JPH08136311A - Vibration-type measuring instrument - Google Patents

Vibration-type measuring instrument

Info

Publication number
JPH08136311A
JPH08136311A JP27163594A JP27163594A JPH08136311A JP H08136311 A JPH08136311 A JP H08136311A JP 27163594 A JP27163594 A JP 27163594A JP 27163594 A JP27163594 A JP 27163594A JP H08136311 A JPH08136311 A JP H08136311A
Authority
JP
Japan
Prior art keywords
measuring
vibration
pipe
amplitude
measuring tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27163594A
Other languages
Japanese (ja)
Other versions
JP3565588B2 (en
Inventor
Hironobu Yao
博信 矢尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP27163594A priority Critical patent/JP3565588B2/en
Publication of JPH08136311A publication Critical patent/JPH08136311A/en
Application granted granted Critical
Publication of JP3565588B2 publication Critical patent/JP3565588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE: To compensate the influence due to the axial force (stress) of a measurement pipe and to accurately measure mass flow rate or density. CONSTITUTION: By paying attention to the fact that the phase difference or time difference of each output signal of vibration sensors 6a and 6b indicating the mass flow rate or density of fluid is a function of the temperature and axial force of a measurement pipe and the axial force is a function of the vibration amplitude ratio (or difference) of two positions of the measurement pipe, accuracy can be improved by compensating the phase difference obtained by compensating a phase difference operation part 92 with the output from an amplitude ratio operation part 91 and a temperature operation part 93, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、加振される少なくと
も1本の測定管を有し、この測定管内を流れる流体の質
量流量にもとづき発生するコリオリ力を利用して質量流
量を測定する質量流量計、または上記測定管内の流体の
密度変化に応じて変化する測定管の共振周波数の変化に
より流体密度を測定する振動式の密度計、もしくは両方
の機能を持つ振動型測定器、特に流体温度,周囲温度や
軸力(応力)によって変化する測定値を補正することが
可能な振動型測定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mass for measuring a mass flow rate by using Coriolis force generated based on a mass flow rate of a fluid flowing in the measurement tube, which has at least one vibrating measurement tube. A flow meter, a vibrating density meter that measures the fluid density by changing the resonance frequency of the measuring tube that changes according to the density change of the fluid in the measuring tube, or a vibrating measuring instrument that has both functions, especially the fluid temperature. The present invention relates to a vibration-type measuring instrument that can correct measured values that change due to ambient temperature and axial force (stress).

【0002】[0002]

【従来の技術】図5は直管式質量流量計の従来例を示す
構成図である。検出部1は1本の直管状測定管2と、こ
の測定管2の振動の節部a,bを固定する左右の固定材
3a,3bと、固定材3a,3bの振動を互いにキャン
セルするよう、ネジ止めまたは溶接等の手段により固定
材3a,3bに固定されたり、または固定材3a,3b
と一体的に成形された支持部4aおよび4b(4aのみ
図示)と、アダプタ7aによりそれぞれ支持部4a,4
bに固定されたコイルおよび測定管2の中央部に固定さ
れたマグネットにより構成され、測定管2をその共振周
波数で振動させる(加振する)振動発生器5とを有して
いる。
2. Description of the Related Art FIG. 5 is a block diagram showing a conventional example of a straight pipe type mass flow meter. The detection unit 1 cancels the vibrations of one straight tubular measuring pipe 2, the left and right fixing members 3a and 3b for fixing the vibration nodes a and b of the measuring pipe 2, and the fixing members 3a and 3b. , Fixed to the fixing members 3a, 3b by means such as screwing or welding, or the fixing members 3a, 3b
And supporting portions 4a and 4b (only 4a is shown) integrally molded with the supporting portions 4a and 4b, respectively.
It has a coil fixed to b and a magnet fixed to the central portion of the measuring tube 2, and has a vibration generator 5 for vibrating (exciting) the measuring tube 2 at its resonance frequency.

【0003】検出部1はさらに、振動発生器5と同じく
アダプタ7b,7cにより支持部4a,4bに固定され
たコイルに対し、測定管2上の振動発生器5を中心とす
るほぼ対称な位置にそれぞれ固定されたマグネットによ
り構成され、測定管2の振動を検出する速度検出センサ
(または変位センサ,加速度センサ)6a,6bと、速
度検出センサ6aからの出力を受けてその信号振幅が一
定となるよう、振動発生器5に対して駆動信号を出力す
る駆動回路8と、速度検出センサ6a,6bからの信号
の位相差(時間差)にもとづき質量流量信号Qmを出力
する信号処理回路9とから構成されている。
The detection unit 1 further has a substantially symmetrical position about the vibration generator 5 on the measuring tube 2 with respect to the coil fixed to the support units 4a and 4b by the adapters 7b and 7c like the vibration generator 5. Speed detection sensors (or displacement sensors, acceleration sensors) 6a and 6b for detecting the vibration of the measuring tube 2 and a signal amplitude that is constant when receiving the output from the speed detection sensor 6a. As described above, the drive circuit 8 that outputs a drive signal to the vibration generator 5 and the signal processing circuit 9 that outputs the mass flow rate signal Qm based on the phase difference (time difference) of the signals from the speed detection sensors 6a and 6b. It is configured.

【0004】ここで、以上の如く構成された検出部1に
おいて、流体の流量がゼロの場合について考える。すな
わち、測定管2は速度検出センサ6a、振動発生器5お
よび駆動回路8により、その共振周波数で加振されてい
る。また、速度検出センサ6a,6bは測定管2の中央
部に対して対称な位置に取り付けられているため、これ
らのセンサ6a,6bからは互いに位相差のない同じ振
幅の信号が得られる。
Now, let us consider a case where the flow rate of the fluid is zero in the detecting section 1 constructed as described above. That is, the measuring tube 2 is vibrated at its resonance frequency by the speed detection sensor 6a, the vibration generator 5, and the drive circuit 8. Further, since the speed detection sensors 6a and 6b are mounted at symmetrical positions with respect to the central portion of the measuring tube 2, the sensors 6a and 6b can obtain signals having the same amplitude but no phase difference.

