JPH08136069A - Refrigerator using non-azeotrope refrigerant mixture - Google Patents

Refrigerator using non-azeotrope refrigerant mixture

Info

Publication number
JPH08136069A
JPH08136069A JP29910094A JP29910094A JPH08136069A JP H08136069 A JPH08136069 A JP H08136069A JP 29910094 A JP29910094 A JP 29910094A JP 29910094 A JP29910094 A JP 29910094A JP H08136069 A JPH08136069 A JP H08136069A
Authority
JP
Japan
Prior art keywords
component
critical temperature
gas
refrigerant
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29910094A
Other languages
Japanese (ja)
Other versions
JP3448377B2 (en
Inventor
Takashi Sunaga
高史 須永
Ayumi Suzuki
あゆみ 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP29910094A priority Critical patent/JP3448377B2/en
Publication of JPH08136069A publication Critical patent/JPH08136069A/en
Application granted granted Critical
Publication of JP3448377B2 publication Critical patent/JP3448377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To control the cooling characteristics by cooling refrigerant mixture, separating and storing the component having high critical temperature, and forming a refrigerating cycle with the mixture refrigerant in which the component of low critical temperature is increased. CONSTITUTION: Non-azeotrope refrigerant mixture to be fed is separated into a vapor-phase component containing a component A having low critical temperature of an upper part in a vapor-liquid separator 6 and a liquid-phase component containing a component B having high critical temperature of a lower part. The component B is stored in the separator 6, the vapor-phase component containing the component A of the low critical temperature of the upper part is introduced into a main condenser 2b, condensed to be liquefied, pressure- reduced by a capillary tube 3, a low temperature is generated by an evaporator 4, and then sucked into a compressor 1 via an accumulator 5. The component B stored in the separator 6 can be returned to a refrigerant circuit via a pipeline (broken line) 9 or a pipeline (chain single-dashed line) 19 for connecting the separator 6 to the outlet of the evaporator 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非共沸冷媒混合物を用い
た冷凍装置に関するものであり、さらに詳しくはオゾン
層を破壊する危険がないHFC系非共沸冷媒混合物など
を用い、冷凍回路中の混合冷媒の組成比を変化させて冷
凍特性を制御することができる冷凍装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus using a non-azeotropic refrigerant mixture, and more particularly to a refrigeration circuit using an HFC-based non-azeotropic refrigerant mixture which does not have a risk of depleting the ozone layer. The present invention relates to a refrigeration system capable of controlling the refrigeration characteristics by changing the composition ratio of the mixed refrigerant.

【0002】[0002]

【従来の技術】非共沸冷媒混合物を用いた冷凍装置は、
その冷凍回路中を循環する冷媒の組成比率を可変とする
ことにより、冷凍能力制御や性能改善を行うことができ
る。従来、非共沸冷媒混合物を用いて1段圧縮により低
温を得る冷凍装置としては図2のような冷凍回路をもつ
冷凍装置が提案されている(冷凍機、手塚俊一著、共立
出版、1965年)。矢印は冷媒の流れを示す。
2. Description of the Related Art Refrigeration systems using non-azeotropic refrigerant mixtures are
By changing the composition ratio of the refrigerant circulating in the refrigeration circuit, it is possible to control the refrigeration capacity and improve the performance. Conventionally, a refrigerating machine having a refrigerating circuit as shown in FIG. 2 has been proposed as a refrigerating machine which obtains a low temperature by one-stage compression using a non-azeotropic refrigerant mixture (refrigerator, Shunichi Tezuka, Kyoritsu Shuppan, 1965). ). The arrow indicates the flow of the refrigerant.

