JPH08134694A - Very highly alkali-proof aluminum oxide composite film and its production - Google Patents
Very highly alkali-proof aluminum oxide composite film and its productionInfo
- Publication number
- JPH08134694A JPH08134694A JP30139794A JP30139794A JPH08134694A JP H08134694 A JPH08134694 A JP H08134694A JP 30139794 A JP30139794 A JP 30139794A JP 30139794 A JP30139794 A JP 30139794A JP H08134694 A JPH08134694 A JP H08134694A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum oxide
- film
- composite film
- oxide
- sol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/042—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/02—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
- C23C18/12—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
- C23C18/1204—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
- C23C18/1208—Oxides, e.g. ceramics
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemically Coating (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、超耐アルカリ性酸化
アルミニウム複合膜とその製造方法に関するものであ
る。さらに詳しくは、この発明は、耐久性、耐摩耗性を
有する皮膜の開発が必要とされている先端技術分野に有
用な、超耐アルカリ性を有する酸化アルミニウム複合膜
とその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a super alkali resistant aluminum oxide composite film and a method for producing the same. More specifically, the present invention relates to a super alkali resistant aluminum oxide composite film and a method for producing the same, which are useful in advanced technical fields in which the development of a film having durability and wear resistance is required.
【0002】[0002]
【従来の技術とその課題】従来より、アルミニウムまた
はアルミニウム合金を硫酸、リン酸、クロム酸等の無機
酸や、シュウ酸、マロン酸等の有機酸、またはこれらの
混酸溶液中で陽極酸化すると、その表面に酸化アルミニ
ウム皮膜が生成されることが知られている。ただ、陽極
皮膜は微細な細孔の存在によって耐化学性、特に耐アル
カリ性が劣り、耐摩耗性、電気絶縁性等の特性も劣るた
め、従来より、その改善策として皮膜を沸騰水中に浸す
ことで、水和反応によって皮膜の細孔を封じる方法(封
孔)や、水溶性のアクリル樹脂塗料中に皮膜を浸し、電
気泳動法により皮膜上または皮膜中に有機樹脂を電解析
出させ、有機塗膜により皮膜の細孔を封じる方法が実用
的に利用されている。2. Description of the Related Art Conventionally, when aluminum or an aluminum alloy is anodized in an inorganic acid such as sulfuric acid, phosphoric acid or chromic acid, an organic acid such as oxalic acid or malonic acid, or a mixed acid solution thereof, It is known that an aluminum oxide film is formed on the surface. However, the anodic coating has inferior chemical resistance, especially alkali resistance due to the presence of fine pores, and is also inferior in wear resistance, electrical insulation, etc., so it is better to immerse the coating in boiling water as an improvement measure. Then, a method of sealing the pores of the film by a hydration reaction (sealing) or immersing the film in a water-soluble acrylic resin paint and electrophoretically depositing an organic resin on or in the film A method of sealing the pores of the coating with a coating is practically used.
【0003】しかしながら、これらの従来の方法では、
皮膜の細孔を封じる性能において充分でないため、酸化
アルミニウム皮膜をより厳しい環境下において利用する
ことはできなかった。つまり、従来の方法では、細孔の
封止は必ずしも万全でなく、耐アルカリ性において劣
り、厳しい環境下では封止材の劣化、剥離、破壊等が避
けられなかったようである。However, in these conventional methods,
The aluminum oxide coating could not be used in a more severe environment because of its insufficient ability to seal the pores of the coating. That is, it seems that in the conventional method, the sealing of the pores is not always perfect, the alkali resistance is inferior, and deterioration, peeling, breakage, etc. of the sealing material cannot be avoided in a severe environment.
【0004】このため、陽極酸化により生成させた酸化
アルミニウム皮膜は、その耐熱性や強度等の特性におい
て優れているものの、これを実用的に利用することには
大きな制約があった。特に、航空、宇宙、その他の超耐
久性構造材、あるいは電子機器等の先端技術分野への応
用を図るには重大な問題点とされていた。また、近年で
は、皮膜の細孔中に二硫化モリブデンや強磁性体等の機
能性物質を充填することで高機能化を図るなどの試みも
なされているが、耐アルカリ性等の化学特性や耐久性等
を向上させるとの観点においては満足できるものではな
いのが実情である。Therefore, although the aluminum oxide film formed by anodic oxidation is excellent in its properties such as heat resistance and strength, there is a big limitation in practical use thereof. In particular, it has been regarded as a serious problem for application to advanced technical fields such as aviation, space, other super durable structural materials, and electronic devices. In recent years, attempts have been made to increase the functionality by filling the pores of the coating with functional substances such as molybdenum disulfide and ferromagnetic materials, but chemical properties such as alkali resistance and durability In reality, it is not satisfactory from the viewpoint of improving the sex.