【0005】これに対し、流れが生じて振動する測定管
2内を流体が流れると、測定管2の節aから測定管2の
中央部に向かうに従い、図6に示されるように振動方向
の速度成分が増加するため、測定管2内を流れる流体に
は振動方向に測定管2から正の加速度が作用する。した
がって、その反作用として測定管2には流体から反力が
作用するため、図7に示されるように測定管2の節aか
ら測定管2の中央部では、振動の位相が遅れる方向に変
形する。また、測定管2の中央部から節bに向かうに従
い、振動方向の速度成分は減少するため、測定管2内を
流れる流体には振動方向に測定管2から負の加速度が作
用する。したがって、その反作用として測定管2には流
体からの反力が作用し、図7のように測定管2の中央部
から節bでは振動の位相が進む方向の変形力を受ける。
On the other hand, when a fluid flows in the measuring tube 2 where a flow is generated and vibrates, the direction of vibration is changed from the node a of the measuring tube 2 toward the center of the measuring tube 2, as shown in FIG. Since the velocity component increases, a positive acceleration acts on the fluid flowing in the measuring pipe 2 from the measuring pipe 2 in the vibration direction. Therefore, as a reaction, a reaction force acts on the measuring tube 2 from the fluid, and as shown in FIG. 7, in the center part of the measuring tube 2 from the node a of the measuring tube 2, the vibration phase is deformed in a direction in which the phase of the vibration is delayed. . Further, since the velocity component in the vibration direction decreases from the central portion of the measurement pipe 2 toward the node b, a negative acceleration from the measurement pipe 2 acts on the fluid flowing in the measurement pipe 2 in the vibration direction. Therefore, as a reaction thereof, a reaction force from the fluid acts on the measurement pipe 2, and as shown in FIG. 7, the deformation force in the direction in which the phase of vibration advances from the central portion of the measurement pipe 2 to the node b.

【0006】以下、変形を数式を用いて説明する。い
ま、変位センサ6aの変位は、共振による測定管の横振
動の変位から、 Ya=η(a)sinωt …(1) と表わされる。 η(a):測定管の長手方向の位置aにおける振幅を表
わす関数 ω :測定管の共振周波数
The transformation will be described below by using mathematical expressions. Now, the displacement of the displacement sensor 6a is expressed as Ya = η (a) sinωt (1) from the displacement of the lateral vibration of the measuring pipe due to resonance. η (a): Function that represents the amplitude at the position a in the longitudinal direction of the measuring tube ω: Resonant frequency of the measuring tube

【0007】また、変位センサ6aにおける流体からの
反力による測定管のたわみ形状は、下記(2)式とな
る。 ya=−2L3 ωQmηc(a)cosωt/EI …(2) L :測定管の長さ E :測定管のヤング率 I :測定管の断面2次モーメント Qm :測定管内を流れる流体の質量流量 ηc(a):測定管の長手方向の位置aにおける流体か
らの反力による測定管の変形振幅を与える関数
The deflection shape of the measuring tube due to the reaction force from the fluid in the displacement sensor 6a is given by the following equation (2). ya = -2L 3 ωQm ηc (a) cos ωt / EI (2) L: Length of measuring pipe E: Young's modulus of measuring pipe I: Second moment of area of measuring pipe Qm: Mass flow rate of fluid flowing in measuring pipe ηc (A): A function that gives the deformation amplitude of the measuring pipe due to the reaction force from the fluid at the position a in the longitudinal direction of the measuring pipe.

【0008】実際の測定管のたわみ形状は(1)式の共
振による測定管のたわみに、(2)式の測定管の変形が
重畳して振動する。つまり、測定管のたわみ形状は
(1),(2)式を合成して(3)式のようになる。 ξa=Ya+ya=Asin(ωt−α) …(3) ここに、 A=[η(a)2 +{2L3 ωQmηc(a)/EI}2 1/2 …(4) α=2L3 ωQmηc(a)/EIη(a) …(5)
In the actual bending shape of the measuring pipe, the deformation of the measuring pipe of the formula (2) is superimposed on the bending of the measuring pipe due to the resonance of the formula (1) and vibrates. That is, the deflection shape of the measuring tube is expressed by the formula (3) by combining the formulas (1) and (2). ξa = Ya + ya = Asin (ωt−α) (3) where A = [η (a) 2 + {2L 3 ωQmηc (a) / EI} 2 ] 1/2 (4) α = 2L 3 ωQmηc (A) / EIη (a) (5)

【0009】変位センサ6bにおける測定管の横振動の
変位は、これが測定管の中央部に関し変位センサ6aと
対称な位置に取り付けられているため、変位センサ6a
の変位と同じになる。すなわち、 Yb=Ya=η(a)sinωt …(6) また、変位センサ6bにおける流体からの測定管への反
力は、変位センサ6aにおける流体からの反力と大きさ
は同じで方向は反対であるから、 yb=−ya=2L3 ωQmηc(a)cosωt/EI …(7) となる。
The displacement of the lateral vibration of the measuring pipe in the displacement sensor 6b is attached at a position symmetrical to the displacement sensor 6a with respect to the central portion of the measuring pipe.
Becomes the same as the displacement of. That is, Yb = Ya = η (a) sinωt (6) Further, the reaction force from the fluid in the displacement sensor 6b to the measuring pipe has the same magnitude as the reaction force from the fluid in the displacement sensor 6a, but the direction is opposite. Therefore, yb = −ya = 2L 3 ωQmηc (a) cosωt / EI (7)

【0010】したがって、変位センサ6bにおける測定
管のたわみ形状は、 ξb=Ya−ya=Asin(ωt+α) …(8) となる。上記(3),(8)式より、変位センサ6a,
6bの信号間には2αの位相差があることが分かり、こ
の位相差2αは(5)式より質量流量Qmに比例するこ
とが分かる。よって、変位センサ6a,6bの信号間の
時間差は、 Δt=2α/ω=2L3 Qmηc(a)/EIη(a) …(9) となる。
Therefore, the deflection shape of the measuring tube in the displacement sensor 6b is ξb = Ya-ya = Asin (ωt + α) (8) From the equations (3) and (8), the displacement sensor 6a,
It can be seen that there is a phase difference of 2α between the signals of 6b, and this phase difference 2α is found to be proportional to the mass flow rate Qm from equation (5). Therefore, the time difference between the signals of the displacement sensors 6a and 6b is Δt = 2α / ω = 2L 3 Qmηc (a) / EIη (a) (9).