【0003】図2において1は圧縮機、2は凝縮器、6
は凝縮器出口に接続された気液分離器であり、流入する
非共沸冷媒混合物は気液分離器6内で、上部の低沸点成
分を多く含むガス成分と下部の高沸点成分を多く含む液
成分に分離される。下部の液成分は絞り装置7で減圧さ
れて寒冷を発生すると共に、熱交換器8を経て圧縮機1
に吸入される。一方、気液分離器6の上部のガス成分は
熱交換器8で凝縮液化し、キャピラリーチューブ3で減
圧され蒸発器4にて低温を発生した後、アキュムレータ
ー5を経て圧縮機1に吸入される。圧縮機1を循環する
冷媒混合物に比べて蒸発器4では低沸点成分がより多く
流れるため1段圧縮によりより低温を得ることが可能と
なるものの、気液分離器6内で分離されるガス成分と液
成分は非共沸冷媒混合物の温度対濃度線図に示される飽
和ガス線と飽和液線の一定温度での1段の平衡状態で一
義的に表される濃度の範囲でしか分離できないので、気
液分離器6の上部のガス成分中には高沸点成分が多く含
まれることになり、その結果、低温にできる温度レベル
は制約を受け限界があるという欠点がある。
In FIG. 2, 1 is a compressor, 2 is a condenser, and 6
Is a gas-liquid separator connected to the outlet of the condenser, and the inflowing non-azeotropic refrigerant mixture contains, in the gas-liquid separator 6, a gas component containing a large amount of low boiling point components in the upper part and a large amount of high boiling point components in the lower part. Separated into liquid components. The liquid component in the lower portion is decompressed by the expansion device 7 to generate cold, and also passes through the heat exchanger 8 and the compressor 1
Inhaled. On the other hand, the gas components in the upper part of the gas-liquid separator 6 are condensed and liquefied in the heat exchanger 8, decompressed in the capillary tube 3 to generate a low temperature in the evaporator 4, and then sucked into the compressor 1 via the accumulator 5. It Compared with the refrigerant mixture circulating in the compressor 1, the low boiling point component flows more in the evaporator 4, so that a lower temperature can be obtained by one-stage compression, but the gas component separated in the gas-liquid separator 6 Since the liquid component and the liquid component can be separated only in the range of the concentration uniquely expressed in the one-stage equilibrium state of the saturated gas line and the saturated liquid line at the constant temperature shown in the temperature-concentration diagram of the non-azeotropic refrigerant mixture, The gas component above the gas-liquid separator 6 contains a large amount of high-boiling components, and as a result, the temperature level at which the temperature can be lowered is limited and limited.

【0004】この欠点を改良するために気液分離器6の
替わりに精留器を設けて低沸点成分と高沸点成分を分離
するようにした低温装置(特開昭61−101757号
公報)や、気液分離器6の替わりに複数の冷媒の内の特
定の冷媒の透過を容易とする機能膜を設けて低沸点成分
と高沸点成分を分離するようにした冷凍装置(特開昭6
3−243662号公報)などが提案されているが、い
ずれも冷凍回路が複雑になり、コストアップになる欠点
がある。
In order to improve this drawback, a low temperature device (Japanese Unexamined Patent Publication (Kokai) No. 61-101757) in which a rectifying device is provided in place of the gas-liquid separator 6 to separate a low boiling point component and a high boiling point component, In place of the gas-liquid separator 6, a refrigerating apparatus in which a low boiling point component and a high boiling point component are separated by providing a functional film for facilitating the permeation of a specific refrigerant among a plurality of refrigerants (Japanese Patent Application Laid-Open No. Sho-6
No. 3-243662) has been proposed, but all of them have a drawback that the refrigeration circuit becomes complicated and the cost increases.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、非共
沸冷媒混合物を用いて、好ましくはオゾン層を破壊する
危険がないHFC系非共沸冷媒混合物を用い、目的に応
じて冷凍回路中の冷媒の組成比を変化させ冷却特性が制
御できる冷凍装置を提供することである。
The object of the present invention is to use a non-azeotropic refrigerant mixture, preferably an HFC-based non-azeotropic refrigerant mixture which does not pose a risk of depleting the ozone layer, depending on the purpose. It is an object of the present invention to provide a refrigeration system capable of controlling the cooling characteristics by changing the composition ratio of the refrigerant inside.

