B1 (en) Multi-stress BDV Cell
CN109031084A (en) A kind of high power water cooling burning measurement equipment
JPH04105053A (en) Measuring method for thermal conductivity of molten resin
Nonneman et al. Development of measurement setup for thermal conductivity at high temperatures using the parallel hot-wire