JPH08134520A - Device for discharging and carrying powdery and granular body - Google Patents

Device for discharging and carrying powdery and granular body

Info

Publication number
JPH08134520A
JPH08134520A JP27379794A JP27379794A JPH08134520A JP H08134520 A JPH08134520 A JP H08134520A JP 27379794 A JP27379794 A JP 27379794A JP 27379794 A JP27379794 A JP 27379794A JP H08134520 A JPH08134520 A JP H08134520A
Authority
JP
Japan
Prior art keywords
pressure
valve
iron ore
reduction furnace
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27379794A
Other languages
Japanese (ja)
Other versions
JP3223727B2 (en
Inventor
Shinichi Isozaki
進市 磯崎
Shinichiro Sakai
伸一郎 坂井
Masayuki Watabe
雅之 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP27379794A priority Critical patent/JP3223727B2/en
Publication of JPH08134520A publication Critical patent/JPH08134520A/en
Application granted granted Critical
Publication of JP3223727B2 publication Critical patent/JP3223727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To stabilize the control of discharging quantity of an L valve by regulating the pressure difference between the pressures on the upstream side and on the downstream side of the L valve to zero. CONSTITUTION: A pressure equalizing pipe 6 for connecting the front side and the rear side of the L valve 7 is arranged and an exhausting pressure regulating device 5 is arranged in the pressure equalizing pipe 6 to regulate the pressure difference between the pressure P2 on the upstream side and the pressure P1 on the downstream side of the L valve 7. By this method, in a smelting reduction furnace, there is such an effect that the pre-reduced ore can stably be taken out from a pre-reduction furnace 32, and the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、粉粒体切出し移送装
置に関するもので、特に予備還元された鉱石を予備還元
炉から安定的に抜き出しするために好適な粉粒体切出し
移送装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder and granular material cutting and transferring device, and more particularly to a powder and granular material cutting and transferring device suitable for stably extracting pre-reduced ore from a pre-reduction furnace. is there.

【0002】[0002]

【従来の技術】図3は特開平1−149912号公報に
よって提案された従来の鉄鉱石の溶融還元設備の一例を
示した説明図である。図において符号31は溶融還元炉
であり、流動層形式の予備還元炉32と共にこの溶融還
元設備を構成している。この溶融還元設備においては、
鉄鉱石はまず予備還元炉32に装入され、予熱および予
備還元された後、溶融還元炉31に供給される。
2. Description of the Related Art FIG. 3 is an explanatory diagram showing an example of a conventional smelting reduction equipment for iron ore proposed by Japanese Patent Laid-Open No. 1-149912. In the figure, reference numeral 31 is a smelting reduction furnace, which constitutes this smelting reduction equipment together with a fluidized bed type preliminary reduction furnace 32. In this smelting reduction equipment,
The iron ore is first charged into the preliminary reduction furnace 32, preheated and preliminarily reduced, and then supplied to the smelting reduction furnace 31.

【0003】溶融還元炉31においては、予備還元され
た鉄鉱石の他に石炭や石灰が装入されるとともに、酸素
が吹き込まれ、鉄鉱石は溶融還元されて溶銑となる。次
いで溶融還元炉31で発生する還元性の高温ガスは、除
塵装置30で除塵された後、予備還元炉32へ導入さ
れ、鉄鉱石の予熱および予備還元に使用される。
In the smelting reduction furnace 31, coal and lime are charged in addition to the pre-reduced iron ore, and oxygen is blown in, and the iron ore is smelt-reduced to become hot metal. Next, the reducing high-temperature gas generated in the smelting reduction furnace 31 is dedusted by the dust remover 30, then introduced into the preliminary reduction furnace 32, and used for preheating and preliminary reduction of iron ore.