【0006】[0006]

【課題を解決するための手段】本発明者等は上記の課題
に鑑み鋭意研究した結果、臨界温度の高い成分とそれよ
り臨界温度の低い成分を含む非共沸冷媒混合物を用い、
特定の温度範囲に該冷媒混合物を冷却して、臨界温度の
高い成分を液化して分離して所定量貯蔵し、臨界温度の
低い成分の成分比を増やした混合冷媒として冷凍回路を
構成することにより上記課題を解決できることを見出
し、本発明をなすに至った。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors in view of the above problems, a non-azeotropic refrigerant mixture containing a component having a higher critical temperature and a component having a lower critical temperature than that is used.
Cooling the refrigerant mixture to a specific temperature range, liquefying and separating a component having a high critical temperature and storing a predetermined amount, and configuring a refrigeration circuit as a mixed refrigerant in which a component ratio of a component having a low critical temperature is increased. The inventors have found that the above-mentioned problems can be solved by the above and have completed the present invention.

【0007】即ち、本発明は、冷媒を凝縮液化する主凝
縮器、キャピラリーチューブ、液化冷媒を蒸発させる蒸
発器、アキュムレータおよび蒸発気化した冷媒を圧縮し
て凝縮器に吐出する圧縮機などを備え、圧縮機で圧縮さ
れる冷媒として臨界温度の高い成分とそれより臨界温度
の低い成分を含む非共沸冷媒混合物を用いた冷凍装置に
おいて、圧縮機と主凝縮器との間に副凝縮器および気液
分離器を設け、副凝縮器において臨界温度の高い成分の
臨界温度より低く、かつ臨界温度の低い成分の臨界温度
より高い温度範囲に該冷媒混合物を冷却して、臨界温度
の高い成分を液化し、次いで該温度範囲に制御した該気
液分離器で気相の成分と液相の該成分を分離して、液相
の該成分を所定量該気液分離器中に貯蔵し、貯蔵量を超
える該成分および不凝縮成分は主凝縮器に導入して凝縮
液化するように設計されたことを特徴とする非共沸冷媒
混合物を用いた冷凍装置に関するものである。
That is, the present invention comprises a main condenser for condensing and liquefying the refrigerant, a capillary tube, an evaporator for evaporating the liquefied refrigerant, an accumulator, and a compressor for compressing the evaporated and vaporized refrigerant and discharging it to the condenser. In a refrigeration system using a non-azeotropic refrigerant mixture containing a component having a higher critical temperature and a component having a lower critical temperature as a refrigerant compressed by a compressor, a sub-condenser and a gas are provided between the compressor and the main condenser. A liquid separator is provided, and in the sub-condenser, the refrigerant mixture is cooled to a temperature range lower than the critical temperature of the high critical temperature component and higher than the critical temperature of the low critical temperature component to liquefy the high critical temperature component. Then, the gas-liquid separator controlled in the temperature range is used to separate the gas-phase component and the liquid-phase component, and a predetermined amount of the liquid-phase component is stored in the gas-liquid separator. Over the ingredients and Condensing component relates refrigerating apparatus using a non-azeotropic refrigerant mixture, characterized in that it is designed to condensed and introduced into the main condenser.

【0008】[0008]

【作用】図3に気体の圧力−体積曲線を示す。気体は臨
界温度Tc以下の温度(T<Tc)では圧縮によって凝
縮を起こして液体となるが、Tc以上の温度(T>T
c)では圧縮しても凝縮が起こらない。気体を液化する
ためにはTc以下に冷却することが必要である。Cは臨
界点を示す。
The gas pressure-volume curve is shown in FIG. At a temperature below the critical temperature Tc (T <Tc), the gas condenses due to compression to become a liquid, but at a temperature above the Tc (T> T).
In c) condensation does not occur when compressed. In order to liquefy the gas, it is necessary to cool it to Tc or lower. C indicates a critical point.