【0005】この発明は、以上の通りの事情に鑑みてな
されたものであって、従来技術の欠点を解消し、極めて
優れた耐アルカリ特性を有し、耐久性の良好な新しい酸
化アルミニウム陽極酸化皮膜を提供することを目的とし
ている。The present invention has been made in view of the above circumstances, has solved the drawbacks of the prior art and has a new aluminum oxide anodized oxide having excellent alkali resistance and excellent durability. The purpose is to provide a film.
【0006】[0006]
【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、陽極酸化により生成された多孔
質酸化アルミニウム皮膜がゾル−ゲル法無機酸化物によ
り被覆されている超耐アルカリ性無機酸化物複合膜を提
供する。また、この発明は、この複合膜の製造法とし
て、酸溶液中で、アルミニウムまたはその合金を陽極酸
化して得られる多孔質酸化アルミニウム皮膜に、ゾル−
ゲル法によって無機酸化物を被覆し、次いで加熱する方
法をも提供する。そして、さらには、得られた複合膜
を、熱水または加圧水蒸気中で処理し、複合膜中の欠陥
を修復する方法をもこの発明は提供する。As a solution to the above problems, the present invention provides a super alkali resistant inorganic material in which a porous aluminum oxide film formed by anodic oxidation is covered with a sol-gel method inorganic oxide. An oxide composite film is provided. The present invention also provides, as a method for producing this composite film, a porous aluminum oxide film obtained by anodizing aluminum or an alloy thereof in an acid solution, using a sol-
A method of coating an inorganic oxide by a gel method and then heating is also provided. Further, the present invention also provides a method for treating the obtained composite film in hot water or pressurized steam to repair defects in the composite film.
【0007】[0007]
【作用】この発明の上記複合膜では、多孔質酸化アルミ
ニウムの細孔が無機酸化物被覆によってゲル封孔され、
さらには表面が被覆されることによって、緻密性に優れ
た組織となり、超耐アルカリ性等の優れた特性を実現す
る。この発明におけるこの細孔の封孔は、ゾル−ゲル反
応による「ゲル封孔」と呼ぶべきものであって、従来公
知の水熱反応による「封孔」とは本質的に異なっている
ものである。In the above composite membrane of the present invention, the pores of the porous aluminum oxide are gel-sealed by the inorganic oxide coating,
Furthermore, by coating the surface, the structure becomes excellent in denseness, and excellent characteristics such as super alkali resistance are realized. The sealing of the pores in the present invention should be called "gel sealing" by the sol-gel reaction and is essentially different from the conventionally known "sealing" by the hydrothermal reaction. is there.
【0008】通常アルミニウムの陽極酸化皮膜には、耐
酸性は良好であるものの、耐アルカリ性に劣るという欠
点があるが、この発明の複合膜の場合には、このような
欠点は解消され、これまでにない優れた超耐アルカリ性
が得られることになる。このような優れた特性を有する
この発明の超耐アルカリ性酸化アルミニウム複合膜は、
酸溶液中においての陽極酸化によって生成された皮膜
を、たとえば金属アルコキシド等を主体としたゾル溶液
中に浸漬し、次いで加熱することによって製造する。浸
漬は、陽極酸化皮膜の厚さによっては複数繰り返すこと
が望ましい。この繰り返しの回数は、細孔の大きさや、
皮膜の厚さによって適宜に選択することができる。一般
的には、皮膜の厚さが薄くなるほどその回数を減らすこ
とができる。Although anodized films of aluminum usually have a good acid resistance but a poor alkali resistance, in the case of the composite film of the present invention, such a defect is solved, and it has been heretofore known. Excellent super-alkaline resistance not found in The super alkali resistant aluminum oxide composite film of the present invention having such excellent properties is
The film produced by anodic oxidation in an acid solution is manufactured by, for example, immersing the film in a sol solution mainly containing a metal alkoxide and then heating. It is desirable that the dipping is repeated a plurality of times depending on the thickness of the anodized film. The number of repetitions is the size of the pores,
It can be appropriately selected depending on the thickness of the film. In general, the thinner the coating, the lesser the number of times.