【0004】この種の技術においては、一般的には図4
に示す様な予備還元炉が使用されている。図3及び図4
に示す様に、予備還元炉32はその内部にガス噴出用の
多数のガス通孔である分散板ノズル33を有する分散板
34を備えており、この分散板34の上方に形成される
予備還元室35に鉄鉱石が装入され、分散板34の下方
のガス吹込み室である風箱36に溶融還元炉31から還
元ガスである排ガスが導入される。この還元ガスは、分
散板34の分散板ノズル33を通じて上方の予備還元室
35に吹き出され、これにより流動層37が形成され、
鉄鉱石の予熱および予備還元がなされる。
In this type of technology, FIG.
A pre-reduction furnace such as that shown in is used. 3 and 4
As shown in FIG. 3, the preliminary reduction furnace 32 is provided with a dispersion plate 34 having a dispersion plate nozzle 33, which is a large number of gas passage holes for ejecting gas, inside the preliminary reduction furnace 32. Iron ore is charged into the chamber 35, and exhaust gas, which is a reducing gas, is introduced from the smelting reduction furnace 31 into a wind box 36, which is a gas blowing chamber below the dispersion plate 34. This reducing gas is blown out to the upper preliminary reducing chamber 35 through the dispersion plate nozzle 33 of the dispersion plate 34, whereby a fluidized bed 37 is formed,
The iron ore is preheated and pre-reduced.

【0005】この設備では、予備還元炉32において予
熱および予備還元された高温の粉状鉄鉱石のうち、粒径
が約0.3 mm以下の微粒鉄鉱石は分級され、フリーボード
部9を上昇して、矢印Fに従って系外に排出される。こ
れに対し、それよりも粒径が大きい所謂粗粒鉄鉱石は流
動層37を形成し、そのままでは予備還元炉32内に止
まるので、粗粒鉄鉱石抜出し口2を設けて矢印Cに従っ
て何らかの方法および装置によって定量的に炉外に排出
する必要がある。
In this equipment, of the high temperature powdery iron ore preheated and prereduced in the preliminary reduction furnace 32, the fine iron ore having a particle size of about 0.3 mm or less is classified and the freeboard part 9 is raised. , And is discharged to the outside of the system according to arrow F. On the other hand, a so-called coarse iron ore having a larger particle size than that forms a fluidized bed 37 and remains in the pre-reduction furnace 32 as it is. And it is necessary to quantitatively discharge it out of the furnace by the device.

【0006】その一つの方法として、排出口を流動層3
7上部に設置して、オーバーフローする粗粒鉄鉱石を炉
外に排出する方式がある。
As one of the methods, the fluidized bed 3 is provided at the outlet.
7 There is a method of installing coarse iron ore that overflows outside the furnace.

【0007】ところで、予備還元炉32に供給される鉄
鉱石及びクローム鉱石等の鉱石は、粒径が約 8mm以下の
所謂シンターフィールドと呼ばれる焼結原料用鉄鉱石等
であるが、一部に粒径が約20mm〜約30mmの大粒径の鉄鉱
石等も存在する。大粒径の鉄鉱石等は流動化がやや不活
発であり、流動層37の底部に溜まり易い傾向があるた
め、オーバーフロー方式では、このような粗大鉄鉱石等
を系外にスムーズに排出することは難しい。系外に排出
されずに、流動層37の底部に滞留した鉄鉱石等は、還
元ガスによって還元が進む結果、金属鉄等が生成され、
炉内で鉄鉱石等のスティッキングを生じ、塊状となっ
て、流動層37内の安定した流動化を阻害し、最終的に
は予備還元炉32の安定操業が不可能になる。このた
め、粗大鉄鉱石等の系外への排出を容易にするために、
粗大鉄鉱石等の流動層37の底部から安定的に連続して
排出する必要があり、何らかの定量排出装置が必要とな
る。
By the way, the ore such as iron ore and chrome ore supplied to the preliminary reduction furnace 32 is an iron ore for sintering raw material called so-called sintering field having a particle size of about 8 mm or less. There is also iron ore with a large particle diameter of about 20 mm to about 30 mm. Since fluidization of large-sized iron ore and the like is slightly inactive and tends to accumulate at the bottom of the fluidized bed 37, in the overflow method, such coarse iron ore and the like should be smoothly discharged out of the system. Is difficult Iron ore and the like retained at the bottom of the fluidized bed 37 without being discharged to the outside of the system are reduced by the reducing gas, and as a result, metallic iron or the like is generated,
Sticking of iron ore or the like occurs in the furnace to form a lump, which hinders stable fluidization in the fluidized bed 37, and eventually stable operation of the preliminary reduction furnace 32 becomes impossible. Therefore, in order to facilitate the discharge of coarse iron ore etc. out of the system,
It is necessary to stably and continuously discharge coarse iron ore or the like from the bottom of the fluidized bed 37, and some quantitative discharging device is required.