【0009】図4に臨界温度の高い成分Bと臨界温度の
低い成分Aの気体の圧力−体積曲線を示す。(Tc)B
は臨界温度の高い成分Bの臨界温度を示し、(Tc)B
におけるB成分の圧力−体積曲線(一点鎖線)が示され
ており、CB は臨界点を示す。温度Tが、(Tc)A
T<(Tc)B の場合のB成分の圧力−体積曲線(一点
鎖線)も示されている。(Tc)A は、臨界温度の低い
成分Aの臨界温度を示し、(Tc)A におけるA成分の
圧力−体積曲線(実線)が示されており、CAは臨界点
を示す。温度T’が、T’<(Tc)A の場合のA成分
の圧力−体積曲線(実線)も示されている。
FIG. 4 shows the pressure-volume curves of the gas of component B having a high critical temperature and component A having a low critical temperature. (Tc) B
Indicates the critical temperature of component B having a high critical temperature, (Tc) B
The pressure-volume curve (dashed-dotted line) of the B component in FIG. 3 is shown, and C B shows the critical point. The temperature T is (Tc) A <
The pressure-volume curve (dashed line) of the B component for T <(Tc) B is also shown. (Tc) A shows the critical temperature of the component A having a low critical temperature, the pressure-volume curve (solid line) of the A component in (Tc) A is shown, and C A shows the critical point. A pressure-volume curve (solid line) of the A component when the temperature T ′ is T ′ <(Tc) A is also shown.

【0010】本発明においては、圧縮機と主凝縮器との
間に副凝縮器および気液分離器を設け、副凝縮器におい
て臨界温度の高い成分Bの臨界温度(Tc)B より低
く、かつ臨界温度の低い成分の臨界温度(Tc)A より
高い温度範囲(Tc)A <T<(Tc)B に該冷媒混合
物を冷却する。例えば、図4中のa点の状態にある該冷
媒混合物を冷却して、B成分の(Tc)B における圧力
−体積曲線の下のb点になるとB成分の凝縮液化が始ま
り、c点まで凝縮液化が進行する。一方、A成分は温度
が(Tc)A <T<(Tc)Bの状態では凝縮液化せず
気相の状態を保つ。
In the present invention, a sub-condenser and a gas-liquid separator are provided between the compressor and the main condenser, and in the sub-condenser, the temperature is lower than the critical temperature (Tc) B of the component B having a high critical temperature, and The refrigerant mixture is cooled to a temperature range (Tc) A <T <(Tc) B higher than the critical temperature (Tc) A of the low critical temperature component. For example, when the refrigerant mixture in the state of point a in FIG. 4 is cooled to reach point b under the pressure-volume curve at (Tc) B of component B, condensation and liquefaction of component B starts, and then to point c. Condensation liquefaction proceeds. On the other hand, the component A does not condense and liquefy in a state where the temperature is (Tc) A <T <(Tc) B , and maintains the state of the gas phase.

【0011】該温度範囲(Tc)A <T<(Tc)B
状態に制御された気液分離器で気相の成分Aと液相の成
分Bとを分離した後、目的の組成比が得られるように成
分Bを気液分離器中に貯蔵し、貯蔵量を超える成分Bお
よび気相のA成分を主凝縮器に導入して温度T’<(T
c)A に冷却して凝縮液化するようにして、冷凍回路を
構成する。この結果、非共沸冷媒混合物の組性比を変化
させることができ、貯蔵量を変化させることにより冷却
特性を制御することができる。本発明により非共沸冷媒
混合物を用いて1段圧縮により効率よく、経済的に低温
を得ることができる。
After separating the gas-phase component A and the liquid-phase component B by a gas-liquid separator controlled in the temperature range (Tc) A <T <(Tc) B , the desired composition ratio is The component B is stored in a gas-liquid separator so as to obtain, and the component B and the component A in the gas phase, which exceed the storage amount, are introduced into the main condenser and the temperature T '<(T
c) A refrigeration circuit is constructed so that it is cooled to A and condensed and liquefied. As a result, the composition ratio of the non-azeotropic refrigerant mixture can be changed, and the cooling characteristics can be controlled by changing the storage amount. According to the present invention, a low temperature can be obtained efficiently and economically by one-stage compression using a non-azeotropic refrigerant mixture.