【0009】また、ゾル−ゲル法によって生成される被
覆層の厚みの制御には、ゾルの粘性、ゾル溶液からの引
上げ速度等も考慮する。たとえば、厚さ3μmの多孔質
皮膜で、細孔径が100〜150nmと大きい場合に
は、1回の浸漬による被覆処理で、細孔は、およそ20
0〜300nmジルコニアゲルで埋められる。すると、
10回の浸漬被覆の処理で細孔は全て埋めつくされ、ゲ
ル封孔されることになる。Further, in controlling the thickness of the coating layer produced by the sol-gel method, the viscosity of the sol, the pulling rate from the sol solution, etc. are also taken into consideration. For example, in the case of a porous film having a thickness of 3 μm and a large pore diameter of 100 to 150 nm, the pore size is about 20 by one dipping treatment.
Filled with 0-300 nm zirconia gel. Then
All the pores are filled with the treatment of 10 times of the dip coating, and the gel is sealed.
【0010】すると、11回目以降の処理では皮膜上の
被覆層が形成されることになる。浸漬した後には、乾燥
し、次いで加熱処理することになる。加熱処理は、この
発明では、含酸素雰囲気中、たとえば大気中、あるいは
酸素気流中で、150〜350℃程度、より好ましくは
200〜300℃程度において10分間〜1時間程度加
熱処理する。Then, the coating layer on the film is formed in the eleventh and subsequent treatments. After soaking, it is dried and then heat treated. In the present invention, the heat treatment is performed in an oxygen-containing atmosphere, for example, in the air or in an oxygen stream at about 150 to 350 ° C., more preferably at about 200 to 300 ° C. for about 10 minutes to 1 hour.
【0011】なお、ゾル溶液への浸漬、そして乾燥は、
不活性ガス、大気中、あるいは真空の雰囲気において行
うのが好ましい。この乾燥は、常温〜60℃程度の温度
において行うのが好ましく、この乾燥も、耐アルカリ特
性の向上に寄与する要因となる。このような、ゾル溶液
への浸漬と加熱処理とによって、被覆密着性、平滑性、
緻密性、並びに耐アルカリ性等の諸特性に優れた複合膜
が形成される。The immersion in the sol solution and the drying are
It is preferably carried out in an atmosphere of inert gas, air, or vacuum. This drying is preferably performed at a temperature of room temperature to about 60 ° C., and this drying also contributes to the improvement of alkali resistance. By such immersion in a sol solution and heat treatment, coating adhesion, smoothness,
A composite film having excellent characteristics such as denseness and alkali resistance is formed.
【0012】ゾル−ゲル法による無機酸化物の被覆は、
酸化アルミニウム皮膜の細孔の封孔被覆、さらには皮膜
表面への被覆として実現される。生成した複合膜は、さ
らに熱水あるいは加圧水蒸気によって処理することが有
効でもある。なお、この発明の複合膜が有する超耐アル
カリ特性は、アルカリ溶液による溶解過程での複合膜中
の欠陥修復作用によるものと考えられる。そして、さら
に、被覆によって生成させた複合膜の表面が溌水性を有
することも、超耐アルカリ性を向上させる一因となって
いるものと思われる。The inorganic oxide coating by the sol-gel method is
It is realized as a coating for sealing the pores of the aluminum oxide film and further for coating the surface of the film. It is also effective to further treat the produced composite membrane with hot water or pressurized steam. It is considered that the super alkaline resistance property of the composite film of the present invention is due to the defect repairing action in the composite film during the dissolution process with the alkaline solution. Further, the fact that the surface of the composite film formed by coating has water repellency is also considered to be one of the reasons for improving the super alkali resistance.