【0008】このような粉粒体の移送装置としては、構
造の簡易性、粉粒体温度の低下防止、トラブル発生時の
対処のし易さ等の面から、気体を用いて粉粒体を移送す
る、所謂気送式粉粒体移送装置を用いることが好まし
く、従って溶融還元設備の予備還元炉からの鉱石排出用
に採用されている。
As such a powdery or granular material transferring device, from the viewpoints of simplicity of structure, prevention of lowering of the temperature of the powdery or granular material, easiness of coping with occurrence of trouble, etc. It is preferable to use a so-called pneumatic transfer type granular material transfer device for transferring, and therefore, it is adopted for discharging ore from the preliminary reduction furnace of the smelting reduction equipment.

【0009】これら気送式粉粒体移送装置の要部にしば
しば適用される一形式としてLバルブが知られている。
図5は前記Lバルブの竪断面図である。図において符号
7はLバルブであり、垂直管であるスタンドパイプ3
と、このスタンドパイプ3の下端に連接される水平管2
2とから構成されている。スタンドパイプ3の下部に窒
素、空気などの気体をエアレーション装置23から吹き
込むことにより、粉粒体を定量切り出すものである。
An L valve is known as a type that is often applied to the essential parts of these pneumatic conveying type powder and granular material conveying devices.
FIG. 5 is a vertical sectional view of the L valve. In the figure, reference numeral 7 is an L valve, which is a vertical pipe stand pipe 3
And the horizontal pipe 2 connected to the lower end of the stand pipe 3.
2 and. A gas such as nitrogen or air is blown into the lower portion of the stand pipe 3 from the aeration device 23 to quantitatively cut out the granular material.

【0010】[0010]

【発明が解決しようとする課題】しかし、このような従
来のLバルブ7では、Lバルブ7の前後で圧力差がある
と、切り出し性能が悪化する。即ち、下流側の圧力P1
より上流側の圧力P2が低いと、低圧部分から高圧部分
へ粉粒鉄鉱石等を切り出すことになり、粉粒鉄鉱石等に
逆圧が働いてエアレーション装置23に必要なガス量が
増大する。又、逆に下流側の圧力P1に較べて上流側の
圧力P2が高いと、粉粒鉄鉱石等が流れ易くなり、エア
レーション装置23に使用するガス量が少なくても、L
バルブ7の上流側からエアレーションガス以外の雰囲気
ガスを巻き込んで、粉粒鉄鉱石等切り出し量が異常に高
くなるという所謂流れ込みの現象が発生する。そして、
更にはエアレーションガスを切っても粉粒鉄鉱石等切り
出しが停止し難いという状況が生じる。
However, in such a conventional L valve 7, if there is a pressure difference before and after the L valve 7, the cutting performance deteriorates. That is, the downstream pressure P1
When the pressure P2 on the more upstream side is low, the powdery iron ore or the like is cut out from the low pressure portion to the high pressure portion, and a reverse pressure acts on the powdery iron ore or the like to increase the amount of gas required for the aeration device 23. On the contrary, when the pressure P2 on the upstream side is higher than the pressure P1 on the downstream side, it becomes easier for the granular iron ore or the like to flow, and even if the gas amount used in the aeration device 23 is small, L
When a gas other than the aeration gas is introduced from the upstream side of the valve 7, a so-called inflow phenomenon occurs in which the amount of cut out of iron ore powder or the like becomes abnormally high. And
Furthermore, even if the aeration gas is cut, it is difficult to stop the cutting of the powdered iron ore or the like.

【0011】このためにLバルブ7を用いて予備還元炉
32の流動層37の底部から切り出して排出する場合に
おいて、切り出し性能の安定確保のために、Lバルブ7
の上流側と下流側の圧力差をなくすために均圧管6を設
けることが考えられる。この場合には均圧管6の一端は
Lバルブ7の排出側に、他端はLバルブ7の抜き出し口
付近に接続する必要があるが、均圧管6をLバルブ7の
抜き出し口付近に接続すると、予備還元炉32内の粉粒
鉄鉱石等が均圧管6に詰まり、閉塞が生じるために現実
には均圧管6に粉粒鉄鉱石等が入らないように、図5に
示す様に流動層37の高さに較べても十分に高い位置で
あるフリーボード部9に均圧管6の端を接続する必要が
ある。
For this reason, when the L valve 7 is used to cut and discharge from the bottom of the fluidized bed 37 of the preliminary reduction furnace 32, the L valve 7 is used to ensure stable cutting performance.
It is conceivable to provide the pressure equalizing pipe 6 in order to eliminate the pressure difference between the upstream side and the downstream side. In this case, one end of the pressure equalizing pipe 6 needs to be connected to the discharge side of the L valve 7 and the other end needs to be connected near the outlet of the L valve 7, but if the pressure equalizing pipe 6 is connected near the outlet of the L valve 7. As shown in FIG. 5, the granular iron ore or the like in the pre-reduction furnace 32 is clogged with the pressure equalizing pipe 6 to cause blockage, so that the granular iron ore or the like does not actually enter the pressure equalizing pipe 6 as shown in FIG. It is necessary to connect the end of the pressure equalizing pipe 6 to the freeboard portion 9 which is sufficiently higher than the height of 37.