【0012】非共沸冷媒混合物としてHFC系非共沸冷
媒混合物により構成すればオゾン層を破壊する危険がな
い。
If the HFC-based non-azeotropic refrigerant mixture is used as the non-azeotropic refrigerant mixture, there is no danger of destroying the ozone layer.

【0013】気液分離器中に分離した液相の成分は再び
冷凍回路中に戻してもよい。具体的には例えば気液分離
器から蒸発器の出口に戻す管路を設けて冷凍回路に戻す
ことができる。また、該気液分離器中に分離した液相の
成分をキャピラリーチューブを介して主凝縮器を冷却し
た後に蒸発器の出口に戻す管路を設けて冷凍回路に戻す
ことができる。
The liquid phase components separated in the gas-liquid separator may be returned to the refrigeration circuit. Specifically, for example, a pipeline for returning from the gas-liquid separator to the outlet of the evaporator can be provided to return to the refrigeration circuit. Further, it is possible to provide a pipeline for returning the components of the liquid phase separated in the gas-liquid separator to the outlet of the evaporator after cooling the main condenser via the capillary tube and to return it to the refrigeration circuit.

【0014】本発明において、冷凍機油は特に限定され
ない。鉱油系潤滑油、アルキルベンゼン系潤滑油、エス
テル系潤滑油、エーテル系潤滑油あるいはこれらの混合
物などが好ましく使用できる。
In the present invention, the refrigerating machine oil is not particularly limited. Mineral oil-based lubricating oil, alkylbenzene-based lubricating oil, ester-based lubricating oil, ether-based lubricating oil, or a mixture thereof can be preferably used.

【0015】[0015]

【実施例】以下、本発明の内容を実施例によりさらに具
体的に説明するが、本発明はこの内容に何ら限定される
ものではない。図1に本発明の冷凍装置の冷凍回路の例
を示す。図1において1は圧縮機、2aは副凝縮器、6
は副凝縮器2a出口に接続された気液分離器であり、流
入する非共沸冷媒混合物は気液分離器6内で、上部の臨
界温度の低い成分Aを含む気相成分と下部の臨界温度の
高い成分Bを含む液相成分に分離される。下部の液相成
分Bは気液分離器6内に貯蔵され、上部の臨界温度の低
い成分Aを含む気相成分は主凝縮器2bに導入されて凝
縮液化され、キャピラリーチューブ3で減圧され蒸発器
4にて低温を発生した後、アキュムレーター5を経て圧
縮機1に吸入される。矢印は冷媒の流れを示す。気液分
離器6内に貯蔵された液相成分Bは、気液分離器6と蒸
発器4の出口を連結する管路(破線で示す)9を経て冷
凍回路に戻すことができる。また、気液分離器6内に貯
蔵された液相成分Bは、気液分離器6からキャピラリー
チューブ3’を介して主凝縮器2bを冷却した後、蒸発
器4の出口からの管路に連結する管路(一点鎖線で示
す)10を経て冷凍回路に戻すことができる。
EXAMPLES The contents of the present invention will be described more specifically below with reference to examples, but the present invention is not limited to these contents. FIG. 1 shows an example of a refrigerating circuit of the refrigerating apparatus of the present invention. In FIG. 1, 1 is a compressor, 2a is a sub-condenser, 6
Is a gas-liquid separator connected to the outlet of the sub-condenser 2a, and the inflowing non-azeotropic refrigerant mixture in the gas-liquid separator 6 has a gas phase component including a component A having a low critical temperature in the upper part and a critical component in the lower part. It is separated into a liquid phase component containing a high temperature component B. The lower liquid phase component B is stored in the gas-liquid separator 6, and the upper gas phase component including the component A having a low critical temperature is introduced into the main condenser 2b to be condensed and liquefied, and is decompressed and evaporated in the capillary tube 3. After a low temperature is generated in the container 4, it is sucked into the compressor 1 through the accumulator 5. The arrow indicates the flow of the refrigerant. The liquid phase component B stored in the gas-liquid separator 6 can be returned to the refrigeration circuit via a pipe line (shown by a broken line) 9 connecting the gas-liquid separator 6 and the outlet of the evaporator 4. Further, the liquid phase component B stored in the gas-liquid separator 6 cools the main condenser 2b from the gas-liquid separator 6 via the capillary tube 3 ', and then flows into the pipeline from the outlet of the evaporator 4. It can be returned to the refrigeration circuit via a connecting line (indicated by a chain line) 10.