【0011】また、測定管の共振周波数は次の(10)
式で与えられる。 ω=λ2 /L2 ・(EI/ρ)1/2 …(10) λ:測定管の境界条件と振動モードで決定される定数 ρ:測定管と測定管内の流体を含めた線密度 ところで、測定管の温度が変化すると、(5)または
(9)式より、ヤング率Eの温度依存性から、質量流量
Qmが一定でもセンサ出力信号の位相差や時間差が変化
することが分かる。同様にして、測定流体に密度変化が
ない場合でも、(10)式の共振周波数ωも変化するこ
とが分かる。
Further, the resonance frequency of the measuring tube is (10)
Given by the formula. ω = λ 2 / L 2 · (EI / ρ) 1/2 (10) λ: Constant determined by the boundary condition and vibration mode of the measuring tube ρ: Linear density including the measuring tube and the fluid in the measuring tube As the temperature of the measuring tube changes, it can be seen from the equation (5) or (9) that the phase difference and time difference of the sensor output signal change from the temperature dependence of the Young's modulus E even if the mass flow rate Qm is constant. Similarly, it can be seen that the resonance frequency ω of the equation (10) also changes even when the density of the measurement fluid does not change.

【0012】これまでは、測定管に作用する軸力(応
力)の影響を無視したが、軸力の影響を考慮すると、測
定管の振幅を示す定数ηは測定管の位置だけでなく軸力
Tの関数ともなることから、先の(1)式は次の(1
1)式のようになる。 Ya=η(a,T)sinωt …(11) したがって、先の(5)式,(9)式は下記の(1
2),(13)式のようになる。 α=2L3 ωQmηc(a,T)/EIη(a,T) …(12) Δt=2α/ω=2L3 Qmηc(a,T)/EIη(a,T) …(13)
Up to now, the influence of the axial force (stress) acting on the measuring pipe is neglected. However, considering the influence of the axial force, the constant η indicating the amplitude of the measuring pipe is not only the position of the measuring pipe but also the axial force. Since it is also a function of T, the above equation (1) is
It becomes like the formula 1). Ya = η (a, T) sinωt (11) Therefore, the above equations (5) and (9) are
It becomes like the formulas (2) and (13). α = 2L 3 ωQmηc (a, T) / EIη (a, T) (12) Δt = 2α / ω = 2L 3 Qmηc (a, T) / EIη (a, T) (13)

【0013】すなわち、質量流量に比例して発生する位
相差や時間差は、測定管に作用する軸力によっても変化
することが分かる。このときの測定管の共振周波数ω
は、 ω=λn (T)2 /L2 ・(EI/ρ)1/2 …(14) となり、測定管の共振周波数ωも測定管に作用する軸力
の関数であることを示している。
That is, it is understood that the phase difference and the time difference generated in proportion to the mass flow rate also change depending on the axial force acting on the measuring tube. Resonance frequency ω of the measuring tube at this time
Is ω = λ n (T) 2 / L 2 · (EI / ρ) 1/2 (14), showing that the resonance frequency ω of the measuring tube is also a function of the axial force acting on the measuring tube. There is.

【0014】一般的に、測定管を振動させ、測定管内を
流れる流体の質量流量にもとづいて発生するコリオリ力
を利用して質量流量を測定する質量流量計では、測定流
体の温度変化や周囲温度の変化によって測定管の温度が
変化した場合、測定管のヤング率の温度依存性により測
定管の剛性が変化し、コリオリ力に対する感度が変化し
て流量測定値が変化する。また、直管状の測定管を有す
るコリオリ式の質量流量計の場合、上述のように温度な
どの変化による測定管や支持部の膨張,収縮によって測
定管に作用する軸力が変化し、この軸力の変化にて質量
流量の 感度が変化することになる。
Generally, in a mass flow meter that vibrates a measuring pipe and uses a Coriolis force generated based on the mass flow rate of a fluid flowing in the measuring pipe to measure the mass flow rate, the temperature change of the measuring fluid and the ambient temperature are measured. When the temperature of the measuring tube changes due to the change of, the rigidity of the measuring tube changes due to the temperature dependence of the Young's modulus of the measuring tube, the sensitivity to Coriolis force changes, and the flow rate measurement value changes. Further, in the case of a Coriolis mass flowmeter having a straight tubular measuring tube, the axial force acting on the measuring tube changes due to the expansion and contraction of the measuring tube and the supporting part due to the change in temperature as described above, and this axis The change in force changes the sensitivity of mass flow rate.

【0015】また、振動式の密度計においても同様に、
測定流体の温度変化や周囲温度の変化によって測定管の
温度が変化すると、測定管のヤング率の温度依存性によ
り共振周波数が変化し、測定誤差が発生する。特に、直
管状の測定管を有するものでは、測定管に作用する軸力
の変化に伴って共振周波数が変化するため、測定値に誤
差が生じるわけである。
Similarly, in a vibration type density meter,
When the temperature of the measuring tube changes due to the temperature change of the measurement fluid or the ambient temperature, the resonance frequency changes due to the temperature dependence of the Young's modulus of the measuring tube, causing a measurement error. Particularly, in the case of having a straight tube-shaped measuring tube, the resonance frequency changes with the change of the axial force acting on the measuring tube, so that an error occurs in the measured value.

【0016】以上のように、温度環境の変化に伴って質
量流量計の感度や測定値に変動が生じた場合の補正方式
としては、例えば特公平5−69452号公報,特開平
6−94501号公報に示すものなどがある。前者によ
れば、2つの温度センサを支持部と実質的に測定管の温
度に等しい位置に、それぞれ取り付け、この2つの温度
センサからの信号を補正回路に導くとともに、2つの振
動センサから導かれた流量信号も同様に補正回路に入力
して、補正を実施するようにしている。
As described above, as a correction method when the sensitivity or the measured value of the mass flowmeter fluctuates due to the change of the temperature environment, for example, Japanese Patent Publication No. 5-69452 and Japanese Patent Laid-Open No. 6-94501. There are those shown in the official gazette. According to the former, the two temperature sensors are mounted at positions substantially equal to the temperature of the support portion and the measuring tube, and the signals from the two temperature sensors are guided to the correction circuit and the two vibration sensors. Similarly, the flow rate signal is also input to the correction circuit to perform the correction.