【0012】ここにおいて P1 ; Lバルブ7の下流側の圧力 P2 ; Lバルブ7の上流側の圧力 P3 ; フリーボード部9の圧力 ΔPb ; 流動層内圧損 とすると P1=P3,P3=P2−ΔPb , であるから P1=P2−ΔPb ………… (1) となり、Lバルブ7の上流側より、下流側が圧損ΔPb
だけ常に低くなるために、粉粒鉄鉱石等の流れ込みや、
停止性能の低下が生じ、所定の切り出し性能の精度が得
られない。
Here, P1; pressure on the downstream side of the L valve 7; P2; pressure on the upstream side of the L valve 7; pressure on the freeboard section ΔPb; pressure loss in the fluidized bed P1 = P3, P3 = P2-ΔPb , P1 = P2-ΔPb (1) and the pressure loss ΔPb is more downstream than the upstream side of the L valve 7.
Just because it always becomes low, inflow of powdered iron ore, etc.,
The stopping performance is deteriorated, and the predetermined cutout performance accuracy cannot be obtained.

【0013】この発明は、このような問題点を解決する
ためになされたもので、Lバルブの上流側と下流側との
圧力差をなくす装置を提供することを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to provide a device for eliminating the pressure difference between the upstream side and the downstream side of the L valve.

【0014】[0014]

【課題を解決するための手段】この発明に係る粉粒体切
出し移送装置は、スタンドパイプと、スタンドパイプの
下端に連設される水平管と、スタンド下部のガス吹き込
み装置からなるLバルブ方式の切出し移送装置におい
て、Lバルブの前後を結ぶ均圧管を設け、均圧管に排圧
調整装置を設けたことを特徴とする。
A powder and granular material cutting and transferring device according to the present invention is of an L valve type which comprises a stand pipe, a horizontal pipe connected to the lower end of the stand pipe, and a gas blowing device under the stand. The cut-out transfer device is characterized in that a pressure equalizing pipe connecting the front and rear of the L valve is provided, and the pressure equalizing pipe is provided with an exhaust pressure adjusting device.

【0015】[0015]

【作用】Lバルブの上流側と下流側との圧力差は、流動
層内圧損ΔPb にほぼ等しい。ΔPb は予備還元炉内の
鉱石滞留量によって定まるが、鉱石滞留量は予備還元炉
の操業状況によって決まるので、操業中、流動層内圧損
ΔPb は常時変動する。しかし、この流動層内圧損ΔP
b は以下の様にして算出される。
The pressure difference between the upstream side and the downstream side of the L valve is almost equal to the fluidized bed pressure loss ΔPb. ΔPb is determined by the amount of ore retained in the preliminary reduction furnace, but since the amount of ore retained is determined by the operating condition of the preliminary reduction furnace, the pressure loss ΔPb in the fluidized bed constantly fluctuates during operation. However, this pressure loss ΔP in the fluidized bed
b is calculated as follows.

【0016】図5において P4 ; 風箱内圧力 ΔPd ; 分散板での圧損 ΔPt ; 風箱内圧力P4−フリーボード部の圧力P3 とすると ΔPb =(P4−P3)−ΔPd ……… (2) =ΔPt −ΔPd となり、流動層内圧損ΔPb は、測定可能な風箱内圧力
P4とフリーボード部の圧力P3と、溶融還元炉からの
還元ガスの流量及び温度から算出される分散板での圧損
ΔPd とにより求めることができる。
In FIG. 5, P4; pressure in the wind box ΔPd; pressure loss at the dispersion plate ΔPt; pressure in the wind box P4-pressure of the freeboard portion P3 ΔPb = (P4-P3) -ΔPd (2) = ΔPt-ΔPd, and the pressure loss in the fluidized bed ΔPb is the pressure loss in the dispersion plate calculated from the measurable pressure in the wind box P4, the pressure P3 in the freeboard section, and the flow rate and temperature of the reducing gas from the smelting reduction furnace. It can be obtained by ΔPd.