【0016】臨界温度の低い成分Aとしてジフルオロメ
タン(HFC−32、R−32。沸点−51.7℃、T
c=78.4℃、臨界圧力5.83MPa)、臨界温度
の高い成分Bとして1,1,1,2−テトラフルオロエ
タン(HFC−134a、R−134a。沸点−26.
5℃、Tc=101.1℃、臨界圧力4.06MPa)
を用いて両者を混合して作った非共沸冷媒混合物を図1
の冷凍回路の冷媒として用い、副凝縮器2aにおいて非
共沸冷媒混合物が78.4℃〜101.1℃となるよう
に冷却した結果、HFC−134aが液化し、HFC−
32は気相を保った。気液分離器6中で両者を分離して
液化したHFC−134aの所定量を気液分離器6中に
貯蔵し、貯蔵量を超えるHFC−134aおよび気相の
HFC−32を主凝縮器2bへ導入し凝縮液化させ、冷
凍回路を構成した結果、冷凍能力を改善することができ
た。
As a component A having a low critical temperature, difluoromethane (HFC-32, R-32, boiling point -51.7 ° C., T
c = 78.4 ° C., critical pressure 5.83 MPa), 1,1,1,2-tetrafluoroethane (HFC-134a, R-134a. Component B having high critical temperature, boiling point −26.
5 ° C, Tc = 101.1 ° C, critical pressure 4.06 MPa)
Fig. 1 shows a non-azeotropic refrigerant mixture made by mixing the two using
Used as a refrigerant for the refrigeration circuit of No. 2, and the non-azeotropic refrigerant mixture was cooled in the sub-condenser 2a to 78.4 ° C. to 101.1 ° C. As a result, HFC-134a was liquefied and HFC-134a
32 was in a vapor phase. A predetermined amount of liquefied HFC-134a separated in the gas-liquid separator 6 is stored in the gas-liquid separator 6, and HFC-134a and gas-phase HFC-32 that exceed the storage amount are stored in the main condenser 2b. As a result of introducing the gas into a condensate and liquefying it and constructing a refrigeration circuit, the refrigeration capacity could be improved.

【0017】[0017]

【発明の効果】本発明の非共沸冷媒混合物を用いた冷凍
装置は、その冷凍回路中を循環する冷媒の組成比率を可
変とすることにより、冷凍能力制御や性能改善を容易に
行うことができる。非共沸冷媒混合物としてHFC系非
共沸冷媒混合物を用いれば、オゾン層を破壊する危険が
ない。本発明の冷凍装置は簡単な構成からなるので経済
的である上、効果が大きく産業上の利用価値が高い。
In the refrigerating apparatus using the non-azeotropic refrigerant mixture of the present invention, the refrigerating capacity can be easily controlled and the performance can be improved by changing the composition ratio of the refrigerant circulating in the refrigerating circuit. it can. If an HFC-based non-azeotropic refrigerant mixture is used as the non-azeotropic refrigerant mixture, there is no danger of destroying the ozone layer. The refrigerating apparatus of the present invention is economical because it has a simple structure, and is highly effective and has high industrial utility value.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の冷凍装置の冷凍回路の例である。FIG. 1 is an example of a refrigeration circuit of a refrigeration apparatus of the present invention.