【0013】このような無機酸化物被覆した複合膜のア
ルカリ溶液に対するインテリジェント性はこれまで知ら
れていない全く新しい現象であって、新たな分野への利
用拡大の観点においても注目される。陽極酸化およびゾ
ル−ゲル法については、従来公知の手段をはじめとして
各種のものが採用できる。そして、被覆のための無機酸
化物としては、複合膜の用途、使用条件において適宜に
選択することができ、たとえばZr、Ti、Nb、W、
Mo、Ni、Fe、Co、V、Sb、In、Bi、S
i、Al、Sr、Y、さらには各種の希土類元素等の酸
化物が選択される。The intelligent property of such a composite film coated with an inorganic oxide to an alkaline solution is a completely new phenomenon that has not been known so far, and is also noted from the viewpoint of expanding its application to new fields. For the anodic oxidation and the sol-gel method, various methods including conventionally known means can be adopted. Then, the inorganic oxide for coating can be appropriately selected depending on the use and use conditions of the composite film, and for example, Zr, Ti, Nb, W,
Mo, Ni, Fe, Co, V, Sb, In, Bi, S
Oxides such as i, Al, Sr, Y, and various rare earth elements are selected.
【0014】[0014]
【実施例】以下、実施例を示し、さらに詳しくこの発明
の超耐アルカリ性複合膜について説明する。実施例1 濃度15%、液温21℃のリン酸水溶液中で直流電圧7
0Vを印加し、純度99.99%のアルミニウム板を陽
極酸化処理した。EXAMPLES Examples will be shown below to describe the super alkali resistant composite film of the present invention in more detail. Example 1 DC voltage 7 in a phosphoric acid aqueous solution having a concentration of 15% and a liquid temperature of 21 ° C.
An aluminum plate having a purity of 99.99% was anodized by applying 0V.
【0015】これにより、細孔の直径が約100〜15
0nmで、膜厚が約3μmの多孔質構造の皮膜を生成し
た。次に、この皮膜を、ジルコニウムテトラ−n−ブト
キシドに脱水エタノール、イオン交換水およびジエチレ
ングリコールを加え、良く攪拌したジルコニアゾル中に
窒素雰囲気下において5分間浸した。そして、一定速度
(3mm/s)で引き上げ、窒素雰囲気中で5分間乾燥
処理した後、酸素気流中で300℃の温度で30分間加
熱処理し、皮膜の細孔が埋まるまでこの操作を15回繰
り返して複合膜を生成した。細孔はジルコニアのゲルで
封孔されており、また皮膜上の被覆層の厚さは約190
nmであった。As a result, the diameter of the pores is about 100-15.
At 0 nm, a film with a porous structure with a film thickness of about 3 μm was produced. Next, this film was added to zirconium tetra-n-butoxide, dehydrated ethanol, ion-exchanged water and diethylene glycol, and immersed in a well-stirred zirconia sol under a nitrogen atmosphere for 5 minutes. Then, it is pulled up at a constant speed (3 mm / s), dried in a nitrogen atmosphere for 5 minutes, and then heat-treated in an oxygen stream at a temperature of 300 ° C. for 30 minutes, and this operation is repeated 15 times until the pores of the film are filled. Repeatedly produced a composite membrane. The pores are sealed with a zirconia gel, and the thickness of the coating layer on the film is about 190
was nm.
【0016】このようにして得られた複合膜を、起電力
測定試験(JIS・H8681)により耐アルカリ性を
測定したところ、2254秒の耐アルカリ性を示した。
この起電力試験では、10%NaOH水溶液を皮膜に接
触させ、1mVの電位が検出されるまでの時間を測定
し、これが皮膜を溶解し素地が露出するまでの時間とし
て表したものである。実施例2 実施例1と同様の方法でアルミニウム基板上に生成した
膜厚3μmの多孔質構造のリン酸酸化アルミニウム皮膜
を、ジルコニアゾル中に5分間浸した後、一定速度でそ
れを引き上げ、窒素雰囲気中で一日(24時間)乾燥し
た後、酸素気流中で300℃で30分間加熱処理し、皮
膜の細孔が埋まるまでこの操作を15回繰り返して複合
膜を生成した。When the alkali resistance of the thus obtained composite film was measured by an electromotive force measurement test (JIS H8681), it showed an alkali resistance of 2254 seconds.
In this electromotive force test, a 10% NaOH aqueous solution was brought into contact with the film, the time until the potential of 1 mV was detected was measured, and this was expressed as the time until the film was dissolved and the substrate was exposed. Example 2 A 3 μm-thick porous aluminum phosphate oxide film with a film thickness of 3 μm formed on an aluminum substrate by the same method as in Example 1 was immersed in zirconia sol for 5 minutes, and then pulled up at a constant speed, and nitrogen was added. After drying in the atmosphere for one day (24 hours), heat treatment was carried out at 300 ° C. for 30 minutes in an oxygen stream, and this operation was repeated 15 times until the pores of the coating were filled to form a composite membrane.
【0017】このようにして得られた複合膜を、実施例
1と同様の方法で耐アルカリ性を測定したところ、40
40秒もの耐アルカリ性を示した。実施例3 実施例1と同様の方法でアルミニウム基板上に生成した
膜厚3μmの多孔質構造のリン酸酸化アルミニウム皮膜
を、ジルコニアゾル中に5分間浸した後、一定速度でそ
れを引き上げ、大気中で5分間乾燥した後、酸素気流中
で300℃で30分間加熱処理し、皮膜の細孔が埋まる
までこの操作を15回繰り返して複合膜を生成した。皮
膜上の被覆層の厚さは約200nmであった。The alkali resistance of the composite film thus obtained was measured by the same method as in Example 1, and it was 40
It showed an alkali resistance of 40 seconds. Example 3 A porous aluminum phosphate oxide film having a thickness of 3 μm and formed on an aluminum substrate in the same manner as in Example 1 was dipped in a zirconia sol for 5 minutes, and then pulled up at a constant rate to the atmosphere. After drying in the air for 5 minutes, heat treatment was carried out at 300 ° C. for 30 minutes in an oxygen stream, and this operation was repeated 15 times until the pores of the coating were filled to form a composite membrane. The thickness of the coating layer on the film was about 200 nm.
【0018】このようにして得られた複合膜を、実施例
1と同様の方法で耐アルカリ性を測定したところ、93
36秒もの耐アルカリ性を示した。実施例4 実施例1と同様の方法でアルミニウム基板上に生成した
膜厚3μmの多孔質構造のリン酸酸化アルミニウム皮膜
を、ジルコニアゾル中に5分間浸した後、一定速度でそ
れを引き上げ、窒素雰囲気中で5分間乾燥した後、さら
に真空中で5分間放置し、最後に酸素気流中で300℃
で30分間加熱処理し、皮膜の細孔が埋まるまでこの操
作を15回繰り返して複合膜を生成した。皮膜上の被覆
層の厚さは約310nmであった。The alkali resistance of the composite film thus obtained was measured in the same manner as in Example 1. The result was 93.
It showed an alkali resistance of 36 seconds. Example 4 A porous aluminum phosphate oxide film having a thickness of 3 μm and formed on an aluminum substrate in the same manner as in Example 1 was dipped in a zirconia sol for 5 minutes and then pulled up at a constant speed, and nitrogen was added thereto. After drying in the atmosphere for 5 minutes, leave it in vacuum for 5 minutes, and finally in an oxygen stream at 300 ° C.
Was heat-treated for 30 minutes, and this operation was repeated 15 times until the pores of the film were filled to form a composite film. The coating layer thickness on the film was about 310 nm.
【0019】このようにして得られた複合膜を、実施例
1と同様の方法で耐アルカリ性を測定したところ、89
55秒もの耐アルカリ性を示した。実施例5 実施例1と同様の方法でアルミニウム基板上に生成した
膜厚3μmの多孔質構造のリン酸酸化アルミニウム皮膜
を、ジルコニアゾル中に5分間浸した後、一定速度でそ
れを引き上げ、窒素雰囲気中で5分間乾燥した後、さら
に酸素気流中で300℃で30分間加熱処理し、皮膜の
細孔が埋まるまでこの操作を15回繰り返して複合膜を
生成した。最後に、この複合膜を沸騰水中で45分加熱
した。皮膜上の被覆層の厚さは約170nmであった。The alkali resistance of the composite film thus obtained was measured by the same method as in Example 1.
It showed an alkali resistance of 55 seconds. Example 5 A porous aluminum phosphate oxide film having a thickness of 3 μm and formed on an aluminum substrate in the same manner as in Example 1 was dipped in a zirconia sol for 5 minutes, and then pulled up at a constant speed, and nitrogen was added. After drying in an atmosphere for 5 minutes, heat treatment was further performed in an oxygen stream at 300 ° C. for 30 minutes, and this operation was repeated 15 times until the pores of the coating were filled to form a composite membrane. Finally, the composite membrane was heated in boiling water for 45 minutes. The thickness of the coating layer on the film was about 170 nm.
【0020】このようにして得られた複合膜を、実施例
1と同様の方法で耐アルカリ性を測定したところ、18
060秒となり、極めて優れた耐アルカリ性を示し皮膜
が得られた。比較例1 実施例1と同様にしてアルミニウム基板上に生成した膜
厚3μmの多孔質酸化アルミニウム皮膜を、そのまま熱
水処理して水熱反応させた。The alkali resistance of the composite film thus obtained was measured in the same manner as in Example 1.
It was 060 seconds, and the film showed extremely excellent alkali resistance and a film was obtained. Comparative Example 1 A porous aluminum oxide film having a film thickness of 3 μm formed on an aluminum substrate in the same manner as in Example 1 was subjected to hydrothermal reaction as it was for hydrothermal reaction.
【0021】このものについて同様に耐アルカリ性測定
したところ、その耐アルカリ性能は、わずか130秒に
すぎなかった。比較例2 実施例1において、加熱処理を行わない場合について耐
アルカリ性を同様にして測定したところ、その性能は、
約50秒にとどまった。実施例6 実施例1と同様の方法で、アルミニウム基板上に膜厚3
μmの多孔質構造の酸化アルミニウム皮膜を生成させ
た。When the alkali resistance of this product was measured in the same manner, its alkali resistance performance was only 130 seconds. Comparative Example 2 In Example 1, the alkali resistance was similarly measured in the case where the heat treatment was not performed.
It stayed for about 50 seconds. Example 6 In the same manner as in Example 1, a film thickness of 3 was formed on an aluminum substrate.
An aluminum oxide film with a porous structure of μm was produced.
【0022】次にこの皮膜に、ケイ酸エチル(テトラエ
チルオルソシリケート)に無水エタノール、イオン交換
水および硝酸を加え、良く攪拌したシリカゲル中に窒素
雰囲気下で5分間浸漬した。そして、一定速度(3mm
/s)で引き上げ、大気中で5分間乾燥した後に、酸素
気流中で300℃の温度において30分間加熱処理し
た。Next, to this film, ethyl silicate (tetraethyl orthosilicate), anhydrous ethanol, ion-exchanged water and nitric acid were added and immersed in a well-stirred silica gel for 5 minutes under a nitrogen atmosphere. And constant speed (3mm
/ S), and dried in the atmosphere for 5 minutes, and then heat-treated in an oxygen stream at a temperature of 300 ° C. for 30 minutes.
【0023】皮膜の細孔が埋まるまでこの操作を繰り返
して複合膜を生成させた。このようにして得られた複合
膜の耐アルカリ性を測定した結果、1643秒の耐アル
カリ性を示した。This operation was repeated until the pores of the film were filled to form a composite film. As a result of measuring the alkali resistance of the composite film thus obtained, the alkali resistance was 1643 seconds.
【0024】[0024]
【発明の効果】この発明により、以上詳しく説明したと
おり、極めて優れた超耐アルカリ性を有する無機酸化物
複合膜を製造することが可能となる。As described in detail above, according to the present invention, it becomes possible to produce an inorganic oxide composite film having extremely excellent super alkali resistance.
Claims (8)
化アルミニウム皮膜が、ゾル−ゲル法無機酸化物によっ
て被覆されていることを特徴とする超耐アルカリ性酸化
アルミニウム複合膜。1. A super alkali resistant aluminum oxide composite film, wherein a porous aluminum oxide film formed by anodizing treatment is covered with a sol-gel method inorganic oxide.
機酸化物によって封孔されている請求項1の複合膜。2. The composite film according to claim 1, wherein the pores of the porous aluminum oxide film are sealed with an inorganic oxide.
機酸化物によって被覆されている請求項1の複合膜。3. The composite film according to claim 1, wherein the surface of the porous aluminum oxide film is covered with an inorganic oxide.
請求項1の複合膜。4. The composite film according to claim 1, wherein the inorganic oxide is zirconium oxide.
を陽極酸化して生成させた多孔質酸化アルミニウム皮膜
を、ゾル−ゲル法によって無機酸化物被覆し、加熱処理
することを特徴とする超耐アルカリ性酸化アルミニウム
複合膜の製造方法。5. A super-alkaline resistance characterized in that a porous aluminum oxide film formed by anodizing aluminum or its alloy in an acid solution is coated with an inorganic oxide by a sol-gel method and heat-treated. Method for manufacturing aluminum oxide composite film.
中において加熱処理する超耐アルカリ性酸化アルミニウ
ム複合膜の製造方法。6. The method for producing a super alkaline resistant aluminum oxide composite film according to claim 5, wherein the heat treatment is performed in an oxygen-containing atmosphere.
請求項6の製造方法。7. The method according to claim 6, wherein the heat treatment is performed at 150 to 350 ° C.
を、熱水または加圧水蒸気により処理する超耐アルカリ
性酸化アルミニウム複合膜の製造方法。8. A method for producing a super alkaline resistant aluminum oxide composite membrane, which comprises treating the composite membrane produced by the method of claim 5 with hot water or pressurized steam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30139794A JPH08134694A (en) | 1994-11-10 | 1994-11-10 | Very highly alkali-proof aluminum oxide composite film and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30139794A JPH08134694A (en) | 1994-11-10 | 1994-11-10 | Very highly alkali-proof aluminum oxide composite film and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08134694A true JPH08134694A (en) | 1996-05-28 |
Family
ID=17896380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30139794A Pending JPH08134694A (en) | 1994-11-10 | 1994-11-10 | Very highly alkali-proof aluminum oxide composite film and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08134694A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001519482A (en) * | 1997-10-13 | 2001-10-23 | アルキャン・インターナショナル・リミテッド | Coated aluminum products |
EP1967615A1 (en) * | 2007-03-07 | 2008-09-10 | Siemens Aktiengesellschaft | Method for applying a heat insulation coating and turbine components with a heat insulation coating |
JP2012144750A (en) * | 2011-01-06 | 2012-08-02 | Aisin Keikinzoku Co Ltd | Anodized member and method for sealing anodized film |
CN103215630A (en) * | 2013-04-23 | 2013-07-24 | 沈阳理工大学 | Method for sealing aluminum alloy anode oxide film pore by adopting organic-inorganic composite silica sol |
KR101291062B1 (en) * | 2013-04-30 | 2013-08-01 | 주식회사 모아기술 | Method of surface treatment for exterior decor of car |
JP2014062277A (en) * | 2012-09-20 | 2014-04-10 | Kobe Steel Ltd | Aluminum alloy sheet, joined body and automotive member using the same |
JP2015206117A (en) * | 2015-05-07 | 2015-11-19 | 株式会社神戸製鋼所 | Surface-treated aluminum alloy sheet |
JP2017179479A (en) * | 2016-03-30 | 2017-10-05 | アイシン軽金属株式会社 | Surface treatment method of aluminum |
CN108950648A (en) * | 2018-06-21 | 2018-12-07 | 东莞市依诺电子科技有限公司 | A kind of high anti-corrosion high reliability treatment process of spreader surface |
CN109161890A (en) * | 2018-09-26 | 2019-01-08 | 广西大学 | A kind of SiO2Differential arc oxidation composite coating and preparation method thereof |
CN112481675A (en) * | 2020-11-27 | 2021-03-12 | 佳木斯大学 | Preparation method of pure titanium surface double-layer protective film layer |
CN112695357A (en) * | 2021-01-16 | 2021-04-23 | 郝云霞 | Hole sealing method for aluminum alloy micro-arc oxidation film |
US11312107B2 (en) * | 2018-09-27 | 2022-04-26 | Apple Inc. | Plugging anodic oxides for increased corrosion resistance |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0285373A (en) * | 1988-08-12 | 1990-03-26 | Alcan Internatl Ltd | Surface treatment method and composition |
-
1994
- 1994-11-10 JP JP30139794A patent/JPH08134694A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0285373A (en) * | 1988-08-12 | 1990-03-26 | Alcan Internatl Ltd | Surface treatment method and composition |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001519482A (en) * | 1997-10-13 | 2001-10-23 | アルキャン・インターナショナル・リミテッド | Coated aluminum products |
EP1967615A1 (en) * | 2007-03-07 | 2008-09-10 | Siemens Aktiengesellschaft | Method for applying a heat insulation coating and turbine components with a heat insulation coating |
WO2008107293A1 (en) * | 2007-03-07 | 2008-09-12 | Siemens Aktiengesellschaft | Method for applying a heat insulating coating and turbine components comprising a heat insulating coating |
JP2012144750A (en) * | 2011-01-06 | 2012-08-02 | Aisin Keikinzoku Co Ltd | Anodized member and method for sealing anodized film |