【0017】このようにして測定される流動層内圧損Δ
Pb と同一の値を排圧調整装置にて設定して、Lバルブ
下流側の圧力がフリーボード部圧力に比べ常に流動層内
圧損ΔPb と同一なだけ高くなる様にして、Lバルブの
上流側と下流側との圧力差が零となるように、排圧調整
装置のバルブの開度を変動させることによって、所謂流
れ込状況、又は逆圧の状況が回避される。
The pressure loss Δ in the fluidized bed thus measured
The same value as Pb is set by the exhaust pressure adjusting device so that the pressure on the downstream side of the L valve is always higher than the pressure on the freeboard section by the same amount as the pressure loss ΔPb in the fluidized bed, and the upstream side of the L valve. By changing the opening degree of the valve of the exhaust pressure adjusting device so that the pressure difference between the downstream side and the downstream side becomes zero, a so-called flow-in situation or a reverse pressure situation is avoided.

【0018】[0018]

【実施例】図1はこの発明の一実施例を示すLバルブの
近傍の竪断面図である。図に示す様に予備還元炉32に
おいて還元された粉粒鉄鉱石等は、粗粒鉄鉱石抜出し口
2を通過してLバルブ7によって安定的に定量抜き出さ
れて、粗粒鉱石抜出しタンク4に一時貯蔵される。ここ
にLバルブ7の上流側の圧力P2と下流側の圧力P1と
をほぼ等しくする作用を有する均圧管6及び排圧調整装
置5が設けられている。この均圧管6のLバルブ上流側
均圧管端10は予備還元炉32の流動層37の上方のフ
リーボード部9に接合され、Lバルブ下流側均圧管端1
1は粗粒鉱石抜出しタンク4の上部に接合されており、
又、排圧調整装置5は均圧管6の途中に設けられてい
る。風箱内圧力センサー12が風箱36に設けられ、風
箱36内の圧力P4を測定し、又、フリーボード部圧力
センサー13がLバルブ上流側均圧管端10に設けら
れ、フリーボード部の圧力P3を測定している。更に予
備還元炉への還元ガス供給用ダクト38に還元ガスの流
量及び温度を測定する還元ガス流量・温度計14が設置
されている。そして風箱内圧力センサー12、フリーボ
ード部圧力センサー13、及び還元ガス流量・温度計1
4の測定値が制御部15に入力されている。そして制御
部15からの出力は排圧調整装置5に入力されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a vertical sectional view of the vicinity of an L valve showing an embodiment of the present invention. As shown in the figure, the powdery iron ore or the like reduced in the preliminary reduction furnace 32 passes through the coarse iron ore extracting port 2 and is stably extracted quantitatively by the L valve 7, and the coarse ore extracting tank 4 Temporarily stored in. Here, a pressure equalizing pipe 6 and a discharge pressure adjusting device 5 are provided which have an action of making the pressure P2 on the upstream side of the L valve 7 and the pressure P1 on the downstream side substantially equal. The L valve upstream pressure equalizing pipe end 10 of the pressure equalizing pipe 6 is joined to the freeboard portion 9 above the fluidized bed 37 of the preliminary reduction furnace 32, and the L valve downstream side pressure equalizing pipe end 1 is connected.
1 is joined to the upper part of the coarse grain ore extraction tank 4,
Further, the exhaust pressure adjusting device 5 is provided in the middle of the pressure equalizing pipe 6. The wind box internal pressure sensor 12 is provided in the wind box 36 to measure the pressure P4 in the wind box 36, and the freeboard portion pressure sensor 13 is provided at the L valve upstream side equalizing pipe end 10 to provide the freeboard portion of the freeboard portion. The pressure P3 is measured. Further, a reducing gas flow rate / thermometer 14 for measuring the flow rate and temperature of the reducing gas is installed in the reducing gas supply duct 38 to the preliminary reducing furnace. And the air box pressure sensor 12, the freeboard section pressure sensor 13, and the reducing gas flow rate / thermometer 1
The measured value of 4 is input to the control unit 15. The output from the control unit 15 is input to the exhaust pressure adjusting device 5.