【図2】 従来の冷凍装置の冷凍回路の例である。FIG. 2 is an example of a refrigeration circuit of a conventional refrigeration system.

【図3】 気体の圧力−体積曲線である。FIG. 3 is a gas pressure-volume curve.

【図4】 他の気体の圧力−体積曲線である。FIG. 4 is a pressure-volume curve of another gas.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 2a 副凝縮器 2b 主凝縮器 3、3’ キャピラリーチューブ 4 蒸発器 5 アキュムレータ 6 気液分離器 7 絞り装置 8 熱交換器 9、10 管路 1 Compressor 2 Condenser 2a Sub-condenser 2b Main condenser 3, 3'Capillary tube 4 Evaporator 5 Accumulator 6 Gas-liquid separator 7 Throttling device 8 Heat exchanger 9, 10 Pipe line

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を凝縮液化する主凝縮器、キャピラ
リーチューブ、液化冷媒を蒸発させる蒸発器、アキュム
レータおよび蒸発気化した冷媒を圧縮して凝縮器に吐出
する圧縮機などを備え、圧縮機で圧縮される冷媒として
臨界温度の高い成分とそれより臨界温度の低い成分を含
む非共沸冷媒混合物を用いた冷凍装置において、圧縮機
と主凝縮器との間に副凝縮器および気液分離器を設け、
副凝縮器において臨界温度の高い成分の臨界温度より低
く、かつ臨界温度の低い成分の臨界温度より高い温度範
囲に該冷媒混合物を冷却して、臨界温度の高い成分を液
化し、次いで該温度範囲に制御した該気液分離器で気相
の成分と液相の該成分を分離して、液相の該成分は所定
量該気液分離器中に貯蔵し、貯蔵量を超える該成分およ
び不凝縮成分は主凝縮器に導入して凝縮液化するように
設計されたことを特徴とする非共沸冷媒混合物を用いた
冷凍装置。
1. A main condenser for condensing and liquefying a refrigerant, a capillary tube, an evaporator for evaporating a liquefied refrigerant, an accumulator, a compressor for compressing the evaporated vaporized refrigerant and discharging it to a condenser, and the like. In a refrigerating apparatus using a non-azeotropic refrigerant mixture containing a component having a high critical temperature and a component having a lower critical temperature as the refrigerant to be used, a sub-condenser and a gas-liquid separator are provided between the compressor and the main condenser. Provided,
In the sub-condenser, the refrigerant mixture is cooled to a temperature range below the critical temperature of the high critical temperature component and above the critical temperature of the low critical temperature component to liquefy the high critical temperature component and then to the temperature range. The gas-liquid separator controlled to separate the gas-phase component and the liquid-phase component, and the predetermined amount of the liquid-phase component is stored in the gas-liquid separator. A refrigeration system using a non-azeotropic refrigerant mixture, characterized in that the condensed component is designed to be introduced into a main condenser and condensed and liquefied.
【請求項2】 冷媒がHFC系非共沸冷媒混合物である
請求項1記載の冷凍装置。
2. The refrigerating apparatus according to claim 1, wherein the refrigerant is an HFC-based non-azeotropic refrigerant mixture.
【請求項3】 該気液分離器中に分離した液相の成分を
該蒸発器の出口に戻す管路を設けるか、または該気液分
離器中に分離した液相の成分をキャピラリーチューブを
介して該主凝縮器を冷却した後に該蒸発器の出口に戻す
管路を設けたことを特徴とする請求項1あるいは請求項
2記載の冷凍装置。
3. A pipe for returning the liquid phase component separated in the gas-liquid separator to the outlet of the evaporator, or a capillary tube for the liquid phase component separated in the gas-liquid separator. The refrigerating apparatus according to claim 1 or 2, further comprising a pipe line that returns the outlet of the evaporator after cooling the main condenser via the evaporator.
【請求項4】 冷凍機油が鉱油系潤滑油、アルキルベン
ゼン系潤滑油、エステル系潤滑油、エーテル系潤滑油あ
るいはこれらの混合物である請求項1ないし請求項3記
載の冷凍装置。
4. The refrigerating apparatus according to claim 1, wherein the refrigerating machine oil is a mineral oil type lubricating oil, an alkylbenzene type lubricating oil, an ester type lubricating oil, an ether type lubricating oil or a mixture thereof.
JP29910094A 1994-11-09 1994-11-09 Refrigeration system using non-azeotropic refrigerant mixture Expired - Fee Related JP3448377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29910094A JP3448377B2 (en) 1994-11-09 1994-11-09 Refrigeration system using non-azeotropic refrigerant mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29910094A JP3448377B2 (en) 1994-11-09 1994-11-09 Refrigeration system using non-azeotropic refrigerant mixture