【0017】一方、後者では、流量測定値を測定管の温
度に対応して補正するため、測定管の温度を検出する温
度センサと、測定値を測定管の長さおよび応力に依存し
て補正するための長さ変化センサ(例えばストレインゲ
ージなどのひずみゲージ)とを設け、それぞれの信号を
補正回路に導いて補正するようにしている。
On the other hand, in the latter, since the flow rate measurement value is corrected according to the temperature of the measuring pipe, the temperature sensor for detecting the temperature of the measuring pipe and the measured value are corrected depending on the length and stress of the measuring pipe. A length change sensor (for example, a strain gauge such as a strain gauge) is provided to guide each signal to a correction circuit for correction.

【0018】[0018]

【発明が解決しようとする課題】前者のように、測定管
と支持部の温度測定を行ない、ヤング率の変化に伴う変
化と、間接的に測定管の軸力を推定する場合、温度安定
時でも流体の温度と環境温度の差により、各部での温度
勾配が異なる場合がある。また、流体温度や環境温度が
変化する過渡的な状態においては、各部の温度勾配は当
然安定しない。したがって、上記のような各状態におい
ては測定管や支持部の平均温度を評価できる温度の測定
位置が常に変化するため、或る特定位置の温度測定では
正確な測定値の補正ができない場合が生じる。
As in the former case, when the temperature of the measuring tube and the supporting portion is measured and the change due to the change of the Young's modulus and the axial force of the measuring tube are indirectly estimated, when the temperature is stable. However, the temperature gradient in each part may differ due to the difference between the fluid temperature and the environmental temperature. Further, in a transient state in which the fluid temperature and the environmental temperature change, the temperature gradient of each part is naturally not stable. Therefore, in each of the above-mentioned states, the temperature measurement position at which the average temperature of the measurement pipe and the support portion can be evaluated is constantly changing, so that it may not be possible to accurately correct the measurement value by measuring the temperature at a specific position. .

【0019】一方、後者のように直接測定管の歪みを測
定するものでは、前者の方式に比べ歪みを直接測定して
いることから、正確な補正が可能となる点で優れている
が、測定管に直接ストレインゲージ等を取り付ける必要
があるため、測定管の振動特性に悪影響を及ぼし、測定
の安定性に問題が生じる。このような影響を避けるた
め、発明者は質量体を測定管の両側に取り付け、その外
側にストレインゲージを貼り付ける構成を提案してい
る。このとき、測定管の振動を安定化するため、質量体
の質量を測定管に対して充分に大きくする必要があり、
質量計が大型化し重くなるという別の問題が発生する。
On the other hand, in the latter case in which the strain of the measuring tube is directly measured, the strain is directly measured as compared with the former method, so that it is excellent in that accurate correction is possible. Since it is necessary to directly attach a strain gauge or the like to the pipe, this adversely affects the vibration characteristics of the measuring pipe and causes a problem in measurement stability. In order to avoid such an influence, the inventor has proposed a configuration in which the mass body is attached to both sides of the measuring tube and the strain gauge is attached to the outside thereof. At this time, in order to stabilize the vibration of the measuring tube, it is necessary to make the mass of the mass body sufficiently large with respect to the measuring tube.
Another problem occurs that the mass meter becomes large and heavy.

【0020】また、支持部にストレインゲージを貼り付
ける別の構成も提案しているが、測定管を安定に振動さ
せるには、支持部の剛性を充分に大きくする必要がある
ため、測定管の断面積は支持部の断面積に比較してかな
り小さく、支持部に発生する歪みは測定管の歪みに比べ
てかなり小さくなるため、支持部の歪みから測定管の歪
みを推定する方式は、誤差が大きくなるという問題が生
じる。さらに長さ変化スロットを設け、測定管の長さを
測定する実施例も開示されているが、構造が複雑でコス
トアップになるという問題もある。したがって、この発
明の課題は測定精度の向上を、特に構造を複雑化するこ
となく安価に実現可能とすることにある。
Another structure has been proposed in which a strain gauge is attached to the supporting portion. However, in order to vibrate the measuring tube stably, the rigidity of the supporting portion needs to be sufficiently large. Since the cross-sectional area is much smaller than the cross-sectional area of the support part and the strain generated in the support part is much smaller than the strain of the measuring pipe, the method of estimating the strain of the measuring pipe from the strain of the supporting part is an error. Becomes large. Further, an example in which a length changing slot is provided to measure the length of the measuring tube is also disclosed, but there is a problem that the structure is complicated and the cost is increased. Therefore, an object of the present invention is to improve the measurement accuracy at low cost without complicating the structure.

【0021】[0021]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、加振される少なくとも1
本の直管状測定管内を流れる流体の質量流量または密度
の少なくとも一方の測定が可能な振動型測定器におい
て、前記測定管の第1部分とその他の第2部分との振動
振幅比(または差)を求め、その結果にもとづき測定値
の補正を行なうことを特徴としている。この請求項1の
発明では、前記測定管の第1部分を、測定管の振幅が最
大となる部分とすることができる(請求項2の発明)。
In order to solve such a problem, in the invention of claim 1, at least one vibration is applied.
In a vibration type measuring instrument capable of measuring at least one of mass flow rate and density of a fluid flowing in a straight measuring tube of a book, a vibration amplitude ratio (or a difference) between a first part and another second part of the measuring tube. Is obtained, and the measured value is corrected based on the result. In the invention of claim 1, the first portion of the measuring tube can be a portion where the amplitude of the measuring tube is maximum (invention of claim 2).

【0022】また、請求項3の発明では、加振される少
なくとも1本の直管状測定管内を流れる流体の質量流量
または密度の少なくとも一方の測定が可能な振動型測定
器において、前記測定管を加振する振動発生器と、測定
管の第1部分の振動振幅を測定する第1のセンサと、測
定管の第2部分の振動振幅を測定する第2のセンサと、
測定管の温度を測定する温度センサと、前記測定管,振
動発生器,第1,第2のセンサを支持する支持部と、前
記測定管の第1部分と第2部分との振動振幅比(または
差)を演算する振幅演算手段と、この振幅演算手段から
の出力により測定値の補正演算を行なう補正演算手段と
を設けたことを特徴としている。
Further, in the invention of claim 3, in the vibration type measuring instrument capable of measuring at least one of the mass flow rate and the density of the fluid flowing in the at least one straight tubular measuring tube to be vibrated, the measuring tube is provided. A vibration generator that vibrates, a first sensor that measures the vibration amplitude of the first portion of the measuring tube, and a second sensor that measures the vibration amplitude of the second portion of the measuring tube;
A temperature sensor for measuring the temperature of the measuring pipe, a supporting portion for supporting the measuring pipe, the vibration generator, and the first and second sensors, and a vibration amplitude ratio of the first portion and the second portion of the measuring pipe ( Alternatively, it is characterized in that an amplitude calculation means for calculating the difference) and a correction calculation means for correcting the measurement value by the output from the amplitude calculation means are provided.