【0019】制御部15において、還元ガス流量・温度
計14のガス流量と温度の測定値から、還元ガスの密度
ρ、及び分散板ノズル33における流速uを算出し、分
散板圧損ΔPd を(3)式に従って算出し、この算出し
た分散板圧損ΔPd と測定された風箱36内の圧力P
4、及びフリーボード部9の圧力P3とから、(2)式
に従って流動層内圧損ΔPb を算出する。
The control unit 15 calculates the density ρ of the reducing gas and the flow velocity u at the dispersion plate nozzle 33 from the measured values of the gas flow rate and the temperature of the reducing gas flow rate / thermometer 14, and calculates the dispersion plate pressure loss ΔPd (3 ), The calculated dispersion plate pressure loss ΔPd and the measured pressure P in the wind box 36.
The pressure loss ΔPb in the fluidized bed is calculated from Equation 4 and the pressure P3 of the freeboard portion 9 according to the equation (2).

【0020】 ΔPb =(P4−P3)−ΔPd ……… (2) ΔPd =(ρ/2g)×(u/c)2 ……… (3) 但し ρ:ガス密度 g:重力加速度 u:分散板ノズルでのガス流速 c:係数 この算出された流動層内圧損ΔPb の値を排圧調整装置
5に設定し、排圧調整装置5のバルブ開度を調整して、
Lバルブ7の下流側の圧力P1がフリーボード部9の圧
力P3よりΔPb 高くなる様にして、Lバルブ7の上流
側の圧力P2と下流側の圧力P1との間にある圧力差を
無くする。ここで符号8は圧縮空気配管であり排圧調整
装置5に内蔵するポジショナー等に必要な動力源等を供
給している。
ΔPb = (P4-P3) −ΔPd (2) ΔPd = (ρ / 2g) × (u / c) 2 (3) where ρ: gas density g: gravitational acceleration u: dispersion Gas flow velocity at plate nozzle c: coefficient The calculated value of the pressure loss ΔPb in the fluidized bed is set in the exhaust pressure adjusting device 5, and the valve opening of the exhaust pressure adjusting device 5 is adjusted.
The pressure P1 on the downstream side of the L valve 7 is set to be higher than the pressure P3 on the freeboard portion by ΔPb to eliminate the pressure difference between the pressure P2 on the upstream side of the L valve 7 and the pressure P1 on the downstream side. . Reference numeral 8 is a compressed air pipe, which supplies a power source and the like necessary for a positioner and the like built in the exhaust pressure adjusting device 5.

【0021】Lバルブ7の上流側の圧力P2と下流側の
圧力P1との間に圧力差がある場合には、所謂流れ込み
の状況が発生したり、逆圧が掛かったりする事になる
が、この現象が、上記均圧管6とその途中に設けられた
排圧調整装置5によって回避される。
When there is a pressure difference between the pressure P2 on the upstream side of the L valve 7 and the pressure P1 on the downstream side, a so-called flow-in situation may occur or a back pressure may be applied. This phenomenon is avoided by the pressure equalizing pipe 6 and the exhaust pressure adjusting device 5 provided in the middle thereof.

【0022】図2はこの実施例の効果を示したグラフで
ある。図において、Aは従来の場合を示す曲線で、前記
の所謂流れ込みの状況が発生していることが示されてい
る。Aは粉粒鉄鉱石等の切り出し量が設定値を遙に超え
て制御不能に陥っていることが示されている。Cは本発
明の場合を示す曲線である。Cは粉粒鉄鉱石等の切り出
し量が設定値である10ton/Hrにほぼ制御されていること
が示されている。一方Bは従来の場合の逆圧が掛かって
いる状況のものである。Bも粉粒鉄鉱石等の切り出し量
が設定値に達せず制御不能に陥っていることが示されて
いる。
FIG. 2 is a graph showing the effect of this embodiment. In the figure, A is a curve showing the conventional case, and it is shown that the above-mentioned so-called flow-in situation occurs. In A, it is shown that the cut-out amount of the powdered iron ore and the like far exceeds the set value and falls into uncontrollability. C is a curve showing the case of the present invention. C indicates that the cutout amount of powdered iron ore or the like is controlled to a preset value of 10 ton / hr. On the other hand, B is a situation in which the back pressure is applied in the conventional case. Also in B, it is shown that the cutout amount of the powdered iron ore or the like does not reach the set value and falls out of control.