Publications (2)

Publication Number Publication Date
JPH08136069A true JPH08136069A (en) 1996-05-31
JP3448377B2 JP3448377B2 (en) 2003-09-22

Family

ID=17868154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29910094A Expired - Fee Related JP3448377B2 (en) 1994-11-09 1994-11-09 Refrigeration system using non-azeotropic refrigerant mixture

Country Status (1)

Country Link
JP (1) JP3448377B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114893923A (en) * 2022-04-16 2022-08-12 郑州大学 Working medium component concentration active regulation-based self-overlapping system and control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114893923A (en) * 2022-04-16 2022-08-12 郑州大学 Working medium component concentration active regulation-based self-overlapping system and control method
CN114893923B (en) * 2022-04-16 2023-05-26 郑州大学 Automatic overlapping system based on active regulation and control of concentration of working medium components and control method

Also Published As

Publication number Publication date
JP3448377B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
AU775902B2 (en) Compression system for cryogenic refrigeration with multicomponent refrigerant
JP2000205676A (en) Method of providing refrigeration
US5351499A (en) Refrigerant composition and binary refrigeration system using it
WO2016185539A1 (en) Non-azeotropic refrigerant for ultra-low temperature
JP3934140B2 (en) Non-azeotropic refrigerant
JP4651255B2 (en) Refrigerant composition and refrigeration circuit using the same
JP3448377B2 (en) Refrigeration system using non-azeotropic refrigerant mixture
JP2764489B2 (en) Refrigeration system refrigerant and refrigeration system using the refrigerant
JP2007085729A (en) Refrigerator system using non-azeotropic refrigerant
JP2001099498A (en) Refrigeration system using nonazeotrope refrigerant
JP2562723B2 (en) Refrigerant composition and refrigeration system
JP2004019995A (en) Refrigeration device
JPH0868567A (en) Low-temperature generator
US6951115B2 (en) Refrigerant composition and refrigerating circuit using the same
JPH08233386A (en) Heat exchanger
JPH0678851B2 (en) Refrigeration equipment
JP3327705B2 (en) Refrigerant composition and refrigeration apparatus using the same
JP2711879B2 (en) Low temperature refrigerator
JPH05302763A (en) Method and device for operating binary refrigerating apparatus
JPH0655944B2 (en) Refrigerant composition
JPH08165465A (en) Cooling medium composition and refrigerating system
JP2009540262A (en) Refrigerant and refrigeration system
JP2792942B2 (en) Refrigeration equipment
JPH0742074Y2 (en) Freezer refrigerator
JPH03158659A (en) Refrigerating plant

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120704

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees