JPH08134567A - Hydrogen storage alloy and hydrogen storage alloy electrode for alkali battery - Google Patents

Hydrogen storage alloy and hydrogen storage alloy electrode for alkali battery

Info

Publication number
JPH08134567A
JPH08134567A JP6277521A JP27752194A JPH08134567A JP H08134567 A JPH08134567 A JP H08134567A JP 6277521 A JP6277521 A JP 6277521A JP 27752194 A JP27752194 A JP 27752194A JP H08134567 A JPH08134567 A JP H08134567A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
battery
discharge capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6277521A
Other languages
Japanese (ja)
Inventor
Takitaro Yamaguchi
滝太郎 山口
Takao Ogura
孝夫 小倉
Yuji Ishii
裕治 石井
Tatsuo Horiba
達雄 堀場
Michiko Igawa
享子 井川
Sachiko Tanikoshi
祥子 谷越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Corp
Original Assignee
Hitachi Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Hitachi Ltd
Priority to JP6277521A priority Critical patent/JPH08134567A/en
Publication of JPH08134567A publication Critical patent/JPH08134567A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To inhibit the formation of an oxidized film on the surface of an AB2 type Laves phase alloy forming an electrode without reducing the volume of the electrode or the energy density per unit weight by adding a specified amt. of B and/or Si to the alloy. CONSTITUTION: This alloy has a compsn. represented by the formula Zn1-x Tix Niα Vbα Mncα Fe(1-a-c)α Rβ(where R is at least one of B and Si, 0<=x<=0.9, 1.5<=α<=2.0, 0<β<=0.2, 0.4<=a<=0.7, 0.1<=b<=0.3 and 0.1<=c<=0.32). The structure of Laves phase is converted into a nearly amorphous structure by adding B or Si, the formation of an oxidized film on the surface of this alloy is inhibited and discharge capacity at the time of high-rate discharge can be increased without requiring coating with Ni, Cu, etc., for preventing poisoning.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金及びアル
カリ蓄電池の負極材として用いられる水素吸蔵合金電極
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy and a hydrogen storage alloy electrode used as a negative electrode material for alkaline storage batteries.

【0002】[0002]

【従来の技術】エネルギー密度の高い蓄電池として、水
素吸蔵合金を負極材に用いるアルカリ蓄電池が知られて
いる。水素吸蔵合金としては、LaNi5 、MmNi5
(Mm:ミッシュメタル)等のAB5 形、またはZrM
2 等のLaves相構造を有するAB2 形が知られて
いる。AB5 形は早期活性化が容易であり、AB2 形は
高容量化を図ることができる。AB2 形の水素吸蔵合金
の中には、組成式Zr1- X TiX α(1.5≦α≦
2.5)で表されるものがあり、この種の水素吸蔵合金
では、Ni、Co、Mn、Al、Cr、Fe、Cu、S
n、Sb、Mo、V、Znのうちから選ばれた少なくと
も1種をM(AB2 形におけるBサイト)とすることに
より、電池の高容量化を可能にしている。
2. Description of the Related Art As a storage battery having a high energy density, an alkaline storage battery using a hydrogen storage alloy as a negative electrode material is known. As the hydrogen storage alloy, LaNi 5 , MmNi 5
AB 5 type such as (Mm: misch metal) or ZrM
The AB 2 form having a Laves phase structure such as n 2 is known. The AB 5 type is easy to activate early, and the AB 2 type can achieve high capacity. Among AB 2 type hydrogen storage alloys, the composition formula Zr 1- X Ti X M α (1.5 ≦ α ≦
2.5), and in this kind of hydrogen storage alloy, Ni, Co, Mn, Al, Cr, Fe, Cu, S
By using at least one selected from n, Sb, Mo, V, and Zn as M (B site in AB 2 type), it is possible to increase the capacity of the battery.

【0003】Laves相構造を有する水素吸蔵合金を
用いた電池では、大気中の酸素によって被毒されて高率
放電時の放電容量が低下するという問題があった。そこ
で、特開昭61−64069号公報及び特開昭61−1
01957号公報で示すように、粉砕した水素吸蔵合金
の表面を耐食性のニッケル、銅等で被覆して被毒を防止
することが提案された。また特開平4−232202号
公報及び特開平4−245165号公報に示すように、
熱分解炭素、鉄または鉄の合金等を水素吸蔵合金粉末と
混合して水素吸蔵合金電極を作ることにより、水素吸蔵
合金の被毒を防止することが提案された。
A battery using a hydrogen storage alloy having a Laves phase structure has a problem that it is poisoned by oxygen in the atmosphere and the discharge capacity at the time of high rate discharge is reduced. Therefore, JP-A-61-64069 and JP-A-61-1
As disclosed in Japanese Patent No. 01957, it has been proposed to coat the surface of a crushed hydrogen storage alloy with corrosion resistant nickel, copper or the like to prevent poisoning. In addition, as shown in JP-A-4-232202 and JP-A-4-245165,
It has been proposed to prevent the poisoning of the hydrogen storage alloy by making a hydrogen storage alloy electrode by mixing pyrolytic carbon, iron or an iron alloy with hydrogen storage alloy powder.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、水素吸
蔵合金の表面にニッケル、銅等を被覆すると、水素吸蔵
合金の製造が繁雑になるという問題がある。
However, when the surface of the hydrogen storage alloy is coated with nickel, copper or the like, there is a problem that the production of the hydrogen storage alloy becomes complicated.

【0005】またこのような被覆を施したり、熱分解炭
素、鉄または鉄の合金等を水素吸蔵合金粉末と混合する
と、被覆物(ニッケル、銅)や混合物(熱分解炭素、鉄
または鉄の合金)により、水素吸蔵合金電極の体積及び
重量あたりのエネルギー密度が低下するという問題があ
った。
When such a coating is applied or when pyrolytic carbon, iron or an iron alloy is mixed with hydrogen storage alloy powder, a coating (nickel, copper) or a mixture (pyrolytic carbon, iron or iron alloy) is obtained. ), There is a problem that the energy density per volume and weight of the hydrogen storage alloy electrode is reduced.

【0006】また、水素吸蔵合金電極を製造する場合、
水素吸蔵合金粉末を水溶性バインダと共に混練したペー
ストを発泡金属基体に充填する方法が一般的である。こ
のようにして水素吸蔵合金電極を製造する場合、合金粉
末を水溶性バインダに浸漬、乾燥するため、合金粉末の
表面に酸化膜が生成し、電池の高率放電時の放電容量が
低下するという問題があった。
Further, when manufacturing a hydrogen storage alloy electrode,
A general method is to fill a foam metal substrate with a paste prepared by kneading a hydrogen storage alloy powder with a water-soluble binder. When a hydrogen storage alloy electrode is manufactured in this manner, the alloy powder is dipped in a water-soluble binder and dried, so that an oxide film is formed on the surface of the alloy powder and the discharge capacity at the time of high rate discharge of the battery decreases. There was a problem.

【0007】本発明の目的は、電極の体積及び重量あた
りのエネルギー密度を低下させることなく、表面の酸化
膜の生成を抑制できる水素吸蔵合金を提供することにあ
る。本発明の他の目的は、水素吸蔵合金の表面の酸化膜
の生成を抑制して、電池の高率放電時の放電容量を高め
られるアルカリ蓄電池用水素吸蔵合金電極を提供するこ
とにある。
An object of the present invention is to provide a hydrogen storage alloy capable of suppressing the formation of an oxide film on the surface without lowering the energy density per volume and weight of the electrode. Another object of the present invention is to provide a hydrogen storage alloy electrode for an alkaline storage battery, which is capable of suppressing the formation of an oxide film on the surface of the hydrogen storage alloy and increasing the discharge capacity during high rate discharge of the battery.

【0008】[0008]

【課題を解決するための手段】本発明は、水素吸蔵合金
を改良の対象にして、組成式Zr1-X TiX Ni
MnFe(1-a-b-c) αβで表わすもので、R
をB、Siのうちの少なくとも1種とし、Xの範囲を0
≦X≦0.9とし、αの範囲を1.5≦α≦2.5と
し、βの範囲を0<β≦0.3とし、a、b、cの範囲
をそれぞれ0.4≦a≦0.7、0.1≦b≦0.3、
0.1≦c≦0.32とする。
DISCLOSURE OF THE INVENTION The present invention aims to improve a hydrogen storage alloy, and has a composition formula of Zr 1-X Ti X Ni V
Mn Fe (1-abc) α R β
Is at least one of B and Si, and the range of X is 0
≦ X ≦ 0.9, the range of α is 1.5 ≦ α ≦ 2.5, the range of β is 0 <β ≦ 0.3, and the ranges of a, b, and c are 0.4 ≦ a, respectively. ≦ 0.7, 0.1 ≦ b ≦ 0.3,
0.1 ≦ c ≦ 0.32.

【0009】このような、水素吸蔵合金を用いれば、電
池の高率放電時の放電容量を高められるアルカリ蓄電池
用水素吸蔵合金電極を得ることができる。
By using such a hydrogen storage alloy, it is possible to obtain a hydrogen storage alloy electrode for an alkaline storage battery which can increase the discharge capacity during high rate discharge of the battery.