【0023】又、図1においてはLバルブ7の下流側の
圧力P1とフリーボード部9の圧力P3との間の圧力差
を排圧調整装置5等で調整する機構になっているが、弁
等で構成されている排圧調整装置5等の代わりに固定式
オリフィスを設けても或る程度の効果は得られる。オリ
フィスの直径は、予め想定されるガス量、差圧から決定
する。この場合は操業状況の大きな変動には対処できな
いが、或る程度の差圧変動に対しては、Lバルブ7の安
定切り出し量制御に効果がある。
Further, in FIG. 1, the pressure difference between the pressure P1 on the downstream side of the L valve 7 and the pressure P3 of the freeboard portion 9 is adjusted by the exhaust pressure adjusting device 5 or the like. Even if a fixed orifice is provided in place of the exhaust pressure adjusting device 5 and the like configured by the above, some effects can be obtained. The diameter of the orifice is determined from the amount of gas and the differential pressure assumed in advance. In this case, it is not possible to cope with large fluctuations in the operating condition, but it is effective in controlling the stable cut-out amount of the L valve 7 with respect to a certain degree of differential pressure fluctuation.

【0024】この実施例は、溶融還元設備の予備還元炉
から粉粒鉄鉱石等の切り出し量制御にこの発明を適用し
たものであるが、他にも粉粒鉱石等のばい焼炉の様なバ
ブリング流動層から粉粒鉱石等を安定切り出し量制御に
適用する場合にも効果があることはもちろんである。
In this embodiment, the present invention is applied to control the amount of powdered iron ore or the like cut out from the preliminary reduction furnace of the smelting reduction equipment. It goes without saying that it is also effective when applying powdery ore or the like from the bubbling fluidized bed to control the stable cutting amount.

【0025】[0025]

【発明の効果】以上に述べた通り、この発明によると、
粉粒体の切り出し用のLバルブの上流側の圧力と下流側
の圧力との間の圧力差が生じない様にすることが出来
る。これにより、溶融還元設備の予備還元炉から粉粒鉱
石等の安定切り出し制御が可能となる。
As described above, according to the present invention,
It is possible to prevent a pressure difference between the pressure on the upstream side and the pressure on the downstream side of the L valve for cutting out the granular material. As a result, it is possible to control the stable extraction of powdered ore or the like from the preliminary reduction furnace of the smelting reduction equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示す竪断面図である。FIG. 1 is a vertical sectional view showing a configuration of the present invention.

【図2】本発明の実施例の効果を従来の例と比較して示
したグラフである。
FIG. 2 is a graph showing the effect of the embodiment of the present invention in comparison with a conventional example.

【図3】従来の溶融還元設備を示した説明図である。FIG. 3 is an explanatory view showing a conventional smelting reduction equipment.

【図4】従来の予備還元炉を示した説明図である。FIG. 4 is an explanatory view showing a conventional preliminary reduction furnace.

【図5】従来のLバルブの近傍の竪断面図である。FIG. 5 is a vertical sectional view in the vicinity of a conventional L valve.

【符号の説明】[Explanation of symbols]

2 粗粒鉄鉱石抜出し口 3 スタンドパイプ 4 粗粒鉱石抜出しタンク 5 排圧調整装置 6 均圧管 7 Lバルブ 8 圧縮空気配管 9 フリーボード部 10 Lバルブ上流側均圧管端 11 Lバルブ下流側均圧管端 12 風箱内圧力センサー 13 フリーボード部圧力センサー 14 還元ガス流量・温度計 15 制御部 22 Lバルブ水平管 23 エアレーション装置 30 除塵装置 31 溶融還元炉 32 予備還元炉 33 分散板ノズル 34 分散板 35 予備還元室 36 風箱 37 流動層 2 Coarse iron ore extraction port 3 Stand pipe 4 Coarse ore extraction tank 5 Exhaust pressure adjusting device 6 Pressure equalizing pipe 7 L valve 8 Compressed air piping 9 Freeboard part 10 L valve upstream pressure equalizing pipe end 11 L valve downstream pressure equalizing pipe Edge 12 Pressure sensor in air box 13 Freeboard pressure sensor 14 Reducing gas flow rate / thermometer 15 Control unit 22 L valve horizontal pipe 23 Aeration device 30 Dust remover 31 Melt reduction furnace 32 Pre-reduction furnace 33 Dispersion plate nozzle 34 Dispersion plate 35 Preliminary reduction chamber 36 Air box 37 Fluidized bed

