JPH08134513A - Production of fine silver powder - Google Patents

Production of fine silver powder

Info

Publication number
JPH08134513A
JPH08134513A JP29594594A JP29594594A JPH08134513A JP H08134513 A JPH08134513 A JP H08134513A JP 29594594 A JP29594594 A JP 29594594A JP 29594594 A JP29594594 A JP 29594594A JP H08134513 A JPH08134513 A JP H08134513A
Authority
JP
Japan
Prior art keywords
silver
fine
powder
silver powder
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29594594A
Other languages
Japanese (ja)
Inventor
Yoshiaki Matsumura
吉章 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP29594594A priority Critical patent/JPH08134513A/en
Publication of JPH08134513A publication Critical patent/JPH08134513A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce a monodisperse silver grain and to easily control the grain diameter by reducing a silver salt, etc., with a soln. using hydroquinone as a reducing agent and a sulfite as a reduction assistant and specifying the temp. of the soln. CONSTITUTION: A fine silver powder as the material for a silver paste for the circuit in the electronic industry is produced by reducing a silver salt or a silver-ammonium complex. In this case, hydroquinone is used as a reducing agent and a sulfite as the reduction assistant, and the soln. is controlled to 25-60 deg.C in the reduction reaction. A fine silver powder having 1-5μm grain diameter is obtained since the hydroquinone is used, the generation of quinone hardly soluble in water caused when hydroquinone alone is used is suppressed by the addition of the sulfite, and the fine silver powder is easily separated from the reaction soln. Further, the grain diameter of the fine silver powder to be obtained is controlled by controlling the temp. of the soln. when reduction is conducted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子工業の回路用銀ペ
ーストに関し、該銀ペーストの原料である銀微粉を製造
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silver paste for circuits in the electronics industry, and a method for producing fine silver powder which is a raw material of the silver paste.

【0002】[0002]

【従来の技術】電子工業で用いる銀ペーストを製造する
原料となる従来の銀微粉の製造方法としては、室温にお
いて、硝酸銀水溶液に水酸化ナトリウムを加えて酸化銀
を形成し、または硝酸銀水溶液に炭酸ナトリウムを加え
て炭酸銀を形成し、該酸化銀または該炭酸銀をホルマリ
ンやヒドラジンを用いて還元する方法が知られている。
しかし、これらの方法で得られた銀微粉は凝集体である
ため、注意深く水洗いを行ってもナトリウムイオンの残
留は避けられないという問題があった。この問題に対
し、例えば特開平4−59904号公報や、特開平4−
333504号公報で単分散の銀微粉の製造方法が開示
されている。ところで、電子材料として用いられる銀微
粉には、焼結挙動をコントロールする上から粒径の調
整、安定性が強く求められる。そのために、粒径をコン
トロールする技術が必要となる。
2. Description of the Related Art A conventional method for producing fine silver powder, which is a raw material for producing a silver paste used in the electronics industry, is to add sodium hydroxide to an aqueous solution of silver nitrate to form silver oxide at room temperature, or to add an aqueous solution of silver nitrate to carbonate. A method is known in which sodium carbonate is added to form silver carbonate, and the silver oxide or the silver carbonate is reduced with formalin or hydrazine.
However, since the silver fine powder obtained by these methods is an agglomerate, there is a problem that sodium ions are unavoidable even after careful washing with water. To solve this problem, for example, Japanese Patent Application Laid-Open No. 4-59904 and Japanese Patent Application Laid-Open No. 4-59904.
Japanese Patent No. 333504 discloses a method for producing monodisperse silver fine powder. By the way, fine silver powder used as an electronic material is strongly required to have particle size adjustment and stability in order to control the sintering behavior. Therefore, a technique for controlling the particle size is required.

【0003】[0003]

【発明が解決しようとする課題】従来の方法では製造方
法が決まれば得られる銀微粉の粒径がほぼ決まり、簡単
に銀微粉の粒径を変えることが困難であった。本発明
は、前記問題点を解決し、単分散銀粒子を得ることがで
き、かつ簡単に粒径を調節することのできる銀微粉の製
造方法を提供することを目的とする。
According to the conventional method, if the manufacturing method is determined, the particle size of the obtained silver fine powder is almost determined, and it is difficult to easily change the particle size of the silver fine powder. It is an object of the present invention to solve the above problems, to provide a monodisperse silver particle, and to provide a method for producing a fine silver powder, the particle size of which can be easily adjusted.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、還元剤としてハイドロキノンを
用い、かつ還元補助剤として亜硫酸塩を用いる溶液にお
いて、銀塩または銀アンモニア錯体を還元して銀微粉を
製造するに際し、還元反応時の該溶液の温度を25〜6
0℃の範囲で調整する工程により、得られる銀微粉の粒
径を調整することができる。さらに、本発明において
は、コロイダルシリカを添加することにより、銀微粉の
粒径を調整することができる。
To achieve the above object, in the present invention, a silver salt or a silver ammonia complex is reduced in a solution using hydroquinone as a reducing agent and sulfite as a reducing auxiliary. In producing silver fine powder, the temperature of the solution during the reduction reaction should be 25 to 6
The particle size of the obtained fine silver powder can be adjusted by the step of adjusting in the range of 0 ° C. Furthermore, in the present invention, the particle size of the silver fine powder can be adjusted by adding colloidal silica.

