JPH08133998A - Reduction of sorbic acid - Google Patents

Reduction of sorbic acid

Info

Publication number
JPH08133998A
JPH08133998A JP15231490A JP15231490A JPH08133998A JP H08133998 A JPH08133998 A JP H08133998A JP 15231490 A JP15231490 A JP 15231490A JP 15231490 A JP15231490 A JP 15231490A JP H08133998 A JPH08133998 A JP H08133998A
Authority
JP
Japan
Prior art keywords
chch
sorbic acid
formula
acid anhydride
mixed acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15231490A
Other languages
Japanese (ja)
Other versions
JP2617017B2 (en
Inventor
Takehiko Fukumoto
毅彦 福本
Akira Yamamoto
昭 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2152314A priority Critical patent/JP2617017B2/en
Publication of JPH08133998A publication Critical patent/JPH08133998A/en
Application granted granted Critical
Publication of JP2617017B2 publication Critical patent/JP2617017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: To obtain an aldehyde or an alcohol derivative in good yield under extremely mild conditions by reacting sorbic acid with a chloroformic acid ester, providing a mixed acid anhydride and then reducing the resultant anhydride with a metal boron hydride. CONSTITUTION: Sorbic acid is initially reacted with a chloroformic acid ester of the formula ClCOOR (R is a 1-20C alkyl, an alkenyl, etc.) (preferably methyl chloroformate or ethyl chloroformate), preferably in the presence of THF which is a reactional solvent and a base to provide a mixed acid anhydride of the formula. The resultant mixed acid anhydride is subsequently reduced with a metal boron hydride (preferably NaBH4 or LiBH4 ), preferably in THF to afford an aldehyde derivative of the formula CH3 CH=CHCH=CHCHO or an alcohol derivative of the formula CH3 CH=CHCH=CH2 OH. Furthermore, the temperature of the reducing reaction is usually -50 to +30 deg.C. When the aldehyde derivative is to be preferentially obtained, the temperature is preferably -50 to 0 deg.C. The temperature in preparing the mixed acid anhydride is preferably -20 to -l20 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はソルビン酸の新規な還元方法に関し、 より詳しくはソルビン酸を水素化ホウ素金属によ って還元する方法に係わるものである。TECHNICAL FIELD The present invention relates to a novel method for reducing sorbic acid, and more particularly to a method for reducing sorbic acid with metal borohydride.

(従来の技術) 従来、飽和カルボン酸の還元方法としては水素 化リチウムアルミニウムを用いエーテルあるいは テトラヒドロフラン中で還元するのが普通である。(Prior Art) Conventionally, as a method for reducing a saturated carboxylic acid, lithium aluminum hydride is usually used for reduction in ether or tetrahydrofuran.

しかし不飽和カルボン酸の場合には二重結合も水 素化し易いためカルボキシル基のみを選択的に還 元することは非常に難しい。例えば、ケイ皮酸を 水素化リチウムアルミニウムで還元すると、シン ナミルアルコールを生成せずにジヒドロシンナミ ルアルコールまで還元してしまう〔R.F.Nystro n et al.,J.Am.Chem.Soc.,69,2548(1947)〕。However, in the case of unsaturated carboxylic acid, it is very difficult to selectively restore only the carboxyl group because the double bond is easily hydrolyzed. For example, reduction of cinnamic acid with lithium aluminum hydride reduces dihydrocinnamyl alcohol without producing cinnamyl alcohol [R. F. Nystron et al., J. Am. Chem. Soc., 69, 2548 (1947)].

また不飽和結合を保護すべく水素化リチウムア ルミニウム−無水塩化アルミニウムの反応系で反 応する方法もあるが、例えば、これを共役ジエン 結合を有するソルビン酸の還元に適用しようとす ると著しく収率が低い。 There is also a method of reacting with a reaction system of lithium aluminum hydride-anhydrous aluminum chloride in order to protect the unsaturated bond, but if this is applied to the reduction of sorbic acid having a conjugated diene bond, the yield will be significantly reduced. The rate is low.