【0023】上記請求項3の発明では、前記測定管の第
1部分を、測定管の振幅が最大となる部分とすることが
できる(請求項4の発明)。さらに、請求項3または4
の発明では、前記第2のセンサ(第1のセンサ)の出力
が一定となるように測定管を駆動する一方、前記第1の
センサ(第2のセンサ)の出力を前記補正演算手段に直
接導入して補正演算することにより、前記振幅演算手段
を省略することができる(請求項5の発明)。
In the invention of claim 3, the first portion of the measuring tube can be a portion where the amplitude of the measuring tube is maximum (invention of claim 4). Further, claim 3 or 4
In the invention, while driving the measuring tube so that the output of the second sensor (first sensor) becomes constant, the output of the first sensor (second sensor) is directly output to the correction calculation means. By introducing and performing the correction calculation, the amplitude calculating means can be omitted (the invention of claim 5).

【0024】[0024]

【作用】測定管の1次のたわみ振動によるたわみ形状は
軸力の有無によって変化し、例えば図4のようになる。
これは、測定管に或る軸力が加わった場合(実線)と、
軸力が作用していない場合(点線)のたわみ形状を示し
ている。なお、このたわみ形状は測定管の中央に対して
対称となるから、図4では固定点から中央までの形状を
示している。
The flexure shape of the measuring tube due to the primary flexural vibration changes depending on the presence / absence of the axial force, for example, as shown in FIG.
This is when a certain axial force is applied to the measuring tube (solid line),
The flexure shape when no axial force is acting (dotted line) is shown. Since this flexure shape is symmetrical with respect to the center of the measuring tube, FIG. 4 shows the shape from the fixed point to the center.

【0025】このことから、測定管の第1部分(例えば
振幅が最大となる中央部)の振動振幅を測定する第1の
センサと、その他の部分(第2部分)の振動振幅を測定
する第2のセンサを設け、測定管の第1部分とその他の
第2部分の振動振幅との比(または差)を測定すること
により、測定管の軸力を直接知ることができることが分
かる。そこで、この振動振幅比(差)にもとづき、測定
信号の感度補正を行なうようにする。なお、密度測定値
についても同様に、振動振幅比(差)に応じて補正す
る。
From this, the first sensor for measuring the vibration amplitude of the first portion (for example, the central portion where the amplitude is maximum) of the measuring pipe and the first sensor for measuring the vibration amplitude of the other portion (second portion). It can be seen that the axial force of the measuring tube can be directly known by providing two sensors and measuring the ratio (or difference) between the vibration amplitude of the first part of the measuring tube and the vibration amplitude of the other second part. Therefore, the sensitivity of the measurement signal is corrected based on this vibration amplitude ratio (difference). The density measurement value is similarly corrected according to the vibration amplitude ratio (difference).

【0026】なお、測定管の振動振幅比の計測は、原理
的には任意の2点間とすることができるが、測定管を1
次モードで加振する場合は、その中央部とその他の部分
の振幅を測定し、測定管を高次モードで加振する場合
は、振幅が最大となる腹の部分とその他の部分の振幅を
測定するのが便利である。
In principle, the measurement of the vibration amplitude ratio of the measuring tube can be performed between any two points, but one measuring tube is used.
When oscillating in the next mode, measure the amplitude of the central part and other parts.When oscillating the measuring tube in the higher mode, measure the amplitude of the antinode part and other parts where the amplitude is maximum. It is convenient to measure.

【0027】[0027]

【実施例】図1はこの発明の実施例を説明するための構
成図である。同図からも明らかなように、この実施例の
特徴は検出部1に速度検出センサ6cおよび温度センサ
10を付加した点、さらに、信号処理回路9に振幅比演
算部91,温度演算部93および補正演算部94などを
付加した点にあり、その他は図5に示すものと同様であ
る。したがって、ここではこれらの相違点を中心に説明
する。
1 is a block diagram for explaining an embodiment of the present invention. As is apparent from the figure, the feature of this embodiment is that the speed detection sensor 6c and the temperature sensor 10 are added to the detection unit 1, and the signal processing circuit 9 further includes an amplitude ratio calculation unit 91, a temperature calculation unit 93, and The point is that a correction calculation unit 94 and the like are added, and the other points are the same as those shown in FIG. Therefore, these differences will be mainly described here.

【0028】先の(5),(9)式または(12),
(13)式に示すように、質量流量に比例して発生する
速度センサ6a,6bからの出力信号の位相差または時
間差が、ヤング率Eおよび軸力Tの関数であることか
ら、まず、温度センサ10からの出力を、温度演算部9
3で温度信号に変換する。次に、速度検出センサ6a,
6bからの各出力を振幅比演算部91に導き、検出部1
の構成と現在の駆動条件とから決まる振動振幅比(また
は差)を演算する。
The above equations (5) and (9) or (12),
As shown in the equation (13), the phase difference or time difference between the output signals from the speed sensors 6a and 6b, which is generated in proportion to the mass flow rate, is a function of the Young's modulus E and the axial force T. The output from the sensor 10 is used as the temperature calculation unit 9
Convert to a temperature signal at 3. Next, the speed detection sensor 6a,
Each output from 6b is led to the amplitude ratio calculation unit 91, and the detection unit 1
The vibration amplitude ratio (or difference) determined by the above configuration and the current driving condition is calculated.

【0029】補正演算部94は振幅比演算部91,位相
差演算部92,温度演算部93および速度検出センサ6
aからの出力を受け、位相差演算部92からの位相差信
号を、ここでは速度検出センサ6aから得られる測定管
の共振周波数によって補正し、時間差信号に変換する。
この時間差信号は、補正演算部94で温度演算部93か
らの温度信号と、振幅比演算部91からの振幅比信号に
よる測定管の軸力変化にともなう感度補正信号とによっ
て補正が行なわれる。
The correction calculation unit 94 includes an amplitude ratio calculation unit 91, a phase difference calculation unit 92, a temperature calculation unit 93, and a speed detection sensor 6.
Upon receiving the output from a, the phase difference signal from the phase difference calculator 92 is corrected by the resonance frequency of the measuring tube obtained from the speed detection sensor 6a, and converted into a time difference signal.
The time difference signal is corrected by the correction calculation unit 94 by the temperature signal from the temperature calculation unit 93 and the sensitivity correction signal due to the change in the axial force of the measuring pipe due to the amplitude ratio signal from the amplitude ratio calculation unit 91.