【0005】[0005]

【作用】本発明では、銀塩または銀アンモニア錯体を還
元する還元剤としてハイドロキノンを用いる。ハイドロ
キノンを用いることにより、1〜5μmの粒径の銀微粉
を得ることができる。このとき、ハイドロキノンに亜硫
酸塩を添加して還元作用を補助する。すなわち、亜硫酸
塩の添加によって還元剤は水溶性のスルホン酸化合物と
なり、ハイドロキノンのみを用いて還元した場合に生じ
る難水溶性のキノンの生成を抑えることができ、簡単に
銀微粉を反応溶液より分離できる。また、還元作用を行
う際の溶液の温度を制御することにより、得られる銀微
粉の粒径を制御することが可能となる。すなわち、溶液
の温度を上昇させると、銀微粉の粒径は小さくなる。そ
の理由は、還元剤として用いるハイドロキノンの還元能
力が温度に強く依存しており、温度を上げることでハイ
ドロキノンの還元能力が上昇し、還元反応初期での生成
核数が増加するためであると考えられる。
In the present invention, hydroquinone is used as a reducing agent for reducing a silver salt or a silver ammonia complex. By using hydroquinone, fine silver powder having a particle size of 1 to 5 μm can be obtained. At this time, sulfite is added to hydroquinone to assist the reducing action. In other words, the addition of sulfite turns the reducing agent into a water-soluble sulfonic acid compound, which can suppress the formation of sparingly water-soluble quinone that occurs when reducing with only hydroquinone, and easily separates silver fine powder from the reaction solution. it can. In addition, by controlling the temperature of the solution when performing the reducing action, it is possible to control the particle size of the obtained silver fine powder. That is, as the temperature of the solution is increased, the particle size of the fine silver powder becomes smaller. The reason is that the reducing ability of hydroquinone used as a reducing agent is strongly dependent on temperature, and increasing the temperature increases the reducing ability of hydroquinone and increases the number of nuclei produced at the initial stage of the reduction reaction. To be

【0006】さらに、亜硫酸塩と同時にコロイダルシリ
カを添加することにより、コロイダルシリカを添加せず
に還元を行った場合に得られる銀微粉より小さな粒径を
持つ銀微粉を得ることができる。これは、コロイダルシ
リカのシリカ成分が銀微粉生成時の核となることによ
り、反応初期の発生核数が増加し、成長後の銀微粉の粒
径が小さくなると考えられる。このように、反応系にシ
リカ成分が導入されると、還元作用を行う際の溶液の温
度とシリカ成分との相乗効果が得られる。
Furthermore, by adding colloidal silica at the same time as the sulfite, it is possible to obtain a silver fine powder having a particle size smaller than that of the silver fine powder obtained when the reduction is carried out without adding the colloidal silica. It is considered that this is because the silica component of colloidal silica serves as a nucleus during the formation of the silver fine powder, so that the number of generated nuclei in the initial stage of the reaction increases and the particle size of the silver fine powder after the growth decreases. In this way, when the silica component is introduced into the reaction system, a synergistic effect between the temperature of the solution when performing the reducing action and the silica component is obtained.

【0007】[0007]

【実施例】【Example】

[実施例1]硝酸銀340gを水500mlに溶解し、
硝酸銀水溶液としたものにアンモニア水(29%)を4
00ml添加し、銀塩を銀アンモニア錯体とした。次
に、水7.0lに亜硫酸アンモニウム−水和物500g
及びハイドロキノン70gを溶解し、還元溶液を作製し
た。以上2つの溶液を各々25℃に調整後、還元溶液中
へ銀アンモニア錯体溶液を攪拌しながら添加し、25℃
の温度に維持して、銀微粉212gを得た。得られた銀
微粉は単分散、球形を呈し、平均粒径(SEM径)は
4.9μmであった。
Example 1 Dissolving 340 g of silver nitrate in 500 ml of water,
Ammonia water (29%) was added to the silver nitrate aqueous solution 4
00 ml was added, and the silver salt was used as a silver ammonia complex. Next, 500 g of ammonium sulfite-hydrate in 7.0 l of water.
And 70 g of hydroquinone were dissolved to prepare a reducing solution. After adjusting each of the above two solutions to 25 ° C, add the silver ammonia complex solution to the reducing solution while stirring, and
The temperature was maintained at to obtain 212 g of silver fine powder. The obtained silver fine powder was monodisperse and spherical, and the average particle diameter (SEM diameter) was 4.9 μm.

【0008】[実施例2]実施例1と同様の方法で、銀
アンモニア錯体溶液及び還元溶液を作製した。溶液の温
度を33℃として、実施例1と同様な方法で、銀微粉を
得た。得られた銀微粉は実施例1と同様に単分散、球形
を呈し、平均粒径(SEM径)は3.9μmであった。
Example 2 By the same method as in Example 1, a silver ammonia complex solution and a reducing solution were prepared. Fine silver powder was obtained in the same manner as in Example 1 except that the temperature of the solution was 33 ° C. The fine silver powder obtained was monodisperse and spherical as in Example 1, and had an average particle diameter (SEM diameter) of 3.9 μm.

【0009】[実施例3]実施例1と同様の方法で、銀
アンモニア錯体溶液及び還元溶液を作製した。溶液の温
度を45℃として、実施例1と同様な方法で、銀微粉を
得た。得られた銀微粉は実施例1と同様に単分散、球形
を呈し、平均粒径(SEM径)は2.9μmであった。
Example 3 A silver ammonia complex solution and a reducing solution were prepared in the same manner as in Example 1. Fine silver powder was obtained in the same manner as in Example 1 except that the temperature of the solution was 45 ° C. The fine silver powder obtained was monodisperse and spherical as in Example 1, and had an average particle diameter (SEM diameter) of 2.9 μm.

【0010】[実施例4]実施例1と同様の方法で、銀
アンモニア錯体溶液及び還元溶液を作製した。溶液の温
度を54℃として、実施例1と同様な方法で、銀微粉を
得た。得られた銀微粉は実施例1と同様に単分散、球形
を呈し、平均粒径(SEM径)は2.4μmであった。
Example 4 In the same manner as in Example 1, a silver ammonia complex solution and a reducing solution were prepared. Fine silver powder was obtained in the same manner as in Example 1 except that the temperature of the solution was 54 ° C. The fine silver powder obtained was monodisperse and spherical as in Example 1, and had an average particle diameter (SEM diameter) of 2.4 μm.

【0011】[実施例5]実施例1と同様の方法で、銀
アンモニア錯体溶液及び還元溶液を作製した。溶液の温
度を60℃として、実施例1と同様な方法で、銀微粉を
得た。得られた銀微粉は実施例1と同様に単分散、球形
を呈し、平均粒径(SEM径)は2.0μmであった。
Example 5 A silver ammonia complex solution and a reducing solution were prepared in the same manner as in Example 1. Fine silver powder was obtained in the same manner as in Example 1 except that the temperature of the solution was 60 ° C. The fine silver powder obtained was monodisperse and spherical as in Example 1, and had an average particle diameter (SEM diameter) of 2.0 μm.

【0012】[実施例6]実施例1と同様の方法で、銀
アンモニア錯体溶液及び還元溶液を作製した。本実施例
では、反応系にシリカ分を導入するために、還元溶液中
にコロイダルシルカ(日産化学工業株式会社、スノーテ
ックス)を0.3g添加して、実施例1と同様な方法で
2溶液を混合し、銀微粉を得た。得られた銀微粉は実施
例1と同様に単分散、球形を呈し、平均粒径(SEM
径)は4.0μmであった。
Example 6 A silver ammonia complex solution and a reducing solution were prepared in the same manner as in Example 1. In this example, in order to introduce a silica component into the reaction system, 0.3 g of colloidal silica (Nissan Chemical Co., Ltd., Snowtex) was added to the reducing solution, and two solutions were prepared in the same manner as in Example 1. Were mixed to obtain fine silver powder. The fine silver powder obtained was monodisperse and spherical as in Example 1, and had an average particle size (SEM).
The diameter) was 4.0 μm.

【0013】[実施例7]反応系にシリカ分を導入する
ために、還元溶液中にコロイダルシルカ(日産化学工業
株式会社、スノーテックス)を0.3g添加し、実施例
2と同様な方法で2溶液を混合し、銀微粉を得た。得ら
れた銀微粉は実施例2と同様に単分散、球形を呈し、平
均粒径(SEM径)は3.9μm以下であった。
Example 7 In order to introduce a silica component into the reaction system, 0.3 g of colloidal silica (Nissan Chemical Co., Ltd., Snowtex) was added to the reducing solution, and the same procedure as in Example 2 was performed. The two solutions were mixed to obtain fine silver powder. The obtained silver fine powder was monodisperse and spherical as in Example 2, and the average particle diameter (SEM diameter) was 3.9 μm or less.

【0014】[実施例8]実施例1と同様の方法で、銀
アンモニア錯体溶液及び還元溶液を作製した。反応系に
シリカ分を導入するために、還元溶液中にコロイダルシ
ルカ(日産化学工業株式会社、スノーテックス)を1.
0g添加し、実施例1と同様な方法で2溶液を混合し、
銀微粉を得た。得られた銀微粉は実施例1と同様に単分
散、球形を呈し、平均粒径(SEM径)は3.0μmで
あった。
Example 8 A silver ammonia complex solution and a reducing solution were prepared in the same manner as in Example 1. In order to introduce a silica component into the reaction system, colloidal silka (Nissan Chemical Co., Ltd., Snowtex) was added to the reducing solution.
0 g was added and the two solutions were mixed in the same manner as in Example 1,
A fine silver powder was obtained. The fine silver powder obtained was monodisperse and spherical as in Example 1, and had an average particle diameter (SEM diameter) of 3.0 μm.

【0015】[実施例9]実施例1と同様の方法で、銀
アンモニア錯体溶液及び還元溶液を作製した。反応系に
シリカ分を導入するために、還元溶液中にコロイダルシ
ルカ(日産化学工業株式会社、スノーテックス)を2.
0g添加し、実施例1と同様な方法で2溶液を混合し、
銀微粉を得た。得られた銀微粉は実施例1と同様に単分
散、球形を呈し、平均粒径(SEM径)は2.5μmで
あった。
[Example 9] A silver ammonia complex solution and a reducing solution were prepared in the same manner as in Example 1. Colloidal silka (Nissan Chemical Co., Ltd., Snowtex) was added to the reducing solution in order to introduce silica into the reaction system.
0 g was added and the two solutions were mixed in the same manner as in Example 1,
A fine silver powder was obtained. The fine silver powder obtained was monodisperse and spherical as in Example 1, and had an average particle diameter (SEM diameter) of 2.5 μm.

【0016】[実施例10]実施例1と同様の方法で、
銀アンモニア錯体溶液及び還元溶液を作製した。次に、
還元溶液中にコロイダルシルカ(日産化学工業株式会
社、スノーテックス)を0.3g添加し、各々の液温を
20度として、実施例1と同様な方法で、20℃の温度
に維持して、銀微粉を得た。得られた銀微粉は実施例1
と同様に単分散、球形を呈し、平均粒径(SEM径)は
4.2μmであった。
[Embodiment 10] In the same manner as in Embodiment 1,
A silver ammonia complex solution and a reducing solution were prepared. next,
0.3 g of colloidal silka (Nissan Chemical Co., Ltd., Snowtex) was added to the reducing solution, the temperature of each liquid was set to 20 ° C, and the temperature was maintained at 20 ° C in the same manner as in Example 1, A fine silver powder was obtained. The fine silver powder obtained was obtained in Example 1.
Similarly to the above, it was monodisperse and spherical, and the average particle diameter (SEM diameter) was 4.2 μm.

【0017】[比較例]実施例1と同様の方法で、銀ア
ンモニア錯体溶液及び還元溶液を作製し、各々の液温を
20℃として、実施例1と同様な方法で、20℃の温度
に維持して、銀微粉を得た。得られた銀微粉は実施例1
と同様に単分散、球形を呈しているが、平均粒径(SE
M径)は5.0μmであった。
[Comparative Example] A silver ammonia complex solution and a reducing solution were prepared in the same manner as in Example 1, and the respective liquid temperatures were set to 20 ° C. In the same manner as in Example 1, the temperature was raised to 20 ° C. Maintained to obtain fine silver powder. The fine silver powder obtained was obtained in Example 1.
It has a monodisperse shape and a spherical shape similar to, but has an average particle size (SE
The M diameter) was 5.0 μm.

【0018】なお、図1に実施例1〜実施例5および比
較例の結果を粒径と温度の関係で表わした。
The results of Examples 1 to 5 and Comparative Example are shown in FIG. 1 in terms of the relationship between particle size and temperature.

【0019】[0019]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。 (1)球形、単分散で、かつ簡単に粒径を変えることが
できる銀微粉の製造方法を提供できる。 (2)電子材料として用いられる銀微粉の粒径の調整に
より、焼結挙動をコントロールすることが容易となる。
Since the present invention is configured as described above, it has the following effects. (1) It is possible to provide a method for producing a fine silver powder which is spherical, monodisperse, and whose particle size can be easily changed. (2) It becomes easy to control the sintering behavior by adjusting the particle size of the fine silver powder used as an electronic material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる実施例の結果を粒径と温度の関
係で表わしたグラフである。
FIG. 1 is a graph showing a result of an example according to the present invention as a relationship between a particle size and a temperature.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 還元剤としてハイドロキノンを用い、か
つ還元補助剤として亜硫酸塩を用いた溶液において、銀
塩または銀アンモニア錯体を還元して銀微粉を製造する
に際し、還元反応時の該溶液の温度を25〜60℃の範
囲で調整することにより、銀微粉の粒径を調整すること
を特徴とする銀微粉の製造方法。
1. A solution containing hydroquinone as a reducing agent and sulfite as a reducing auxiliary, wherein the silver salt or the silver ammonia complex is reduced to produce fine silver powder, and the temperature of the solution during the reduction reaction is used. Is adjusted in the range of 25 to 60 ° C. to adjust the particle size of the silver fine powder.
【請求項2】 添加剤としてコロイダルシリカを加える
ことを特徴とする請求項1に記載の製造方法。
2. The production method according to claim 1, wherein colloidal silica is added as an additive.
JP29594594A 1994-11-07 1994-11-07 Production of fine silver powder Pending JPH08134513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29594594A JPH08134513A (en) 1994-11-07 1994-11-07 Production of fine silver powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29594594A JPH08134513A (en) 1994-11-07 1994-11-07 Production of fine silver powder

Publications (1)

Publication Number Publication Date
JPH08134513A true JPH08134513A (en) 1996-05-28

Family

ID=17827147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29594594A Pending JPH08134513A (en) 1994-11-07 1994-11-07 Production of fine silver powder

Country Status (1)

Country Link
JP (1) JPH08134513A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235474A (en) * 2008-03-26 2009-10-15 Dowa Electronics Materials Co Ltd Method for producing silver powder
JP2010070793A (en) * 2008-09-17 2010-04-02 Dowa Electronics Materials Co Ltd Spherical silver powder and method for producing the same
JP2012036188A (en) * 2004-07-30 2012-02-23 Acrymed Inc Antimicrobial silver composition
CN113953523A (en) * 2021-10-12 2022-01-21 善日(嘉善)能源科技有限公司 Preparation method of polyhedral submicron silver powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036188A (en) * 2004-07-30 2012-02-23 Acrymed Inc Antimicrobial silver composition
JP2009235474A (en) * 2008-03-26 2009-10-15 Dowa Electronics Materials Co Ltd Method for producing silver powder
JP2010070793A (en) * 2008-09-17 2010-04-02 Dowa Electronics Materials Co Ltd Spherical silver powder and method for producing the same
CN113953523A (en) * 2021-10-12 2022-01-21 善日(嘉善)能源科技有限公司 Preparation method of polyhedral submicron silver powder
CN113953523B (en) * 2021-10-12 2023-09-22 善日(嘉善)能源科技有限公司 Preparation method of polyhedral submicron silver powder

Similar Documents

Publication Publication Date Title
US4131699A (en) Method of preparation and use of electroless plating catalysts
US4863510A (en) Reduction process for preparing copper, silver, and admixed silver-palladium metal particles
US5850047A (en) Production of copper powder
JPH09256007A (en) Production of copper powder
JPS63307206A (en) Production of fine silver particles
JPH08134513A (en) Production of fine silver powder
JPS63213606A (en) Production of fine silver powder
JPH0211709A (en) Production of silver colloid
JP3820018B2 (en) Method for producing granular silver powder
JPH05221637A (en) Production of cuprous oxide powder and copper powder
JPH01104338A (en) Manufacture of silver colloid
JPH07107168B2 (en) Method for producing fine copper particles
JPH04235205A (en) Production of copper powder
US4273804A (en) Process using activated electroless plating catalysts
JPS63179009A (en) Production of fine silver particles
JPS63312906A (en) Production of fine silver alloy powder
JPH0892612A (en) Production of silver powder
JP3444608B2 (en) Production method of copper fine powder
JPH0211707A (en) Production of silver fine particle
JPH07107172B2 (en) Method for producing fine silver particles
JPH0784606B2 (en) Method for producing fine palladium particles
JPH07107169B2 (en) Method for producing fine copper particles
JPH0892611A (en) Production of silver powder
JPH01104340A (en) Manufacture of silver colloid
JPH0657314A (en) Production of fine palladium powder