【0010】[0010]

【作用】本発明の水素吸蔵合金によれば、被覆物や混合
物を用いることなく、表面の酸化膜の生成を抑制して、
大気中の酸素による被毒を防ぐことができる。そのた
め、電極の体積及び重量あたりのエネルギー密度を低下
させることなく、電池の高率放電時の放電容量の低下を
抑制できる。また本発明によれば、Zr、Ni、B,S
iの量を適正化させることにより、水素吸蔵合金の耐食
性を高めて、電池のサイクル寿命を延ばすことができ
る。これは、次のような理由によると考えられる。一般
にAB2 形のLaves相構造を有する合金を形成する
Aサイト及びBサイトの多くの元素は1.25〜1.6
2オングストロームの原子半径を有している。そして、
これらの元素の原子半径により、水素吸蔵合金の格子間
距離が決まる。ホウ素またはケイ素は原子半径が1.2
5オングストローム未満と比重が低くくしかも融点が低
いので、本発明における範囲の量のホウ素(B)または
ケイ素(Si)を水素吸蔵合金中に含有させると、Zr
系水素吸蔵合金のLaves相構造の格子半径は原子レ
ベルで乱れる。その結果、ミクロ的にみるとアモルファ
スに近い構造となる。そのため、Zr系水素吸蔵合金の
表面に酸化膜が形成されるのを抑制することができる。
そして、X、α、β、a、b、cの範囲をそれぞれ本発
明の範囲とすると、電池の高率放電時の放電容量の低下
を抑制して、サイクル寿命を延ばすことができる。Xが
0.9を上回ると結晶の格子体積が小さくなり、水素吸
蔵量が低下して容量が低下する。αが1.5を下回った
り、2.5を上回ると、AB2 形以外の相が形成され
て、水素吸蔵量が低下し容量が低下する。βが0.3を
上回るとB,Siが析出して、容量が低下する。aが
0.4を下回ると耐食性が低下してサイクル寿命が短く
なる。aが0.7を上回ると合金中のMn、Vの含有量
が低下するため、水素吸蔵量が低下して容量が低下す
る。bが0.1を下回ると、AB2 形以外の相が形成さ
れて、水素吸蔵量が低下し容量が低下する。bが0.3
を上回ると、耐食性が低下してサイクル寿命が短くな
る。cが0.1を下回ると、AB2 形以外の相が形成さ
れて、水素吸蔵量が低下し容量が低下する。cが0.3
2を上回ると、耐食性が低下してサイクル寿命が短くな
る。
The hydrogen storage alloy of the present invention suppresses the formation of an oxide film on the surface without using a coating or mixture,
Poisoning due to atmospheric oxygen can be prevented. Therefore, it is possible to suppress the decrease in discharge capacity during high rate discharge of the battery without decreasing the energy density per volume and weight of the electrode. Further, according to the present invention, Zr, Ni, B, S
By optimizing the amount of i, the corrosion resistance of the hydrogen storage alloy can be increased and the cycle life of the battery can be extended. It is considered that this is due to the following reasons. Generally, many elements of A site and B site that form an alloy having a Laves phase structure of AB 2 type are 1.25 to 1.6.
It has an atomic radius of 2 Å. And
The interatomic distance of the hydrogen storage alloy is determined by the atomic radii of these elements. Boron or silicon has an atomic radius of 1.2
Since the specific gravity is less than 5 angstrom and the melting point is low, when the amount of boron (B) or silicon (Si) in the range of the present invention is contained in the hydrogen storage alloy, Zr
The lattice radius of the Laves phase structure of the hydrogen storage alloy is disordered at the atomic level. As a result, it has a structure close to amorphous when viewed microscopically. Therefore, it is possible to suppress the formation of an oxide film on the surface of the Zr-based hydrogen storage alloy.
By setting the ranges of X, α, β, a, b, and c to the ranges of the present invention, it is possible to suppress a decrease in discharge capacity during high rate discharge of the battery and extend the cycle life. When X exceeds 0.9, the crystal lattice volume becomes small, the hydrogen storage amount decreases, and the capacity decreases. When α is less than 1.5 or more than 2.5, phases other than AB 2 type are formed, the hydrogen storage amount is reduced, and the capacity is reduced. When β exceeds 0.3, B and Si are precipitated and the capacity is reduced. When a is less than 0.4, the corrosion resistance is reduced and the cycle life is shortened. When a exceeds 0.7, the contents of Mn and V in the alloy decrease, so that the hydrogen storage amount decreases and the capacity decreases. When b is less than 0.1, a phase other than AB 2 type is formed, and the hydrogen storage amount is reduced and the capacity is reduced. b is 0.3
If it exceeds, the corrosion resistance is lowered and the cycle life is shortened. If c is less than 0.1, a phase other than AB 2 type is formed, and the hydrogen storage amount is reduced and the capacity is reduced. c is 0.3
If it exceeds 2, corrosion resistance is lowered and cycle life is shortened.

【0011】またAB5 形の水素吸蔵合金ではあるが、
特開平3−280357号公報に示すように水素吸蔵合
金中にホウ素を含有させた水素吸蔵合金電極が提案され
ている。この種の水素吸蔵合金電極では、含有されてい
るホウ素が析出された形で存在し、電池の充電初期に水
素吸蔵合金にクラックが発生して、合金の比表面積が増
大する。そのため、電解液の合金内への浸透が容易にな
り、初期放電容量が高くなる。この技術をAB2 形水素
吸蔵合金に適用して、AB2 形水素吸蔵合金にホウ素を
含有させると、AB5 形とは異なり、充放電サイクルを
10サイクル程度繰り返しても合金に亀裂は認められな
いが、充放電サイクル初期から活性且つ高率放電時に高
容量な水素吸蔵合金が得られる。
Although it is an AB 5 type hydrogen storage alloy,
As disclosed in JP-A-3-280357, a hydrogen storage alloy electrode in which boron is contained in a hydrogen storage alloy has been proposed. In this type of hydrogen storage alloy electrode, the contained boron is present in a deposited form, cracks occur in the hydrogen storage alloy at the beginning of battery charging, and the specific surface area of the alloy increases. Therefore, the electrolytic solution can easily penetrate into the alloy, and the initial discharge capacity can be increased. This technique is applied to AB 2 form hydrogen-absorbing alloy, the inclusion of boron AB 2 form hydrogen-absorbing alloy, unlike the AB 5 form, crack was observed in the alloy even after repeated charge-discharge cycles 10 cycles Although not present, a hydrogen storage alloy having an active capacity and a high capacity at the time of high rate discharge can be obtained from the beginning of the charge / discharge cycle.

【0012】[0012]

【実施例】市販のジルコニウム(Zr)、チタン(T
i)、ニッケル(Ni)、バナジウム(V)、マンガン
(Mn)、鉄(Fe)、ホウ素(B)、ケイ素(Si)
を所定量秤量し、これを真空アーク溶解炉内に配置され
た銅製るつぼに入れた。そして、真空アーク溶解炉内を
99.99%アルゴン雰囲気とした状態で金属を加熱溶
解し、下記の表1に示す実施例1〜19及び比較例1〜
15のLaves相構造を有するボタン状合金塊をそれ
ぞれ約40g作成した。そしてこれらの合金塊を粉砕し
て200メッシュの網目を通過する水素吸蔵合金粉末を
作った。次に各水素吸蔵合金を1.0重量%のポリビニ
ルアルコールの水溶液と共に混練し、ペーストをそれぞ
れ作った。そして、各ペーストを発泡ニッケル基板に充
填した後に乾燥し、0.4mmの厚みまでプレスして水素
吸蔵合金電極(負極)をそれぞれ作った。なお水素吸蔵
合金電極中の水素吸蔵合金粉末の重量は各々1.0gで
ある。次に各水素吸蔵合金電極(負極)と水酸化ニッケ
ルを活物質とする公知のニッケル電極(正極)とをナイ
ロン製のセパレータを介して積層し、セパレータに30
重量%の水酸化カリウム水溶液からなる電解液を含浸さ
せて開放型の試験用アルカリ蓄電池をそれぞれ作った。
EXAMPLES Commercially available zirconium (Zr), titanium (T
i), nickel (Ni), vanadium (V), manganese (Mn), iron (Fe), boron (B), silicon (Si)
Was weighed in a predetermined amount and put in a copper crucible arranged in a vacuum arc melting furnace. Then, the metal was heated and melted in a vacuum arc melting furnace in a 99.99% argon atmosphere, and Examples 1 to 19 and Comparative Examples 1 to 1 shown in Table 1 below.
About 40 g of button-shaped alloy ingots each having 15 Laves phase structure were prepared. Then, these alloy lumps were pulverized to prepare a hydrogen storage alloy powder that passed through a 200 mesh mesh. Next, each hydrogen storage alloy was kneaded with an aqueous solution of 1.0% by weight of polyvinyl alcohol to prepare pastes. Then, each paste was filled in a foamed nickel substrate, dried, and pressed to a thickness of 0.4 mm to form a hydrogen storage alloy electrode (negative electrode). The weight of the hydrogen storage alloy powder in the hydrogen storage alloy electrode was 1.0 g each. Next, each hydrogen storage alloy electrode (negative electrode) and a known nickel electrode (positive electrode) using nickel hydroxide as an active material are laminated via a nylon separator, and the separator is filled with 30
Each of the open type alkaline storage batteries for test was made by impregnating with an electrolytic solution composed of an aqueous solution of potassium hydroxide of wt%.

【0013】これらの試験用アルカリ蓄電池を100mA
/g、200mA/g、500mA/gの電流でそれぞれ放電して
放電容量を求めた。また各電池に120mAで5時間充
電した後に終止電圧1.0Vまで100mA/gで放電する
充放電を繰り返して各電池が寿命に至るサイクル回数を
測定した。表2はその測定結果を示している。なお表2
には各電池の水素吸蔵合金の組成式Zr1-X TiX Ni
MnFe(1-a-b-c) αβにおけるX、
α、β、a、b、cの数値も合わせて記載した。
[0013] These test alkaline storage batteries 100mA
The discharge capacity was determined by discharging at currents of / g, 200 mA / g, and 500 mA / g. In addition, each battery was charged at 120 mA for 5 hours and then repeatedly charged and discharged at a final voltage of 1.0 V at 100 mA / g to measure the number of cycles at which each battery reached the end of its life. Table 2 shows the measurement results. Table 2
Is the composition formula of the hydrogen storage alloy of each battery Zr 1-X Ti X Ni
X in V Mn Fe (1-abc) α R β ,
Numerical values of α, β, a, b, and c are also shown.

【0014】[0014]

【表1】 [Table 1]

【表2】 表2より組成式Zr1-X TiX NiMn
Fe(1-a-b-c) αβのXが0.9を超える比較例2の
水素吸蔵合金を用いると、200mA/g放電電流時に求め
られる放電容量(200 mAh/g)を著しく下回るのが分
る。したがって、ZrのTi置換量Xは0.9以下にす
る必要がある。また、aが0.4を下回る比較例3の水
素吸蔵合金を用いるとサイクル寿命が短くなるのが分
る。そしてaが0.7を上回る比較例4の水素吸蔵合金
を用いると放電容量が低下するのが分る。したがって、
Niの置換量aは0.4≦a≦0.7にする必要があ
る。またbが0.3を上回る比較例5の水素吸蔵合金を
用いるとサイクル寿命が短くなるのが分る。そしてbが
0.1を下回る比較例6の水素吸蔵合金を用いると放電
容量が低下するのが分る。したがって、Vの置換量bは
0.1≦b≦0.3にする必要がある。またcが0.3
2を上回る比較例7の水素吸蔵合金を用いるとサイクル
寿命が短くなるのが分る。そしてcが0.1を下回る比
較例8の水素吸蔵合金を用いると放電容量が低下するの
が分る。したがって、Mnの置換量cは0.1≦c≦
0.32にする必要がある。またαが1.5を下回る比
較例9の水素吸蔵合金を用いると放電容量が低下するの
が分る。そしてαが2.5を上回る比較例10の水素吸
蔵合金を用いると放電容量が低下し、結果として重量あ
たりの放電容量が小さくなるのが分る。したがって、α
の値は1.5≦α≦2.5にする必要がある。
[Table 2] From Table 2, the composition formula Zr 1-X Ti X Ni V Mn
When the hydrogen storage alloy of Comparative Example 2 in which X of Fe (1-abc) α R β exceeds 0.9 is used, the discharge capacity (200 mAh / g) required at a discharge current of 200 mA / g is significantly lower. It Therefore, the Ti substitution amount X of Zr needs to be 0.9 or less. Further, it can be seen that the cycle life is shortened when the hydrogen storage alloy of Comparative Example 3 in which a is less than 0.4 is used. It can be seen that when the hydrogen storage alloy of Comparative Example 4 in which a exceeds 0.7 is used, the discharge capacity decreases. Therefore,
The substitution amount a of Ni must be 0.4 ≦ a ≦ 0.7. Further, it can be seen that the cycle life is shortened when the hydrogen storage alloy of Comparative Example 5 in which b exceeds 0.3 is used. It can be seen that the discharge capacity decreases when the hydrogen storage alloy of Comparative Example 6 in which b is less than 0.1 is used. Therefore, the substitution amount b of V needs to be 0.1 ≦ b ≦ 0.3. Also, c is 0.3
It can be seen that the cycle life is shortened when the hydrogen storage alloy of Comparative Example 7 exceeding 2 is used. It can be seen that the discharge capacity decreases when the hydrogen storage alloy of Comparative Example 8 in which c is less than 0.1 is used. Therefore, the substitution amount c of Mn is 0.1 ≦ c ≦
It should be 0.32. Further, it can be seen that the discharge capacity decreases when the hydrogen storage alloy of Comparative Example 9 in which α is less than 1.5 is used. It can be seen that when the hydrogen storage alloy of Comparative Example 10 in which α exceeds 2.5 is used, the discharge capacity decreases, and as a result, the discharge capacity per weight decreases. Therefore, α
The value of must be 1.5 ≦ α ≦ 2.5.

【0015】次に実施例3の水素吸蔵合金(ホウ素を含
む水素吸蔵合金)を用いた電池と、比較例11の水素吸
蔵合金(ホウ素を含まない水素吸蔵合金)を用いた電池
とをそれぞれ電流量(放電レート)を変えて放電し、各
電池の放電容量の変化を調べた。なお実施例3の水素吸
蔵合金と比較例11の水素吸蔵合金とはホウ素を除いて
はほぼ同じような組成を有している。図1はその測定結
果を示している。本図より、ホウ素を含む水素吸蔵合金
(実施例3)を用いると、放電電流を大きくしても電池
の放電容量が大きく低下しないのに対して、ホウ素を含
んでいない水素吸蔵合金(比較例11)を用いると放電
電流が大きくなるにしたがい、電池の放電容量が著しく
低下するのが分る。
Next, a battery using the hydrogen storage alloy of Example 3 (hydrogen storage alloy containing boron) and a battery using the hydrogen storage alloy of Comparative Example 11 (hydrogen storage alloy not containing boron) were respectively subjected to electric current. The discharge was performed while changing the amount (discharge rate), and the change in the discharge capacity of each battery was examined. The hydrogen storage alloy of Example 3 and the hydrogen storage alloy of Comparative Example 11 have almost the same composition except for boron. FIG. 1 shows the measurement result. From this figure, when the hydrogen storage alloy containing boron (Example 3) was used, the discharge capacity of the battery did not decrease significantly even when the discharge current was increased, whereas the hydrogen storage alloy containing no boron (Comparative Example). It can be seen that when 11) is used, the discharge capacity of the battery decreases remarkably as the discharge current increases.

【0016】次にホウ素(B)の置換量βが0〜0.5
モルの範囲で異なり、その他はほぼ同じような組成(Z
0.5Ti 0.5Ni 1.1−β 0.5Mn 0.2Fe 0.2
β)を有する実施例4〜8,比較例1,比較例12の各
水素吸蔵合金を用いた電池を500mA/gの電流で放
電した。そして、各電池の放電容量を測定して、ホウ素
(B)の置換量βによる電池の放電容量の変化を調べ
た。図2はその測定結果を示している。本図より、ホウ
素を含まない水素吸蔵合金(β=0)では、放電容量が
70mAh/gであるのに対して、ホウ素を0.001
モル含ませるだけで放電容量が飛躍的に増加(135m
Ah/g)するのが分る。そして、ホウ素の含有量が
0.05モルまで放電容量が増加して、0.05モルを
超えると放電容量が減少し、ホウ素の含有量が0.3モ
ルを超えると、ホウ素を含まない水素吸蔵合金を用いた
電池とほぼ同じ放電容量にまで低下するのが分る。
Next, the substitution amount β of boron (B) is 0 to 0.5.
The composition is the same (Z
r 0.5 Ti 0.5 Ni 1.1-β V 0.5 Mn 0.2 Fe 0.2 B
Batteries using the hydrogen storage alloys of Examples 4 to 8, Comparative Examples 1 and 12 having β ) were discharged at a current of 500 mA / g. Then, the discharge capacity of each battery was measured to examine the change in the discharge capacity of the battery depending on the substitution amount β of boron (B). FIG. 2 shows the measurement result. From this figure, in the hydrogen storage alloy containing no boron (β = 0), the discharge capacity was 70 mAh / g, while the content of boron was 0.001.
The discharge capacity increases dramatically (135m
Ah / g). When the content of boron increases to 0.05 mol, the discharge capacity increases, and when it exceeds 0.05 mol, the discharge capacity decreases, and when the content of boron exceeds 0.3 mol, hydrogen containing no boron is contained. It can be seen that the discharge capacity is reduced to almost the same as that of the battery using the storage alloy.

【0017】次にケイ素(Si)の置換量βが0〜0.
3モルの範囲で異なり、その他はほぼ同じような組成
(Zr 0.5Ti 0.5Ni 1.1−β 0.5Mn 0.2Fe
0.2Siβ)を有する実施例12〜16,比較例12の
各水素吸蔵合金を用いた電池を500mA/gの電流で
放電した。そして、各電池の放電容量を測定して、ケイ
素(Si)の置換量βによる電池の放電容量の変化を調
べた。図3はその測定結果を示している。本図より、ケ
イ素を含まない水素吸蔵合金(β=0)では、放電容量
が70mAh/gであるのに対して、ケイ素を0.00
1モル含ませるだけで放電容量が飛躍的に増加(120
mAh/g)するのが分る。そして、ホウ素の含有量が
0.01モルまで放電容量が増加して、0.01モルを
超えると放電容量が減少し、ホウ素の含有量が0.3モ
ルを超えると、ホウ素を含まない水素吸蔵合金を用いた
電池とほぼ同じ放電容量にまで低下するのが分る。した
がって、図1〜3よりβの範囲は0<β≦0.3とする
必要がある。
Next, the substitution amount β of silicon (Si) is 0 to 0.
The composition is different in the range of 3 mol, and the other is almost the same composition (Zr 0.5 Ti 0.5 Ni 1.1-β V 0.5 Mn 0.2 Fe
Examples 12 to 16 with a 0.2 Si beta), a battery using the hydrogen storage alloy of Comparative Example 12 was discharged at 500mA / g of current. Then, the discharge capacity of each battery was measured to examine the change in the discharge capacity of the battery depending on the substitution amount β of silicon (Si). FIG. 3 shows the measurement result. From the figure, it can be seen that the hydrogen storage alloy containing no silicon (β = 0) has a discharge capacity of 70 mAh / g, while the discharge capacity of silicon is 0.00
The discharge capacity dramatically increases by only including 1 mole (120
mAh / g). Then, the discharge capacity increases up to a content of 0.01 mol of boron, the discharge capacity decreases when the content of boron exceeds 0.01 mol, and the hydrogen does not contain boron when the content of boron exceeds 0.3 mol. It can be seen that the discharge capacity is reduced to almost the same as that of the battery using the storage alloy. Therefore, according to FIGS. 1 to 3, the range of β needs to be 0 <β ≦ 0.3.

【0018】[0018]

【発明の効果】本発明の水素吸蔵合金によれば、被覆物
や混合物を用いることなく、表面の酸化膜の生成を抑制
して、大気中の酸素による被毒を防ぐことができる。そ
のため、電極の体積及び重量あたりのエネルギー密度を
低下させることなく、電池の高率放電時の放電容量の低
下を抑制できる。また本発明によれば、Zr、Ni、
B,Siの量を適正化させることにより、水素吸蔵合金
の耐食性を高めて、電池のサイクル寿命を延ばすことが
できる。
According to the hydrogen storage alloy of the present invention, the formation of an oxide film on the surface can be suppressed and poisoning by oxygen in the atmosphere can be prevented without using a coating or mixture. Therefore, it is possible to suppress the decrease in discharge capacity during high rate discharge of the battery without decreasing the energy density per volume and weight of the electrode. According to the present invention, Zr, Ni,
By optimizing the amounts of B and Si, the corrosion resistance of the hydrogen storage alloy can be enhanced and the cycle life of the battery can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ホウ素を含む水素吸蔵合金を用いた電池と、
ホウ素を含まない水素吸蔵合金を用いた電池との電流量
(放電レート)による放電容量の変化の違いを示す図で
ある。
FIG. 1 is a battery using a hydrogen storage alloy containing boron,
It is a figure which shows the difference of the change of discharge capacity with the amount of current (discharge rate) with the battery using the hydrogen storage alloy which does not contain boron.

【図2】 ホウ素(B)の置換量βによる電池の放電容
量の変化を示す図である。
FIG. 2 is a diagram showing a change in discharge capacity of a battery depending on a substitution amount β of boron (B).

【図3】 ケイ素(Si)の置換量βによる電池の放電
容量の変化を示す図である。
FIG. 3 is a diagram showing a change in discharge capacity of a battery depending on a substitution amount β of silicon (Si).

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年6月29日[Submission date] June 29, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Name of item to be amended] Title of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の名称】 水素吸蔵合金及びアルカリ蓄電池用水
素吸蔵合金電極
Title: Hydrogen storage alloy and hydrogen storage alloy electrode for alkaline storage battery

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

フロントページの続き (72)発明者 石井 裕治 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 堀場 達雄 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 井川 享子 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 谷越 祥子 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内Front page continuation (72) Inventor Yuji Ishii 2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo Within Shinjin Todenki Co., Ltd. Hitachi Ltd., Hitachi Research Laboratory (72) Inventor, Keiko Igawa, 7-1, 1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd., Hitachi Research Laboratory, (72) Inventor, Shoko Tanikoshi, 7-chome, Omika-cho, Hitachi City, Ibaraki No. 1 in Hitachi, Ltd. Hitachi Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 組成式Zr1-X TiX Ni
Fe(1-a-b-c) αβで表され、 前記RはB、Siのうちの少なくとも1種であり、 前記Xの範囲は0≦X≦0.9であり、前記αの範囲は
1.5≦α≦2.5であり、前記βの範囲は0<β≦
0.3であり、 前記a、b、cの範囲はそれぞれ0.4≦a≦0.7、
0.1≦b≦0.3、0.1≦c≦0.32であること
を特徴とする請求項1に記載の水素吸蔵合金。
1. A composition formula Zr 1-X Ti X Ni V M
n C α Fe (1-abc) α R β, where R is at least one of B and Si, the range of X is 0 ≦ X ≦ 0.9, and the range of α is 1.5 ≦ α ≦ 2.5, and the range of β is 0 <β ≦
0.3, and the ranges of a, b, and c are 0.4 ≦ a ≦ 0.7,
The hydrogen storage alloy according to claim 1, wherein 0.1 ≦ b ≦ 0.3 and 0.1 ≦ c ≦ 0.32.
【請求項2】 請求項1に記載の水素吸蔵合金を用いる
ことを特徴とするアルカリ蓄電池用水素吸蔵合金電極。
2. A hydrogen storage alloy electrode for an alkaline storage battery, characterized by using the hydrogen storage alloy according to claim 1.
JP6277521A 1994-11-11 1994-11-11 Hydrogen storage alloy and hydrogen storage alloy electrode for alkali battery Withdrawn JPH08134567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6277521A JPH08134567A (en) 1994-11-11 1994-11-11 Hydrogen storage alloy and hydrogen storage alloy electrode for alkali battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6277521A JPH08134567A (en) 1994-11-11 1994-11-11 Hydrogen storage alloy and hydrogen storage alloy electrode for alkali battery

Publications (1)

Publication Number Publication Date
JPH08134567A true JPH08134567A (en) 1996-05-28

Family

ID=17584753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6277521A Withdrawn JPH08134567A (en) 1994-11-11 1994-11-11 Hydrogen storage alloy and hydrogen storage alloy electrode for alkali battery

Country Status (1)

Country Link
JP (1) JPH08134567A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030392A2 (en) * 1999-02-17 2000-08-23 Matsushita Electric Industrial Co., Ltd. Hydrogene storage alloy electrode and method for manufacturing the same
JP2006161082A (en) * 2004-12-03 2006-06-22 Ishifuku Metal Ind Co Ltd Sputtering target manufacturing method
CN104903479A (en) * 2012-11-16 2015-09-09 巴斯夫电池材料公司 A hydrogen storage alloy and negative electrode and ni-metal hydride battery employing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030392A2 (en) * 1999-02-17 2000-08-23 Matsushita Electric Industrial Co., Ltd. Hydrogene storage alloy electrode and method for manufacturing the same
EP1030392A3 (en) * 1999-02-17 2002-07-31 Matsushita Electric Industrial Co., Ltd. Hydrogene storage alloy electrode and method for manufacturing the same
JP2006161082A (en) * 2004-12-03 2006-06-22 Ishifuku Metal Ind Co Ltd Sputtering target manufacturing method
CN104903479A (en) * 2012-11-16 2015-09-09 巴斯夫电池材料公司 A hydrogen storage alloy and negative electrode and ni-metal hydride battery employing same

Similar Documents

Publication Publication Date Title
US20070259264A1 (en) Hydrogen absorbing alloy and secondary battery
EP0450590B2 (en) Hydrogen storage alloy electrode and process for producing the electrode
JPH06231763A (en) Hydrogen storage alloy for alkaline storage battery
JPS6191863A (en) Sealed alkaline storage battery
US5389333A (en) Hydrogen storage alloys
JPH0821379B2 (en) Hydrogen storage electrode
EP0621647B1 (en) Hydrogen storage alloy and electrode therefrom
JP3381264B2 (en) Hydrogen storage alloy electrode
JPH08134567A (en) Hydrogen storage alloy and hydrogen storage alloy electrode for alkali battery
JP3861788B2 (en) Hydrogen storage alloy powder, hydrogen storage alloy electrode and nickel metal hydride storage battery using the same.
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2983426B2 (en) Production method and electrode for hydrogen storage alloy
JPH0650634B2 (en) Hydrogen storage electrode
JP2962814B2 (en) Hydrogen storage alloy electrode
CN1065353A (en) The hydrogen-storage alloy that is used for secondary battery negative pole
JPS63164161A (en) Enclosed-type alkaline storage battery
JPH0949034A (en) Production of hydrogen storage alloy
JPH1129832A (en) Hydrogen storage material
JP3470987B2 (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP4601754B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP3653399B2 (en) Hydrogen storage alloy electrode and metal-hydride alkaline storage battery using the same
JPH04187733A (en) Hydrogen storage alloy electrode
JPH06145849A (en) Hydrogen storage alloy electrode
JP2989356B2 (en) Hydrogen storage alloy electrode
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115