【0030】なお、上記では、補正演算部94に速度検
出センサ6aからの出力を導入するようにしたが、速度
検出センサ6bまたは6cからの出力も導入するように
しても良い。また、密度計における密度測定値について
も上記と同様に、温度と振動振幅比に応じた補正が行な
われることになるのはいうまでもない。
In the above description, the output from the speed detection sensor 6a is introduced into the correction calculation unit 94, but the output from the speed detection sensor 6b or 6c may be introduced. Needless to say, the density measurement value in the densitometer is also corrected in accordance with the temperature and the vibration amplitude ratio, as described above.

【0031】図2はこの発明の他の実施例を示す構成図
である。これは、駆動回路8から振動発生器5に供給さ
れる信号によって、速度検出センサ6aの出力を一定と
なるようにしていることから、測定管の一方の位置での
振動振幅を既知として扱い、測定管の他方の位置での振
動振幅としては速度検出センサ6cからの出力を利用
し、補正演算部94によって測定管の軸力変化にともな
う感度補正を行なうことにより、振幅比演算部91を省
略可能としたものである。なお、その他の点は図1と同
様である。
FIG. 2 is a block diagram showing another embodiment of the present invention. This is because the output of the speed detection sensor 6a is made constant by the signal supplied from the drive circuit 8 to the vibration generator 5, so that the vibration amplitude at one position of the measuring tube is treated as known, The output from the speed detection sensor 6c is used as the vibration amplitude at the other position of the measuring tube, and the correction calculating section 94 performs sensitivity correction according to the axial force change of the measuring tube, thereby omitting the amplitude ratio calculating section 91. It was possible. The other points are the same as in FIG.

【0032】図3に図2の変形例を示す。これは、振幅
比演算部91を省略可能とした点は図2の場合と同じで
あるが、測定管の中央部の振幅を一定、つまり速度検出
センサ6cの出力を一定(既知)となるように制御し、
速度検出センサ6a(または6b)からの出力を補正演
算部94に導入して両者の振幅比を求めるようにした点
で異なっている。その他は図2と同じである。
FIG. 3 shows a modification of FIG. This is the same as the case of FIG. 2 in that the amplitude ratio calculation unit 91 can be omitted, but the amplitude of the central portion of the measuring tube is constant, that is, the output of the speed detection sensor 6c is constant (known). Control to
The difference is that the output from the speed detection sensor 6a (or 6b) is introduced into the correction calculation unit 94 to obtain the amplitude ratio of the two. Others are the same as in FIG.

【0033】なお、以上では測定管を1次のたわみ振動
で加振する場合について説明してきたが、この発明は高
次モードで加振する場合にも適用することができる。そ
の場合は、例えば振動の腹の部分と他の部分の振動振幅
比(または差)に応じて補正を行なう。すなわち、測定
管の異なる2点間の振動振幅比(または差)に応じて補
正がなされるわけである。
Although the case where the measuring tube is vibrated by the first-order flexural vibration has been described above, the present invention can be applied to the case where the measuring tube is vibrated in the higher-order mode. In that case, for example, the correction is performed according to the vibration amplitude ratio (or difference) between the antinode portion of the vibration and the other portion. That is, the correction is made according to the vibration amplitude ratio (or difference) between two different points on the measuring tube.

【0034】[0034]

【発明の効果】この発明によれば、測定管の或る位置の
振動振幅と、その他の位置での振動振幅との比(または
差)を求め、測定管に作用する軸力変化にともなう感度
変化の補正を、温度補正に加えて行なうようにしたの
で、検出部の構成を特に複雑化せず、かつ振動型測定器
の安定性を損なうこともなく、さらには過渡的な温度変
化時にも正確な測定が可能になる、などの利点がもたら
される。
According to the present invention, the ratio (or difference) between the vibration amplitude at a certain position of the measuring pipe and the vibration amplitude at other positions is obtained, and the sensitivity due to the change in the axial force acting on the measuring pipe is obtained. Since the change is corrected in addition to the temperature correction, the structure of the detection unit is not particularly complicated, the stability of the vibration type measuring device is not impaired, and even when there is a transient temperature change. This brings advantages such as accurate measurement.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】この発明の他の実施例を示す構成図である。FIG. 2 is a configuration diagram showing another embodiment of the present invention.

【図3】図2の変形例を示す構成図である。FIG. 3 is a configuration diagram showing a modified example of FIG.

【図4】測定管の軸力による変形形状例を説明するため
の説明図である。
FIG. 4 is an explanatory diagram for explaining an example of a deformed shape of a measuring tube due to an axial force.

【図5】従来例を示す構成図である。FIG. 5 is a configuration diagram showing a conventional example.

【図6】流体に作用する加速度を説明するための説明図
である。
FIG. 6 is an explanatory diagram for explaining acceleration acting on a fluid.

【図7】測定管に作用する流体反力の影響を説明するた
めの説明図である。
FIG. 7 is an explanatory diagram for explaining the influence of a fluid reaction force acting on the measuring tube.

【符号の説明】[Explanation of symbols]