CH3CH=CH-CH=CH-CH2OH 収率20% しかも、これらの還元反応は不飽和カルボン酸 をアルデヒドまでで停止させることが難しく、ま た水素化リチウムアルミニウムが極めて高価なた め工業的な方法とはいえない。 CH 3 CH = CH-CH = CH-CH 2 OH Yield 20% Moreover, it is difficult to terminate unsaturated carboxylic acid with aldehyde in these reduction reactions, and lithium aluminum hydride is extremely expensive. Not an industrial method.

一方、比較的安価な水素化ホウ素ナトリウムは 還元力が弱くカルボン酸の還元が難しい。その還 元力を強めるために水素化ホウ素ナトリウム−無 水塩化アルミニウムをジグライム(ジエチレング リコールジメチルエーテル)中で反応させたり 〔H.C.Brown et al.,J.Am.Chem.Soc.,75, 6263(1953)〕、あるいはBF3と共に用いる手法 〔G.R.Pettit et al.,J.Org.Chem.,27,21 27(1962)〕が導入されている。しかし、これら は無機のルイス酸を使用しているので、工程が煩 雑であるほか反応物が不安定な場合に副反応を起 こしやすく概して収率が低い。さらにジグライム の回収性の問題、塩化アルミニウムの排水処理問 題など不利な点が多く、還元操作の選択性につい ても満足できるものではない。On the other hand, sodium borohydride, which is relatively inexpensive, has a weak reducing power and it is difficult to reduce carboxylic acid. In order to enhance its recovery, sodium borohydride-hydrous aluminum chloride may be reacted in diglyme (diethylene glycol dimethyl ether) [HC Brown et al., J. Am. Chem. Soc., 75, 6263 (1953). ], Or a method used with BF 3 [GRPettit et al., J. Org. Chem., 27, 21 27 (1962)] has been introduced. However, since these use an inorganic Lewis acid, the process is complicated and side reactions easily occur when the reaction product is unstable, and the yield is generally low. Furthermore, there are many disadvantages such as the problem of recoverability of diglyme and the problem of wastewater treatment of aluminum chloride, and the selectivity of the reduction operation is not satisfactory either.

水素化リチウムアルミニウム、水素化ホウ素ナ トリウムは共に水素を水素化イオンとして与える ことにより多くの有機化合物を還元することので きる代表的錯化合物であるが、還元力の強い前者 はそれ自体高価であり、後者は比較的安価ではあ るが還元力が弱いために助剤などを必要とし、工 程が複雑となり収率も低下するという難点があっ て、いずれもカルボン酸をアルデヒドまでの還元 で抑えることは極めて難しい。 Both lithium aluminum hydride and sodium borohydride are typical complex compounds that can reduce many organic compounds by giving hydrogen as hydride ions, but the former with strong reducing power is expensive in itself. However, the latter is relatively inexpensive, but has a weak reducing power, and thus requires an auxiliary agent, etc., which has the drawback of complicating the process and lowering the yield. In both cases, the carboxylic acid is suppressed by reduction to the aldehyde. That is extremely difficult.

(課題を解決するための手段) 本発明者らはこれらの点を解決すべく種々検討 を行った結果、ソルビン酸を、クロルギ酸メチル、 クロルギ酸エチルに代表されるクロルギ酸エステ ルと反応させ、その混合酸無水物とし、これを水 素化ホウ素ナトリウムで処理すれば極めて温和な 条件下で相当するアルデヒド体またはアルコール 体を高収率で合成できることを見出し本発明に至 った。(Means for Solving the Problems) As a result of various studies to solve these problems, the present inventors have made sorbic acid react with a chloroformate ester represented by methyl chloroformate and ethyl chloroformate. The inventors have found that by treating the mixed acid anhydride with sodium borohydride, the corresponding aldehyde or alcohol can be synthesized in high yield under extremely mild conditions, and the present invention has been completed.

したがって、本発明によるソルビン酸の還元方 法は、ソルビン酸に一般式ClCOOR(式中のR は炭素原子数1〜20のアルキル基、アルケニル基、 アルキニル基またはアリル基である)で示される クロルギ酸エステルを反応させ、一般式 CH3CH=CHCH=CHCOOCOOR で示される混合酸無水物とし、ついでこれを水素 化ホウ素金属によって還元し、相当するアルデヒ ド体CH3CH=CHCH=CHCHOもしくは アルコール体CH3CH=CHCH=CH2OHと することを要旨とするものである。Therefore, the method for reducing sorbic acid according to the present invention is a method in which sorbic acid is represented by the general formula ClCOOR (wherein R is an alkyl group, alkenyl group, alkynyl group or allyl group having 1 to 20 carbon atoms) An acid ester is reacted to form a mixed acid anhydride represented by the general formula CH 3 CH═CHCH═CHCOOCOOR, which is then reduced with a metal borohydride to give a corresponding aldehyde CH 3 CH═CHCH═CHCHO or an alcohol derivative. The summary is that CH 3 CH = CHCH = CH 2 OH.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明によるソルビン酸の還元方法を前述した 一般式で示すと次のとおりである。 The method of reducing sorbic acid according to the present invention is represented by the above-mentioned general formula as follows.

使用されるクロルギ酸エステルとしては安価な クロルギ酸メチルまたはクロルギ酸エチルが好適 である。 As the chloroformic acid ester to be used, inexpensive methyl chloroformate or ethyl chloroformate is preferable.

混合酸無水物はジエチルエーテルなどのエーテ ル類、テトラヒドロフラン(THF)などの還元エ ーテル類あるいはジメトキシエタン、ジグライム などの各種の、好ましくは無水の溶媒中、トリエ チルアミンを始めとするアミン類やピリジンなど の塩基の存在下、−20℃〜20℃で調製することが 望ましい。また、この際、同時にトリエチルアミ ン塩酸塩のような塩基の塩酸塩を生ずるが、これ が反応系に共存すると混合酸無水物の収率を多少 低下させるため、ろ過により除去するのがよい。 Mixed acid anhydrides include ethers such as diethyl ether, reducing ethers such as tetrahydrofuran (THF), and amines such as triethylamine and pyridine in various, preferably anhydrous solvents such as dimethoxyethane and diglyme. It is desirable to prepare at -20 ° C to 20 ° C in the presence of a base such as. In addition, at this time, a hydrochloride of a base such as triethylamine hydrochloride is simultaneously produced, but if it coexists in the reaction system, the yield of the mixed acid anhydride is slightly reduced, and therefore it is preferable to remove it by filtration.

このようにして得られた混合酸無水物は比較的不 安定なため、できるだけ低温に保ち速やかに次の 還元工程へ進むのがよい。Since the mixed acid anhydride thus obtained is relatively unstable, it is preferable to keep the temperature as low as possible and proceed to the next reduction step promptly.

還元工程は上記と同様の各種溶媒中に水素化ホ ウ素ナトリウムを懸濁しておき、そこへ混合酸無 水物溶液を滴下すればよい。反応温度は−50〜30 ℃であるが、アルデヒド体を優位に得たい場合は −50〜0℃が好ましい。なお、この場合の溶媒は 無水である必要はなく水溶液でもよい。混合酸無 水物、還元の両工程ともTHFを使用するのが好 ましい。 In the reduction step, sodium borohydride may be suspended in the same various solvents as described above, and the mixed acid anhydrous solution may be added dropwise thereto. The reaction temperature is −50 to 30 ° C., but −50 to 0 ° C. is preferable when it is desired to obtain the aldehyde derivative in a dominant manner. The solvent in this case need not be anhydrous and may be an aqueous solution. It is preferable to use THF for both the steps of mixed acid anhydride and reduction.

水素化ホウ素ナトリウムの添加量はアルデヒド 体を優位に得たいときは、ソルビン酸に対し1.0〜 1.5当量として反応を2〜6時間とすればよく、 アルコール体を優位に得たいときは1.5〜2.5当量 として反応を1〜5時間とすればよい。通常、ソ ルビン酸に対し3.0当量用いれば、すべてアルコー ル体が生成する。なお、アルデヒド体を優位に得 る場合はアルコール体の場合よりも収率が若干低 くなる。反応終了後、20%塩酸水を加えると、そ の有機層から生成物を容易に単離できる。 Sodium borohydride is added in an amount of 1.0 to 1.5 equivalents relative to sorbic acid when the aldehyde form is to be obtained predominantly, and the reaction time is 2 to 6 hours. When the alcohol form is to be obtained, 1.5 to 2.5 equivalent is required. The reaction may be carried out for 1 to 5 hours as an equivalent. Normally, if 3.0 equivalents to sorbic acid are used, all alcohols will be formed. When the aldehyde form is obtained predominantly, the yield is slightly lower than when the alcohol form is obtained. After completion of the reaction, 20% hydrochloric acid water is added to easily isolate the product from the organic layer.

この反応の一例を挙げると、クロルギ酸エステ ルとしてクロルギ酸エチルを用い、2モルの水素 化ホウ素ナトリウムを加えてTHF中で10〜15℃ で行った場合の収率は、アルコール体(CH3CH=CH- CH=CHCHO)が9%、アルデヒド体(CH3CH=CHCH=CH2- OH)が58%であった。As an example of this reaction, using ethyl chloroformate as the chloroformate ester le, the yield in the case of performing at 10 to 15 ° C. in THF was added to 2 moles of sodium borohydride, the alcohol compound (CH 3 CH = CHCH = CHCHO) 9%, aldehyde form (CH 3 CH = CHCH = CH 2 - OH) was 58%.

以下、本発明を実施例および比較例により説明 するが、本発明はこの実施例の記載に限定される ものではない。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to the description of the Examples.

実施例1 ソルビン酸28g(0.25モル)をTHF100mlに溶 かし、トリエチルアミン25gを加え、クロルギ酸 エチルを0〜10℃にて30分で滴下した。滴下終了 後、10℃で30分撹拌し、素早くろ過してトリエチ ルアミンを除いた。つぎに水素化ホウ素ナトリウ ム19g(0.5モル)をTHF100mlに懸濁し、N2雰 囲気下、上記の混合酸無水物のTHF溶液を10〜 15℃にて滴下する。滴下終了後、20℃で30分間撹 拌し、10%HCl水100mlを加えて分液し、その有 機層のTHFをロータリーエバポレーターで除去 した後に蒸留して生成物16.4g(b.p.80〜86℃/10 mmHg)を得た(収率:67%)。ガスクロマトグラフ ィーにより、このアルデヒド体(2,4-ヘキサジ エン-1-アール)とアルコール体(2,4-ヘキサジ エン-1-オール)の比率を確認したところ、14: 86であった。Example 1 28 g (0.25 mol) of sorbic acid was dissolved in 100 ml of THF, 25 g of triethylamine was added, and ethyl chloroformate was added dropwise at 0 to 10 ° C over 30 minutes. After the dropwise addition was completed, the mixture was stirred at 10 ° C for 30 minutes and quickly filtered to remove triethylamine. Then, 19 g (0.5 mol) of sodium borohydride is suspended in 100 ml of THF, and a THF solution of the above mixed acid anhydride is added dropwise at 10 to 15 ° C. under N 2 atmosphere. After completion of dropping, the mixture was stirred at 20 ° C for 30 minutes, 100 ml of 10% HCl water was added for liquid separation, and THF in the organic layer was removed by a rotary evaporator and then distilled to yield 16.4 g of product (bp 80 to 86 ° C). / 10 mmHg) was obtained (yield: 67%). The ratio of the aldehyde form (2,4-hexadiene-1-al) and the alcohol form (2,4-hexadiene-1-ol) was confirmed by gas chromatography to be 14:86.

実施例2 実施例1において水素化ホウ素ナトリウムの量 を28.5g(0.75モル)としたほかは、これと全く同 様の操作を行ったところ、生成物16.7g(b.p.85 〜86℃/10mmHg)が得られた(収率:68%)。これを ガスクロマトグラフィーにより確認したところ、 すべてアルコール体の2,4-ヘキサジエン-1-オ ールであった。Example 2 The procedure of Example 1 was repeated except that the amount of sodium borohydride was 28.5 g (0.75 mol), and the product was 16.7 g (bp 85 to 86 ° C./10 mmHg). Was obtained (yield: 68%). When this was confirmed by gas chromatography, it was 2,4-hexadiene-1-ol which was an alcohol compound.

比較例1 水素化リチウムアルミニウム12g(0.31モル)を 無水THF100mlに溶かし、0〜10℃の無水塩化 アルミニウム13g(0.1モル)を徐々に加え、10℃ で30分間撹拌する。つぎにソルビン酸28g(0.25 モル)を無水THF100mlに溶解したものを、0〜 20℃、1時間で滴下する。終了後10%HClを100 ml加えて分液し、その有機層のTHFをロータリ ーエバポレーターで除去した後に蒸留し、2,4- ヘキサジエン-1-オールを4.9g(収率:20%)得 た。Comparative Example 1 12 g (0.31 mol) of lithium aluminum hydride was dissolved in 100 ml of anhydrous THF, 13 g (0.1 mol) of anhydrous aluminum chloride at 0 to 10 ° C was gradually added, and the mixture was stirred at 10 ° C for 30 minutes. Next, 28 g (0.25 mol) of sorbic acid dissolved in 100 ml of anhydrous THF was added dropwise at 0 to 20 ° C for 1 hour. After the completion, 100 ml of 10% HCl was added for liquid separation, and THF of the organic layer was removed by a rotary evaporator and then distilled to obtain 4.9 g (yield: 20%) of 2,4-hexadien-1-ol. It was

比較例2 水素化ホウ素ナトリウム12g(0.31モル)を無水 ジグライム100mlに溶かし、さらに0〜10℃の無 水塩化アルミニウム13g(0.1モル)を徐々に加え、 10℃で30分間撹拌した。つぎにソルビン酸28g (0.25モル)を無水ジグライム100mlに溶解したも のを0〜20℃、1時間で滴下する。滴下終了後10 %HClを100ml加えて分液し、その有機層を蒸留 して生成物4.0g(b.p.79〜81℃/15mmHg)が得られ た。これをガスクロマトグラフィーにより同定し たところ、2,4-ヘキサジエン-1-オールが5.1 %(対ソルビン酸収率1.0%)、n−ヘキサノールが 94.9%(同19%)であった。Comparative Example 2 12 g (0.31 mol) of sodium borohydride was dissolved in 100 ml of anhydrous diglyme, 13 g (0.1 mol) of anhydrous aluminum chloride at 0 to 10 ° C was gradually added, and the mixture was stirred at 10 ° C for 30 minutes. Then, 28 g (0.25 mol) of sorbic acid dissolved in 100 ml of anhydrous diglyme was added dropwise at 0 to 20 ° C for 1 hour. After completion of the dropping, 100 ml of 10% HCl was added for liquid separation, and the organic layer was distilled to obtain 4.0 g (b.p. 79-81 ° C / 15 mmHg) of the product. When this was identified by gas chromatography, it was 5.1% for 2,4-hexadiene-1-ol (1.0% yield to sorbic acid) and 94.9% for n-hexanol (19%).

(発明の効果) 本発明の方法によれば、ソルビン酸の還元を極 めて温和な条件下で高収率で行なうことができる ほか、水素化ホウ素金属のモル比と反応温度を変 えることにより、相当するアルコール体とアルデ ヒド体の比率を変化させることもできる。(Effects of the Invention) According to the method of the present invention, reduction of sorbic acid can be performed in a high yield under extremely mild conditions, and the molar ratio of metal borohydride and the reaction temperature can be changed. It is also possible to change the ratio of the corresponding alcohol form and aldehyde form.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ソルビン酸に一般式ClCOOR(式中の
Rは 炭素原子数1〜20のアルキル基、アルケニル基、 アルキニル基またはアリル基である)で示される クロルギ酸エステルを反応させ、一般式 CH3CH=CHCH=CHCOOCOOR で示される混合酸無水物とし、ついでこれを水素 化ホウ素金属によって還元し、相当するアルデヒ ド体CH3CH=CHCH=CHCHOもしくは アルコール体CH3CH=CHCH=CH2OHと することを特徴とするソルビン酸の還元方法。
1. A chloric acid ester represented by the general formula ClCOOR (wherein R is an alkyl group, an alkenyl group, an alkynyl group or an allyl group having 1 to 20 carbon atoms) is reacted with sorbic acid to give a general formula CH 3 CH═CHCH═CHCOOCOOR is used as a mixed acid anhydride, which is then reduced with a metal borohydride to give the corresponding aldehyde CH 3 CH═CHCH═CHCHO or alcohol CH 3 CH═CHCH═CH 2 A method for reducing sorbic acid, which comprises using OH.
【請求項2】前記水素化ホウ素金属が、水素化ホウ素ナ
トリ ウムまたは水素化ホウ素リチウムである特許請求 の範囲第1項記載のカルボン酸の還元方法。
2. The method for reducing a carboxylic acid according to claim 1, wherein the metal borohydride is sodium borohydride or lithium borohydride.
JP2152314A 1990-06-11 1990-06-11 How to reduce sorbic acid Expired - Lifetime JP2617017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152314A JP2617017B2 (en) 1990-06-11 1990-06-11 How to reduce sorbic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152314A JP2617017B2 (en) 1990-06-11 1990-06-11 How to reduce sorbic acid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61108274A Division JPS62265240A (en) 1986-05-12 1986-05-12 Method for reducing carboxylic acid

Publications (2)

Publication Number Publication Date
JPH08133998A true JPH08133998A (en) 1996-05-28
JP2617017B2 JP2617017B2 (en) 1997-06-04

Family

ID=15537817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152314A Expired - Lifetime JP2617017B2 (en) 1990-06-11 1990-06-11 How to reduce sorbic acid

Country Status (1)

Country Link
JP (1) JP2617017B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526993A (en) * 1982-04-30 1985-07-02 E. I. Du Pont De Nemours And Company Conjugated dienols

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526993A (en) * 1982-04-30 1985-07-02 E. I. Du Pont De Nemours And Company Conjugated dienols

Also Published As

Publication number Publication date
JP2617017B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
US4760196A (en) Method for preparing an aldehyde or alcohol by reduction of a carboxylic acid
JP3243284B2 (en) Chemical method
JPH03106830A (en) Continuous production of alkynyl compound
JPH08133998A (en) Reduction of sorbic acid
JP4163763B2 (en) Method for alkylating cyclopentadiene compounds
JPS6223739B2 (en)
JP3288145B2 (en) Method for producing 3-aminopropionitrile
JP3353937B2 (en) Method for producing chloromethyl alkyl ether
KR100515585B1 (en) Fulvene-based compound and method for preparing thereof
JP3386596B2 (en) Method for producing 5 (E), 8 (Z), 11 (Z) -tetradecatrien-2-one
US6313341B1 (en) Process for the preparation of prostaglandins
JP2558301B2 (en) Method for producing terpene diol derivative
JP3254745B2 (en) Diol compound and method for producing the same
JPS6377868A (en) Alpha-(omega-hydroxyalkyl)furfuryl alcohol and production thereof
KR19980081737A (en) How to prepare polyprenol
KR0173315B1 (en) Novel process for producing 6-acyl-7-deacetylforskolin derivatives
KR100461571B1 (en) A process for preparing (S)-1,2,4-butanetriol
JP2562814B2 (en) Fluorine-containing amide derivative and method for producing the same
JPS647973B2 (en)
JP3266701B2 (en) Method for producing 2,3-dihydropolyprenol
JPH0665140A (en) Production of 2-fluorocyclopropanecarboxylic acid
JPH0412258B2 (en)
JPH0541617B2 (en)
JPH0528696B2 (en)
JPH01249736A (en) Production of alcohol

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term