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スタンドパイプと、スタンドパイプの下
端に連設される水平管と、スタンドパイプ下部のガス吹
き込み装置からなるLバルブ方式の粉粒体切出し移送装
置において、Lバルブの前後を結んだ均圧管を設け、均
圧管に排圧調整装置を設けたことを特徴とする粉粒体切
出し移送装置。
1. An L-valve type powder and granular material cutting and transferring device comprising a stand pipe, a horizontal pipe connected to the lower end of the stand pipe, and a gas blowing device under the stand pipe, wherein the front and rear of the L valve are connected. A powder and granular material slicing transfer device, characterized in that a pressure equalizing pipe is provided, and an exhaust pressure adjusting device is provided on the pressure equalizing pipe.
JP27379794A 1994-11-08 1994-11-08 Powder material transfer device Expired - Fee Related JP3223727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27379794A JP3223727B2 (en) 1994-11-08 1994-11-08 Powder material transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27379794A JP3223727B2 (en) 1994-11-08 1994-11-08 Powder material transfer device

Publications (2)

Publication Number Publication Date
JPH08134520A true JPH08134520A (en) 1996-05-28
JP3223727B2 JP3223727B2 (en) 2001-10-29

Family

ID=17532723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27379794A Expired - Fee Related JP3223727B2 (en) 1994-11-08 1994-11-08 Powder material transfer device

Country Status (1)

Country Link
JP (1) JP3223727B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140328493A1 (en) * 2013-05-03 2014-11-06 Eberspacher Exhaust Technology GmbH & Co. KG Sound generator for an exhaust system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140328493A1 (en) * 2013-05-03 2014-11-06 Eberspacher Exhaust Technology GmbH & Co. KG Sound generator for an exhaust system
US9462363B2 (en) * 2013-05-03 2016-10-04 Eberspächer Exhaust Technology GmbH & Co. KG Sound generator for an exhaust system

Also Published As

Publication number Publication date
JP3223727B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
JP3281614B2 (en) Method and apparatus for producing metal from ore
JPH08134520A (en) Device for discharging and carrying powdery and granular body
JP7365575B2 (en) Continuous ore feeding device
JP2004035913A (en) Method and device for controlling blowing of granular powder
US5183495A (en) Method for controlling a flow rate of gas for prereducing ore and apparatus therefor
RU2218418C2 (en) Device for prevention of disruption of fluidized bed designed for reduction reactor with fluidized bed
JP2814826B2 (en) Smelting furnace ore supply equipment
RU2001118469A (en) Fluid bed disruption prevention device for a fluidized bed reduction reactor
US5404655A (en) Method and apparatus for regulating the sand discharge during the thermal regeneration of used foundry sand in fluidized bed kilns
JP2002241819A (en) Device for blowing fine grain ore
JPH11172309A (en) Smelting reduction apparatus
JPH05264012A (en) Control device for height of fluid bed in combustion chamber
JP2981015B2 (en) Operating method of circulating fluidized bed reactor
JP2001063823A (en) Blowing method and device for powder and grain
KR100332927B1 (en) Apparatus for supplying the back-up gas in fluidized bed reactor
JPH04301019A (en) Device for discharging reduced ore in fluidized bed reduction furnace
JP2536642B2 (en) Method of adjusting gas flow for preliminary reduction in smelting reduction equipment equipped with preliminary reduction furnace
JPH1111671A (en) Blowing-in control method for powder
JPH01247515A (en) Method for pre-reducing fine ore and out-of-furnace circulating type fluidized bed reduction furnace
JP2632168B2 (en) Two-way powder dispensing and sealing device
JPH05264013A (en) Control device for height of fluid bed in combustion furnace
JPH03177511A (en) Method for operating fluidized bed pre-reduction furnace and fluidized bed pre-reduction furnace
JPH09157719A (en) Smelting reduction apparatus of iron
JPH0463216A (en) Smelting reduction device
JPH02111807A (en) Device and method for discharging molten metal in smelting reduction furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010724

LAPS Cancellation because of no payment of annual fees