1…検出部、2…測定管、3a,3b…固定材、4a,
4b…支持部、5…振動発生器、6a,6b,6c…速
度検出センサ、7a,7b,7c…アダプタ、8…駆動
回路、9…信号処理回路、10…温度センサ、91…振
幅比演算部、92…位相差演算部、93…温度演算部、
94…補正演算部。
DESCRIPTION OF SYMBOLS 1 ... Detection part, 2 ... Measuring tube, 3a, 3b ... Fixing material, 4a,
4b ... Support part, 5 ... Vibration generator, 6a, 6b, 6c ... Speed detection sensor, 7a, 7b, 7c ... Adapter, 8 ... Drive circuit, 9 ... Signal processing circuit, 10 ... Temperature sensor, 91 ... Amplitude ratio calculation Part, 92 ... phase difference calculating part, 93 ... temperature calculating part,
94 ... Correction calculation unit.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 加振される少なくとも1本の直管状測定
管内を流れる流体の質量流量または密度の少なくとも一
方の測定が可能な振動型測定器において、 前記測定管の第1部分とその他の第2部分との振動振幅
比(または差)を求め、その結果にもとづき測定値の補
正を行なうことを特徴とする振動型測定器。
1. A vibration-type measuring instrument capable of measuring at least one of a mass flow rate and a density of a fluid flowing in at least one straight tubular measuring pipe to be vibrated, the first portion of the measuring pipe and the other portion. A vibration-type measuring instrument characterized by obtaining a vibration amplitude ratio (or difference) between two parts and correcting the measured value based on the result.
【請求項2】 前記測定管の第1部分を、測定管の振幅
が最大となる部分とすることを特徴とする請求項1に記
載の振動型測定器。
2. The vibration measuring instrument according to claim 1, wherein the first portion of the measuring pipe is a portion where the amplitude of the measuring pipe is maximum.
【請求項3】 加振される少なくとも1本の直管状測定
管内を流れる流体の質量流量または密度の少なくとも一
方の測定が可能な振動型測定器において、 前記測定管を加振する振動発生器と、測定管の第1部分
の振動振幅を測定する第1のセンサと、測定管の第2部
分の振動振幅を測定する第2のセンサと、測定管の温度
を測定する温度センサと、前記測定管,振動発生器,第
1,第2のセンサを支持する支持部と、前記測定管の第
1部分と第2部分との振動振幅比(または差)を演算す
る振幅演算手段と、この振幅演算手段からの出力により
測定値の補正演算を行なう補正演算手段とを設けたこと
を特徴とする振動型測定器。
3. A vibration type measuring instrument capable of measuring at least one of a mass flow rate and a density of a fluid flowing in at least one straight tubular measuring pipe to be vibrated, wherein a vibration generator vibrates the measuring pipe. A first sensor for measuring the vibration amplitude of the first portion of the measuring pipe, a second sensor for measuring the vibration amplitude of the second portion of the measuring pipe, a temperature sensor for measuring the temperature of the measuring pipe, and the measurement A support part for supporting the pipe, the vibration generator, the first and second sensors, an amplitude calculation means for calculating a vibration amplitude ratio (or a difference) between the first part and the second part of the measuring pipe, and the amplitude. A vibration-type measuring instrument comprising: a correction calculation unit that performs a correction calculation of a measured value based on an output from the calculation unit.
【請求項4】 前記測定管の第1部分を、測定管の振幅
が最大となる部分とすることを特徴とする請求項3に記
載の振動型測定器。
4. The vibration measuring instrument according to claim 3, wherein the first portion of the measuring pipe is a portion where the amplitude of the measuring pipe is maximum.
【請求項5】 前記第2のセンサ(第1のセンサ)の出
力が一定となるように測定管を駆動する一方、前記第1
のセンサ(第2のセンサ)の出力を前記補正演算手段に
直接導入して補正演算することにより、前記振幅演算手
段を省略可能にしたことを特徴とする請求項3または4
のいずれかに記載の振動型測定器。
5. The measuring tube is driven so that the output of the second sensor (first sensor) becomes constant while the first sensor
5. The amplitude calculation means can be omitted by directly introducing the output of the sensor (second sensor) of the above into the correction calculation means and performing correction calculation.
The vibration type measuring instrument according to any one of 1.
JP27163594A 1994-11-07 1994-11-07 Vibration type measuring instrument Expired - Fee Related JP3565588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27163594A JP3565588B2 (en) 1994-11-07 1994-11-07 Vibration type measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27163594A JP3565588B2 (en) 1994-11-07 1994-11-07 Vibration type measuring instrument

Publications (2)

Publication Number Publication Date
JPH08136311A true JPH08136311A (en) 1996-05-31
JP3565588B2 JP3565588B2 (en) 2004-09-15

Family

ID=17502817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27163594A Expired - Fee Related JP3565588B2 (en) 1994-11-07 1994-11-07 Vibration type measuring instrument

Country Status (1)

Country Link
JP (1) JP3565588B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008035877A1 (en) 2008-08-01 2010-02-04 Endress + Hauser Flowtec Ag Vibration-type transducers
DE102008044186A1 (en) 2008-11-28 2010-06-02 Endress + Hauser Flowtec Ag Magnetic device and transducer of the vibration type with such a magnetic device
DE102009012474A1 (en) 2009-03-12 2010-09-16 Endress + Hauser Flowtec Ag Measuring system with a vibration-type transducer
DE102009028007A1 (en) 2009-07-24 2011-01-27 Endress + Hauser Flowtec Ag Measuring transducer of the vibration type and measuring device with such a transducer
DE102009028006A1 (en) 2009-07-24 2011-01-27 Endress + Hauser Flowtec Ag Vibration-type transducers and measuring instrument with such a transducer
WO2011080173A2 (en) 2009-12-31 2011-07-07 Endress+Hauser Flowtec Ag Measuring system comprising a vibration-type transducer
WO2011080172A1 (en) 2009-12-31 2011-07-07 Endress+Hauser Flowtec Ag Measuring system comprising a vibration-type transducer
WO2011080171A2 (en) 2009-12-31 2011-07-07 Endress+Hauser Flowtec Ag Measuring system comprising a vibration-type transducer
DE102010000759A1 (en) 2010-01-11 2011-07-14 Endress + Hauser Flowtec Ag Measuring system i.e. Coriolis mass flow measuring device, for measuring pressure difference of medium flowing in pipeline of industrial plant, has electronics housing generating measured value representing reynolds number for medium
DE102010000760A1 (en) 2010-01-11 2011-07-14 Endress + Hauser Flowtec Ag Measuring system i.e. measuring device and/or Coriolis or mass flow measuring device for medium e.g. gas and/or liquid, flowing in pipeline, has transmitter electronics generating measured value
DE102010000761A1 (en) 2010-01-11 2011-07-28 Endress + Hauser Flowtec Ag Measuring system i.e. measuring device and/or Coriolis or mass flow measuring device for medium e.g. gas and/or liquid, flowing in pipeline, has transmitter electronics generating measured value
WO2012022541A1 (en) 2010-08-19 2012-02-23 Endress+Hauser Flowtec Ag Measurement system comprising a vibration-type measurement transducer
DE102010044179A1 (en) 2010-11-11 2012-05-16 Endress + Hauser Flowtec Ag Measuring system with a transducer of vibration type
CN104865156A (en) * 2015-05-15 2015-08-26 长安大学 Device and method for evaluating segregation degree of cement concrete
CN111033187A (en) * 2017-08-24 2020-04-17 高准有限公司 Predicting and reducing noise in a vibrating meter
WO2021255034A1 (en) 2020-06-18 2021-12-23 Endress+Hauser Flowtec Ag Vibronic measuring system
DE102020131649A1 (en) 2020-09-03 2022-03-03 Endress + Hauser Flowtec Ag Vibronic measuring system