JP2014062277A (en) * | 2012-09-20 | 2014-04-10 | Kobe Steel Ltd | Aluminum alloy sheet, joined body and automotive member using the same |
CN103215630B (en) * | 2013-04-23 | 2016-01-20 | 沈阳理工大学 | The method in aluminium alloy anode oxide film hole is closed with inorganic-organic composite silicon colloidal sol |
CN103215630A (en) * | 2013-04-23 | 2013-07-24 | 沈阳理工大学 | Method for sealing aluminum alloy anode oxide film pore by adopting organic-inorganic composite silica sol |
KR101291062B1 (en) * | 2013-04-30 | 2013-08-01 | 주식회사 모아기술 | Method of surface treatment for exterior decor of car |
JP2015206117A (en) * | 2015-05-07 | 2015-11-19 | 株式会社神戸製鋼所 | Surface-treated aluminum alloy sheet |
JP2017179479A (en) * | 2016-03-30 | 2017-10-05 | アイシン軽金属株式会社 | Surface treatment method of aluminum |
CN108950648A (en) * | 2018-06-21 | 2018-12-07 | 东莞市依诺电子科技有限公司 | A kind of high anti-corrosion high reliability treatment process of spreader surface |
CN109161890A (en) * | 2018-09-26 | 2019-01-08 | 广西大学 | A kind of SiO2Differential arc oxidation composite coating and preparation method thereof |
CN109161890B (en) * | 2018-09-26 | 2020-05-05 | 广西大学 | SiO (silicon dioxide)2Micro-arc oxidation composite coating and preparation method thereof |
US11312107B2 (en) * | 2018-09-27 | 2022-04-26 | Apple Inc. | Plugging anodic oxides for increased corrosion resistance |
CN112481675A (en) * | 2020-11-27 | 2021-03-12 | 佳木斯大学 | Preparation method of pure titanium surface double-layer protective film layer |
CN112481675B (en) * | 2020-11-27 | 2022-03-11 | 佳木斯大学 | Preparation method of pure titanium surface double-layer protective film layer |
CN112695357A (en) * | 2021-01-16 | 2021-04-23 | 郝云霞 | Hole sealing method for aluminum alloy micro-arc oxidation film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08134694A (en) | Very highly alkali-proof aluminum oxide composite film and its production | |
CN101597784B (en) | Hole-sealing method for anode oxide film of light metal material | |
US10309029B2 (en) | Method for forming a multi-layer anodic coating | |
CN105441743B (en) | A kind of al based amorphous alloy composite and preparation method thereof | |
CN114737237B (en) | Preparation method of coating material | |
CN105702466B (en) | A kind of preparation method of high-k formed aluminum foil | |
GB1069168A (en) | Composite coated aluminium articles | |
JPS5928637B2 (en) | Method of forming a protective film on the surface of magnesium material | |
CN104875440B (en) | A kind of multicoat composite with magnesium/magnesium alloy as matrix and preparation method thereof | |
JPS5817278B2 (en) | Method of forming a protective film on the surface of aluminum materials | |
CN110643999A (en) | Preparation method of self-assembled hole sealing protective film | |
CN114032547B (en) | Alloy surface composite coating and preparation method thereof | |
JPS6233783A (en) | Coating layer for metallic magnesium molding and its production | |
JPH0265219A (en) | Method of increasing capacitance of aluminum foil that anode is oxidized | |
JPS5945722B2 (en) | Method of forming a colored protective film on the surface of aluminum materials | |
JP2000178792A (en) | Production of oxide film | |
JPH0344496A (en) | Aluminum or aluminum alloy material having superior adhesion to coating film and production thereof | |
JPH04121914A (en) | Insulated aluminum wire rod and its manufacture | |
JPH08246190A (en) | Anodically oxidized film and its formation | |
Takahashi et al. | Anodic oxide films on aluminum: Their significance for corrosion protection and micro-and nano-technologies | |
JP2005023411A (en) | Surface treated aluminum material, and aluminum formed body | |
JPH04341581A (en) | Composite film of anodically oxidized ti film and metallic oxide thin film | |
CN113355658B (en) | Metal matrix surface anti-corrosion ceramic coating and preparation method thereof | |
JPH02216811A (en) | Manufacture of aluminum foil for electrolytic capacitor | |
JPH04280812A (en) | Formation of porous coating film of silica on substrate |