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008035877A1 (en) 2008-08-01 2010-02-04 Endress + Hauser Flowtec Ag Vibration-type transducers
DE102008044186A1 (en) 2008-11-28 2010-06-02 Endress + Hauser Flowtec Ag Magnetic device and transducer of the vibration type with such a magnetic device
DE102009012474A1 (en) 2009-03-12 2010-09-16 Endress + Hauser Flowtec Ag Measuring system with a vibration-type transducer
WO2010103004A2 (en) 2009-03-12 2010-09-16 Endress+Hauser Flowtec Ag Measuring system comprising a vibrating transducer
DE102009028007A1 (en) 2009-07-24 2011-01-27 Endress + Hauser Flowtec Ag Measuring transducer of the vibration type and measuring device with such a transducer
DE102009028006A1 (en) 2009-07-24 2011-01-27 Endress + Hauser Flowtec Ag Vibration-type transducers and measuring instrument with such a transducer
WO2011009684A1 (en) 2009-07-24 2011-01-27 Endress+Hauser Flowtec Ag Vibratory transducer and measuring device comprising such a transducer
WO2011080173A2 (en) 2009-12-31 2011-07-07 Endress+Hauser Flowtec Ag Measuring system comprising a vibration-type transducer
WO2011080172A1 (en) 2009-12-31 2011-07-07 Endress+Hauser Flowtec Ag Measuring system comprising a vibration-type transducer
WO2011080171A2 (en) 2009-12-31 2011-07-07 Endress+Hauser Flowtec Ag Measuring system comprising a vibration-type transducer
DE102010000761A1 (en) 2010-01-11 2011-07-28 Endress + Hauser Flowtec Ag Measuring system i.e. measuring device and/or Coriolis or mass flow measuring device for medium e.g. gas and/or liquid, flowing in pipeline, has transmitter electronics generating measured value
DE102010000760B4 (en) 2010-01-11 2021-12-23 Endress + Hauser Flowtec Ag A measuring system comprising a transducer of the vibration type for measuring a static pressure in a flowing medium
DE102010000759A1 (en) 2010-01-11 2011-07-14 Endress + Hauser Flowtec Ag Measuring system i.e. Coriolis mass flow measuring device, for measuring pressure difference of medium flowing in pipeline of industrial plant, has electronics housing generating measured value representing reynolds number for medium
DE102010000760A1 (en) 2010-01-11 2011-07-14 Endress + Hauser Flowtec Ag Measuring system i.e. measuring device and/or Coriolis or mass flow measuring device for medium e.g. gas and/or liquid, flowing in pipeline, has transmitter electronics generating measured value
WO2012022541A1 (en) 2010-08-19 2012-02-23 Endress+Hauser Flowtec Ag Measurement system comprising a vibration-type measurement transducer
DE102010039543A1 (en) 2010-08-19 2012-02-23 Endress + Hauser Flowtec Ag Measuring system with a vibration-type transducer
DE102010044179A1 (en) 2010-11-11 2012-05-16 Endress + Hauser Flowtec Ag Measuring system with a transducer of vibration type
WO2012062551A1 (en) 2010-11-11 2012-05-18 Endress+Hauser Flowtec Ag Measuring system having a vibration-type measuring transducer
EP3628984A1 (en) 2010-11-11 2020-04-01 Endress + Hauser Flowtec AG Measuring system comprising a vibration-type measuring transducer
CN104865156A (en) * 2015-05-15 2015-08-26 长安大学 Device and method for evaluating segregation degree of cement concrete
CN111033187A (en) * 2017-08-24 2020-04-17 高准有限公司 Predicting and reducing noise in a vibrating meter
CN111033187B (en) * 2017-08-24 2022-02-22 高准有限公司 Vibratory meter and method of predicting and reducing noise in sensor signal thereof
WO2021255034A1 (en) 2020-06-18 2021-12-23 Endress+Hauser Flowtec Ag Vibronic measuring system
WO2021255119A1 (en) 2020-06-18 2021-12-23 Endress+Hauser Flowtec Ag Vibronic measuring system
DE102020131649A1 (en) 2020-09-03 2022-03-03 Endress + Hauser Flowtec Ag Vibronic measuring system
WO2022048888A1 (en) 2020-09-03 2022-03-10 Endress+Hauser Flowtec Ag Vibronic measuring system

Also Published As

Publication number Publication date
JP3565588B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
US5728952A (en) Vibration measuring instrument
JP3565588B2 (en) Vibration type measuring instrument
US5831178A (en) Vibration type measuring instrument
US5796010A (en) Coriolis mass flowmeter
JP5222996B2 (en) Double pick-off vibratory flow meter
US5069075A (en) Mass flow meter working on the coriolis principle
RU2320964C2 (en) Device for measuring physical parameters
US7258025B2 (en) Coriolis flowmeter
JP3058074B2 (en) Vibration type measuring instrument
RU2241209C2 (en) Type identification for controlling excitation of coriolis flow meter
JP3265859B2 (en) Mass flow meter
US6705172B1 (en) Method and device for detecting and compensating zero point influences on coriolis mass flowmeters
JP3547527B2 (en) Mass flow meter
JPH04291119A (en) Colioris mass flowmeter
JP3327325B2 (en) Coriolis mass flowmeter
EP3129755B1 (en) Improved vibrating flowmeter and related methods
JPH0875521A (en) Oscillatory measuring instrument
JP2966356B2 (en) Mass flow meter converter
JP3058094B2 (en) Mass flow meter
JPH1090034A (en) Coriolis flowmeter
JPH0712612A (en) Coliolis type massflowmeter
JP3227691B2 (en) Coriolis mass flowmeter
JPH0650784A (en) Mass flowmeter
JPH08193864A (en) Coriolis mass flowmeter
JPH0783718A (en) Coriolis mass flowmeter

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040420

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040422

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040608

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees