JPH08133764A - Production of glass press lens - Google Patents

Production of glass press lens

Info

Publication number
JPH08133764A
JPH08133764A JP27753594A JP27753594A JPH08133764A JP H08133764 A JPH08133764 A JP H08133764A JP 27753594 A JP27753594 A JP 27753594A JP 27753594 A JP27753594 A JP 27753594A JP H08133764 A JPH08133764 A JP H08133764A
Authority
JP
Japan
Prior art keywords
lens
optical axis
glass
mold
effective diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27753594A
Other languages
Japanese (ja)
Inventor
Osamu Ikeuchi
収 池内
Jiro Matsuoka
次郎 松岡
Toshiya Tomisaka
俊也 富阪
Akihiro Mori
明博 森
Shinsuke Kawai
伸典 河合
Manami Saka
真奈美 坂
Naoko Oka
直子 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP27753594A priority Critical patent/JPH08133764A/en
Publication of JPH08133764A publication Critical patent/JPH08133764A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses

Abstract

PURPOSE: To provide a producing method of a glass lens, which is dispensed with a centering and edging process and an optical axis adjusting process at the time of incorporating in a lens-barrel or assembling a cemented lens and capable of easily and high precisely assembling. CONSTITUTION: The glass press lens is produced by using a metallic mold for glass press lens having two faces of a positioning reference surface in the parallel direction to optical axis and a positioning reference surface in the vertical direction to optical axis on an effective diameter outer periphery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス素材を加熱軟化
し成形型で所望の形状に加圧成形するガラスプレスレン
ズの製造方法に関し、特に成形後に芯取り工程が不要で
あり、レンズの鏡胴への高精度の組み込みが容易なガラ
スプレスレンズの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a glass press lens in which a glass material is softened by heating and pressure-molded into a desired shape with a molding die, and particularly, a centering step is not required after the molding, and a lens mirror is used. The present invention relates to a method for manufacturing a glass press lens that can be easily incorporated into a body with high precision.

【0002】[0002]

【従来の技術】ガラスの精密プレスによるレンズの製造
方法は一般に成形により有効径を形成する、鏡胴へ
の組み込みのための芯取りを行う、有効径にコーティ
ングを施す、鏡胴に組み込むという工程から成り立っ
ている。
2. Description of the Related Art A method of manufacturing a lens by precision pressing of glass is generally a process of forming an effective diameter by molding, performing centering for incorporation into a lens barrel, coating an effective diameter, and assembling into the lens barrel. It consists of

【0003】上記工程の中で芯取り工程については成
形時に鏡胴への組み込み基準を有効径と同軸にレンズに
形成し、上記工程とを同時に行うという試みが数多
くなされている(例えば実公平4−329号公報、特開
昭60−115905号公報、特開平1−145340
号公報、特開平2−175621号公報、特開平3−1
77322号公報、特開昭61−183135号公報、
特開昭62−78122号公報、特開昭61−2429
21号公報、特開平2−239125号公報、特開昭6
3−297233号公報、特開平1−183611号公
報、特開平1−183622号公報等)。
In the centering step among the above steps, many attempts have been made to form the lens into the lens barrel as a standard for incorporation into the lens barrel at the time of molding, and to perform the above step simultaneously (for example, Jikken 4). -329, JP-A-60-115905, JP-A-1-145340.
Japanese Patent Laid-Open No. 2-175621, Japanese Patent Laid-Open No. 3-1
77322, JP-A-61-183135,
JP-A-62-78122, JP-A-61-2429
21, JP-A-2-239125, JP-A-6-
3-297233, JP-A-1-183611, JP-A-1-183622, etc.).

【0004】実公平4−329号公報および特開昭60
−115905号公報は有効径外のテーパによってレン
ズの鏡胴への位置決めを行う技術が開示されている。し
かしこの技術はテーパ1面で位置決めするため平行偏心
は押さえられるが、傾き偏心は抑えられない。
Japanese Utility Model Publication No. 4-329 and Japanese Patent Laid-Open No. 60
Japanese Patent Laid-Open No. 115905 discloses a technique of positioning a lens on a lens barrel by using a taper outside the effective diameter. However, in this technique, the parallel eccentricity can be suppressed because the taper 1 surface is used for positioning, but the tilt eccentricity cannot be suppressed.

【0005】上記のその他の公報に開示の技術は、芯取
りは不要となるが、平行偏心、傾き偏心を正確に押さえ
ることのできるレンズの製造方法を開示するものではな
い。
Although the techniques disclosed in the other publications described above do not require centering, they do not disclose a lens manufacturing method capable of accurately suppressing parallel eccentricity and tilt eccentricity.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記事情に鑑
みなされたものであって、芯取り工程が不要であり、か
つ鏡胴への組み込みにおける光軸調整の工程が不要であ
り、容易に高精度の組み込みが達成できるガラスレンズ
の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and requires no centering step and no optical axis adjustment step in assembling into a lens barrel. An object of the present invention is to provide a method for manufacturing a glass lens that can achieve highly accurate assembly.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は有効径
外周に、光軸と平行方向の位置決め基準面と、光軸と垂
直方向の位置決め基準面の2面を持つガラスプレスレン
ズ用金型を使用することを特徴とするガラスプレスレン
ズの製造方法に関する。
That is, the present invention provides a mold for a glass press lens which has, on the outer circumference of the effective diameter, a positioning reference surface parallel to the optical axis and a positioning reference surface perpendicular to the optical axis. It relates to a method for manufacturing a glass press lens, which is characterized by being used.

【0008】また本発明は有効径外周に、光軸と平行方
向の位置決め基準面と、光軸と垂直方向の位置決め基準
面の2面を持つ、ガラスプレスレンズ用金型を提供する
ものである。
The present invention also provides a mold for a glass press lens, which has, on the outer circumference of the effective diameter, two surfaces, a positioning reference surface parallel to the optical axis and a positioning reference surface perpendicular to the optical axis. .

【0009】レンズの有効径外周に、鏡胴への組み込み
基準面を有効径と同時形成することにより、芯取り工程
が不要となる。
By simultaneously forming the reference surface for incorporation into the lens barrel on the outer circumference of the effective diameter of the lens together with the effective diameter, the centering step becomes unnecessary.

【0010】またレンズ有効径外周に光軸と平行方向の
位置決め基準面と、光軸の垂直方向の位置決め基準面の
二面を有効径と同時形成することにより、レンズの鏡胴
への組み込みにおいて、複雑な光軸調整工程が不要とな
り、容易に高精度の組み込みが達成できる。
Further, by forming the positioning reference plane parallel to the optical axis and the positioning reference plane perpendicular to the optical axis on the outer circumference of the effective diameter of the lens at the same time as the effective diameter, the lens can be incorporated into the lens barrel. As a result, a complicated optical axis adjustment process is unnecessary, and highly accurate assembly can be easily achieved.

【0011】特に有効径の少なくとも一面が非球面であ
るレンズを製造する場合、芯取り工程での偏心誤差(芯
取り誤差、外径振れ)を含まず、高精度の鏡胴への組み
込みが達成できる。
In particular, when manufacturing a lens in which at least one surface of the effective diameter is an aspherical surface, eccentricity error (centering error, outer diameter deviation) in the centering process is not included, and highly accurate assembly into the lens barrel is achieved. it can.

【0012】以下に本発明を図面を参照しながら説明す
る。
The present invention will be described below with reference to the drawings.

【実施例1】図1は本発明のガラスプレス用金型例の概
略断面構成を表す。このガラスプレス用金型は、金型
(2)とこれと対向する金型(3)から構成される。両
金型はセラミック、超硬合金、金属等の材料を用いて構
成してよい。
Example 1 FIG. 1 shows a schematic sectional structure of an example of a glass press mold of the present invention. This glass press mold comprises a mold (2) and a mold (3) facing the mold (2). Both dies may be constructed using materials such as ceramics, cemented carbides and metals.

【0013】金型(2)および金型(3)の有効径の面
形状は両面が球面であってもよいし、少なくとも一面は
非球面形状であってもよい。なお本発明において有効径
とは光学設計から要求された光学性能を有する面および
その径を言うものとする。
Both surfaces of the mold (2) and the mold (3) having an effective diameter may be spherical, or at least one surface may be aspherical. In the present invention, the effective diameter means the surface having the optical performance required from the optical design and its diameter.

【0014】金型(2)の有効径外周には、(2a)に
示す光軸と平行方向の位置決め基準面(光軸と同軸で傾
きα、幅1mmの円錐面)と(2b)に示す光軸と垂直
方向の位置決め基準面(光軸の垂直軸と同軸で傾きβ、
幅1mmの円錐面)が超精密切削加工機で、有効径と同
軸で高精度に加工されている。この2面は同時に形成し
てもよいし、別々に形成してもよい。有効径と基準面の
同軸加工精度向上の点から同時に形成する方が好まし
い。
On the outer circumference of the effective diameter of the mold (2), there are shown a positioning reference plane (a conical surface having an inclination α coaxial with the optical axis and a width of 1 mm) parallel to the optical axis shown in (2a) and (2b). Positioning reference plane in the direction perpendicular to the optical axis (slope β coaxial with the vertical axis of the optical axis,
The conical surface with a width of 1 mm) is processed with high precision by an ultra-precision cutting machine coaxial with the effective diameter. These two surfaces may be formed simultaneously or separately. From the viewpoint of improving the accuracy of coaxial machining of the effective diameter and the reference surface, it is preferable to form them at the same time.

【0015】基準面の傾きα、βはそれぞれ0°〜10
°の範囲、望ましくは5°以下に設定すれば、所望の高
精度の組み込みが達成できる。具体的には上記基準面が
各々傾き10°以下の円錐面であるとき、組み込み時の
平行偏心を10〜25μmに押さえることができ、従来
の芯取り加工時の平行偏心の1/2〜2/3となる高精
度が達成できる。具体的実施例においてはα=1°、β
=1°とした。
The inclinations α and β of the reference plane are 0 ° to 10 °, respectively.
By setting the angle in the range of 5 °, preferably 5 ° or less, the desired highly accurate incorporation can be achieved. Specifically, when each of the reference surfaces is a conical surface with an inclination of 10 ° or less, the parallel eccentricity at the time of assembling can be suppressed to 10 to 25 μm, which is 1/2 to 2 of the parallel eccentricity at the time of conventional centering processing. A high accuracy of / 3 can be achieved. In a specific embodiment, α = 1 °, β
= 1 °.

【0016】また両基準面の幅は、1mmとしたがこれ
は成形後のガラスの熱収縮を考慮したときの、鏡胴組込
みのための必要最小幅確保のためであり、鏡胴の保持部
形状にあわせ適宜設定することができる。ところで、金
型および嵌合部材加工における有効径(面形状、径)、基
準面(面形状、径)はすべて、成形後のガラスの熱収縮を
考慮した補正値で行っている。
The width of both reference surfaces is set to 1 mm in order to ensure the minimum necessary width for incorporating the lens barrel in consideration of the heat shrinkage of the glass after molding. It can be appropriately set according to the shape. By the way, the effective diameter (surface shape, diameter) and the reference surface (surface shape, diameter) in the processing of the mold and the fitting member are all corrected values in consideration of the heat shrinkage of the glass after molding.

【0017】溶融ガラスSF6(ガラス転移点Tg=4
50℃)を用いて具体的に成形工程を説明する。金型
(2)および(3)は図示しない加熱手段によりTg以
下の所定の温度(380℃)に加熱されている。次に、
予め900℃で溶融されている溶融ガラス2gを金型
(3)に滴下して供給する。ガラス表面温度がTg以下
(400℃)、ガラス内部温度がTg以上(500℃)
の所定の温度に冷却後に金型(2)にて押圧成形する。
このとき窒素雰囲気中で成形を行うことで、金型とガラ
スの反応が抑制され、良好な品質のレンズが得られる。
Molten glass SF6 (glass transition point Tg = 4
The molding step will be specifically described using 50 ° C.). The molds (2) and (3) are heated to a predetermined temperature (380 ° C.) below Tg by a heating means (not shown). next,
2 g of molten glass previously melted at 900 ° C. is dropped into a mold (3) and supplied. Glass surface temperature is Tg or lower (400 ° C), glass internal temperature is Tg or higher (500 ° C)
After cooling to a predetermined temperature, press molding is performed with the mold (2).
At this time, by molding in a nitrogen atmosphere, the reaction between the mold and the glass is suppressed, and a lens of good quality is obtained.

【0018】このようにして得られたレンズの概略断面
形状を図2に示す。得られた成形レンズ(1)の有効径
外周には光軸と平行方向の位置決め基準面(1a)(光
軸と同軸で傾き1°、幅0.5mmの円錐面)と光軸と
垂直方向の位置決め基準面(光軸の垂直軸と同軸で傾き
1°、幅0.5mmの円錐面)が有効径と同時形成され
ている。
A schematic sectional shape of the lens thus obtained is shown in FIG. On the outer circumference of the effective diameter of the obtained molded lens (1), a positioning reference plane (1a) parallel to the optical axis (a conical surface having an inclination of 1 ° coaxial with the optical axis and a width of 0.5 mm) and a direction perpendicular to the optical axis The reference plane for positioning (a conical surface having an inclination of 1 ° and a width of 0.5 mm coaxial with the vertical axis of the optical axis) is formed simultaneously with the effective diameter.

【0019】コバ部は自由形状としている。このように
ガラス外周コバ部を全面規制せず一部フリーとして逃げ
をつくること、および金型に溶融ガラスが接触した瞬間
に急冷されガラスが熱収縮することで離型が容易に行え
る。
The edge portion has a free shape. In this way, the outer peripheral edge portion of the glass is not regulated on the entire surface and is partially free to make an escape, and the glass is thermally cooled at the moment when the molten glass comes into contact with the mold, so that the glass is thermally contracted, so that the mold release can be easily performed.

【0020】また、レンズの位置決め基準面積は、成形
後のガラスが熱収縮するため、金型基準面積より減少す
るが、幅0.3mm以上の輪帯が形成されていれば組み
込み可能である。
Further, the positioning reference area of the lens is smaller than the reference area of the mold because the glass after molding is thermally shrunk, but it can be incorporated if a ring zone having a width of 0.3 mm or more is formed.

【0021】次にレンズの鏡胴への組み込み手法につい
て図3を用いて説明する。鏡胴(4)と一体となった支
持部材には、支持部(4a)、(4b)が形成されてい
る。
Next, a method of incorporating the lens into the lens barrel will be described with reference to FIG. Support members (4a) and (4b) are formed on the support member integrated with the lens barrel (4).

【0022】支持部材の光軸と平行方向の支持凸部(4
a)とレンズの光軸と平行方向の基準面(1a)を当接
することで位置決めを行い平行偏心を押さえる。
The supporting projection (4) parallel to the optical axis of the supporting member.
A) and a reference surface (1a) parallel to the optical axis of the lens are brought into contact with each other to perform positioning and suppress parallel eccentricity.

【0023】同時に支持部材の光軸と垂直方向の支持部
(4b)とレンズの光軸と垂直方向の基準面(1b)を
当接することで位置決めを行い、傾き偏心を押さえる。
この状態で鏡胴の支持部材とレンズを接着、固定する。
接着、固定は、例えば紫外線硬化樹脂、エポキシ系樹脂
を用いた接着または押え環を用いたネジ込みによる固定
により行うことができる。
At the same time, the supporting portion (4b) in the direction perpendicular to the optical axis of the supporting member and the reference surface (1b) in the direction perpendicular to the optical axis of the lens are brought into contact with each other to perform positioning and suppress the tilt eccentricity.
In this state, the supporting member of the lens barrel and the lens are bonded and fixed.
Adhesion and fixing can be performed, for example, by adhesion using an ultraviolet curable resin or epoxy resin or fixing by screwing using a retaining ring.

【0024】上記組み込み手法によれば、鏡胴への組み
込み時に厳密な光軸調整の必要はなく、容易に高精度の
レンズ組み込みが行える。レンズの有効径外に鏡胴への
組み込み基準面を有効径と同時成形したことにより、芯
取り工程が不要となる。
According to the above assembling method, it is not necessary to strictly adjust the optical axis when assembling into the lens barrel, and the lens can be easily incorporated with high precision. Since the reference surface to be incorporated into the lens barrel is formed outside the effective diameter of the lens at the same time as the effective diameter, the centering step is not required.

【0025】[0025]

【実施例2】図4には本発明の別の態様のガラスプレス
用金型例の概略断面構成を表す。このガラスプレス用金
型は、金型(6)とこれと対向する金型(7)および嵌
合部材(8)から構成される。両金型はセラミック、超
硬合金、金属等の材料を用いて構成してよく、嵌合部材
は金型と同様の材料、すなわちセラミック、超硬合金、
金属等を用いることができ、好ましくは金型と同じ材料
を用いる。
[Embodiment 2] FIG. 4 shows a schematic cross-sectional structure of an example of a glass press mold according to another embodiment of the present invention. This glass press mold comprises a mold (6), a mold (7) and a fitting member (8) facing the mold (6). Both molds may be made of a material such as ceramic, cemented carbide, metal, etc., and the fitting member is made of the same material as the mold, that is, ceramic, cemented carbide,
A metal or the like can be used, and preferably the same material as the mold is used.

【0026】金型(6)には有効径と、光軸と平行方向
基準の円筒面(6a)を超精密切削加工機で同時加工し
てある。もちろん別々に加工してもよいが有効径と基準
面の同軸加工精度向上のために同時に加工することが好
ましい。
The die (6) has an effective diameter and a cylindrical surface (6a) in the direction parallel to the optical axis which are simultaneously machined by an ultra-precision cutting machine. Of course, they may be machined separately, but they are preferably machined simultaneously to improve the accuracy of coaxial machining of the effective diameter and the reference plane.

【0027】また光軸と平行方向基準面は上記の円筒面
(6a)に限らず、円錐面でもよい。この場合、光軸と
同軸、傾きα’が0°〜10°の範囲、望ましくは5°
以下に設定すれば、同様に所望の高精度の組み込みが達
成できる。傾きが0°の場合が円筒面(6a)となる。
The reference plane parallel to the optical axis is not limited to the cylindrical surface (6a) but may be a conical surface. In this case, it is coaxial with the optical axis and the inclination α'is in the range of 0 ° to 10 °, preferably 5 °.
If the following settings are made, the desired highly accurate incorporation can be achieved as well. When the inclination is 0 °, the cylindrical surface (6a) is formed.

【0028】嵌合部材(8)には、(8a)に示す光軸
と平行方向の位置決め基準面((6a)と嵌合し、光軸
と同軸の幅1mmの円筒)と、(8b)に示す光軸と垂
直方向の位置決め基準面(光軸と垂直な幅1mmの輪帯
状平面)が超精密切削加工機で、高精度に加工されてい
る。これらの基準面は別々に加工されてもよいが、有効
径と基準面の同軸加工精度向上の観点から同時に加工す
ることが好ましい。
In the fitting member (8), a positioning reference plane ((6a) fitted in a direction parallel to the optical axis shown in (8a) and having a width of 1 mm coaxial with the optical axis) and (8b). The positioning reference plane (a ring-shaped flat surface having a width of 1 mm perpendicular to the optical axis) shown in (1) is machined with high precision by the ultra-precision cutting machine. These reference planes may be machined separately, but it is preferable to machine them simultaneously from the viewpoint of improving the accuracy of coaxial machining of the effective diameter and the reference plane.

【0029】両基準面の幅は、1mmとしたがこれは成
形後のガラスの熱収縮を考慮したときの鏡胴組込みのた
めの必要最小幅確保のためであり、鏡胴の保持部形状に
あわせ適宜設定することができる。
The width of both reference planes was set to 1 mm, but this is to ensure the minimum necessary width for incorporating the lens barrel in consideration of the heat shrinkage of the glass after molding. It can be set as appropriate.

【0030】また(8b)に示す光軸と垂直方向の位置
決め基準面は円錐面であってもよく、その場合、嵌合部
材(8)を取り付けた後の光軸の垂直軸と同軸の傾き
β’が0°〜10°の範囲、望ましくは5°以下に設定
すれば、同様に所望の高精度の組み込みが達成できる。
傾きが0°の場合が光軸と垂直な輪帯状平面となる。
Further, the positioning reference plane perpendicular to the optical axis shown in (8b) may be a conical surface, in which case the inclination of the optical axis after the fitting member (8) is attached is coaxial with the vertical axis. If β'is set in the range of 0 ° to 10 °, preferably 5 ° or less, the desired highly accurate incorporation can be achieved as well.
When the inclination is 0 °, it becomes a ring-shaped plane perpendicular to the optical axis.

【0031】金型と嵌合部材の組み合わせは、金型の光
軸と平行方向の基準面(6a)と嵌合部材の光軸と平行
方向の基準面(8a)を当接してネジ止めまたは押え環
で固定することで行え、嵌合部材基準面と金型有効径の
同軸度を達成する。
For the combination of the mold and the fitting member, the reference surface (6a) parallel to the optical axis of the mold and the reference surface (8a) parallel to the optical axis of the fitting member are brought into contact with each other or screwed or This can be done by fixing with a retaining ring, and the coaxiality between the fitting member reference surface and the effective die diameter is achieved.

【0032】溶融ガラスSK5(ガラス転移点Tg=6
50℃)を用いて具体的に成形工程を説明する。金型
(6)および(7)は図示しない加熱手段によりTg以
下の所定の温度(600℃)に加熱されている。次に、
予め1300℃で溶融されている溶融ガラス2gを金型
(7)に滴下して供給する。ガラス表面温度がTg以下
(630℃)、ガラス内部温度がTg以上(700℃)
の所定の温度に冷却後に金型(6)にて押圧成形する。
このとき窒素雰囲気中で成形を行うことで、金型とガラ
スの反応が抑制され、良好な品質のレンズが得られる。
Molten glass SK5 (glass transition point Tg = 6
The molding step will be specifically described using 50 ° C.). The molds (6) and (7) are heated to a predetermined temperature (600 ° C.) below Tg by a heating means (not shown). next,
2 g of molten glass which has been previously melted at 1300 ° C. is dropped into a mold (7) and supplied. Glass surface temperature is Tg or lower (630 ° C), glass internal temperature is Tg or higher (700 ° C)
After being cooled to a predetermined temperature of No. 1, press molding is performed with a mold (6).
At this time, by molding in a nitrogen atmosphere, the reaction between the mold and the glass is suppressed, and a lens of good quality is obtained.

【0033】このようにして得られたレンズの概略断面
形状を図5に示す。得られた成形レンズ(5)の有効径
外周には光軸と平行方向の位置決め基準面(5a)(光
軸と同軸幅0.5mmの円筒面)と光軸と垂直方向の位
置決め基準面(5b)(光軸の垂直幅0.5mmの輪帯
状平面)有効径と同時形成されている。
FIG. 5 shows a schematic sectional shape of the lens thus obtained. On the outer circumference of the effective diameter of the obtained molded lens (5), a positioning reference plane (5a) parallel to the optical axis (a cylindrical surface having a width of 0.5 mm coaxial with the optical axis) and a positioning reference plane perpendicular to the optical axis ( 5b) (a ring-shaped plane having a vertical width of the optical axis of 0.5 mm) is formed simultaneously with the effective diameter.

【0034】コバ部は自由形状としている。このように
ガラス外周コバ部を全面規制せず一部フリーとして逃げ
をつくること、および金型に溶融ガラスが接触した瞬間
に急冷されガラスが熱収縮することで離型が容易に行え
る。
The edge portion has a free shape. In this way, the outer peripheral edge portion of the glass is not regulated on the entire surface and is partially free to make an escape, and the glass is thermally cooled at the moment when the molten glass comes into contact with the mold, so that the glass is thermally contracted, so that the mold release can be easily performed.

【0035】また、レンズの位置決め基準面積は、成形
後のガラスが熱収縮するため、金型基準面積より減少す
るが、幅0.3mm以上の輪帯が形成されていれば組み
込み可能である。
Further, the reference positioning area of the lens is smaller than the reference area of the mold because the molded glass undergoes heat shrinkage, but it can be incorporated if a ring zone having a width of 0.3 mm or more is formed.

【0036】次にレンズの鏡胴への組み込み手法につい
て図6を用いて説明する。鏡胴(9)と一体となった支
持部材には、支持部(9a)、(9b)が形成されてい
る。
Next, a method of incorporating the lens into the lens barrel will be described with reference to FIG. Support members (9a) and (9b) are formed on the support member integrated with the lens barrel (9).

【0037】支持部材の光軸と平行方向の支持凸部(9
a)とレンズの光軸と平行方向の基準面(5a)を当接
することで位置決めを行い平行偏心を押さえる。
The supporting projection (9) parallel to the optical axis of the supporting member.
A) and a reference surface (5a) parallel to the optical axis of the lens are brought into contact with each other to perform positioning and suppress parallel eccentricity.

【0038】同時に支持部材の光軸と垂直方向の支持部
(9b)とレンズの光軸と垂直方向の基準面(5b)を
当接することで位置決めを行い、傾き偏心を押さえる。
この状態で鏡胴の支持部材とレンズを接着、固定する。
接着、固定は、例えば紫外線硬化樹脂、エポキシ系樹脂
を用いた接着または押え環を用いたネジ込みによる固定
により行うことができる。
At the same time, the supporting portion (9b) in the direction perpendicular to the optical axis of the supporting member and the reference surface (5b) in the direction perpendicular to the optical axis of the lens are brought into contact with each other to perform positioning and suppress the tilt eccentricity.
In this state, the supporting member of the lens barrel and the lens are bonded and fixed.
Adhesion and fixing can be performed, for example, by adhesion using an ultraviolet curable resin or epoxy resin or fixing by screwing using a retaining ring.

【0039】上記組み込み手法によれば、鏡胴への組み
込み時に厳密な光軸調整の必要はなく、容易に高精度の
レンズ組み込みが行える。具体的には平行偏心10〜2
5μmで、芯取り加工時の1/2〜2/3が達成でき
る。レンズの有効径外に鏡胴への組み込み基準面を有効
径と同時成形したことにより、芯取り工程が不要とな
る。
According to the above-mentioned assembling method, it is not necessary to strictly adjust the optical axis at the time of assembling into the lens barrel, and the lens can be easily incorporated with high precision. Specifically, parallel eccentricity 10-2
With a thickness of 5 μm, 1/2 to 2/3 of that during centering can be achieved. Since the reference surface to be incorporated into the lens barrel is formed outside the effective diameter of the lens at the same time as the effective diameter, the centering step is not required.

【0040】[0040]

【実施例3】本発明は鏡胴への組み込みのみならず接合
レンズの組み込みにも適用できる。図7に接合レンズの
概略断面図を示す。
Third Embodiment The present invention can be applied not only to the lens barrel but also to the cemented lens. FIG. 7 shows a schematic sectional view of the cemented lens.

【0041】レンズ(10)は研磨、研削にて作製さ
れ、接合面の有効径外周に、光軸と同軸の円筒面(10
a)と光軸と垂直方向の支持凸部(10b)が同時形成
されている。円筒面(10a)は円錐面でもよい。その
場合、光軸と同軸で傾きδが0〜10°、好ましくは0
〜5°とする。δ=0°の場合が円筒面(10a)をあ
らわす。レンズ(11)は本発明による成形レンズであ
る。
The lens (10) is manufactured by polishing and grinding, and a cylindrical surface (10) coaxial with the optical axis is formed on the outer circumference of the effective diameter of the cemented surface.
a) and a supporting convex portion (10b) perpendicular to the optical axis are formed at the same time. The cylindrical surface (10a) may be a conical surface. In that case, the inclination δ is coaxial with the optical axis and is 0 to 10 °, preferably 0.
~ 5 °. The case of δ = 0 ° represents the cylindrical surface (10a). The lens (11) is a molded lens according to the present invention.

【0042】図8はレンズ(11)を製造するためのガ
ラスプレス用金型例の概略断面構成を表す。
FIG. 8 shows a schematic sectional structure of an example of a glass press mold for producing the lens (11).

【0043】金型(12)の有効径外周には、(12
a)に示す光軸と平行方向の位置決め基準面(光軸と同
軸の幅1mmの円筒面)と(12b)に示す光軸と垂直
方向の位置決め基準面(光軸の垂直軸と同軸で、傾きγ
=1°、幅1mmの円筒面)が超精密切削加工機で、有
効径と同軸で高精度に加工されている。
On the outer circumference of the effective diameter of the die (12), (12
a) a positioning reference plane parallel to the optical axis (a cylindrical surface having a width of 1 mm coaxial with the optical axis) and (12b) a positioning reference plane perpendicular to the optical axis (coaxial with the vertical axis of the optical axis, Slope γ
= 1 °, a cylindrical surface with a width of 1 mm) is processed with high precision by an ultra-precision cutting machine coaxial with the effective diameter.

【0044】基準面(12a)は円筒面に限らず円錐面
であってもよく、その場合、レンズ(10)の基準面
(10a)に嵌合するように、光軸と同軸で、δの角度
を設ける。δ=0°の場合が、円筒面(12a)とな
る。
The reference surface (12a) is not limited to a cylindrical surface and may be a conical surface. In this case, the reference surface (12a) is coaxial with the optical axis so that it can be fitted to the reference surface (10a) of the lens (10). Make an angle. The case of δ = 0 ° is the cylindrical surface (12a).

【0045】傾きγは1°としたが、0〜10゜、好ま
しくは0〜5°の間に設定すればよい。
Although the inclination γ is set to 1 °, it may be set to 0 to 10 °, preferably 0 to 5 °.

【0046】また両基準面の幅は、1mmとしたがこれ
は成形後のガラスの熱収縮を考慮したときの鏡胴組込み
のための必要最小幅確保のためであり、鏡胴の保持部形
状にあわせ適宜設定することができる。
The width of both reference surfaces was set to 1 mm, but this is to ensure the minimum required width for incorporating the lens barrel in consideration of the heat shrinkage of the glass after molding. It can be appropriately set according to

【0047】溶融ガラスLaF71(ガラス転移点Tg
=630℃)を用いて具体的に成形工程を説明する。金
型(12)および(13)は図示しない加熱手段により
Tg以下の所定の温度(580℃)に加熱されている。
次に、予め1250℃で溶融されている溶融ガラス2g
を金型(13)に滴下して供給する。ガラス表面温度が
Tg以下(600℃)、ガラス内部温度がTg以上(6
80℃)の所定の温度に冷却後に金型(12)にて押圧
成形する。このとき窒素雰囲気中で成形を行うことで、
金型とガラスの反応が抑制され、良好な品質のレンズが
得られる。
Molten glass LaF71 (glass transition point Tg
= 630 ° C.), the molding process will be specifically described. The molds (12) and (13) are heated to a predetermined temperature (580 ° C.) below Tg by a heating means (not shown).
Next, 2 g of molten glass that has been previously melted at 1250 ° C
Is dripped into the mold (13) and supplied. The glass surface temperature is Tg or lower (600 ° C), and the glass internal temperature is Tg or higher (6
After cooling to a predetermined temperature of 80 ° C., press molding is performed with a mold (12). At this time, by molding in a nitrogen atmosphere,
The reaction between the mold and the glass is suppressed, and a good quality lens is obtained.

【0048】得られたレンズ(11)の有効径外周の接
合面は光軸と平行方向の位置決め基準面(11a)と光
軸と垂直方向の位置決め基準面(11b)が同時形成さ
れている。
A joint reference surface (11a) parallel to the optical axis and a reference reference surface (11b) perpendicular to the optical axis are simultaneously formed on the cemented surface of the outer periphery of the effective diameter of the obtained lens (11).

【0049】コバ部は自由形状としている。このように
ガラス外周コバ部を全面規制せず一部フリーとして逃げ
をつくること、および金型に溶融ガラスが接触した瞬間
に急冷されガラスが熱収縮することで離型が容易に行え
る。
The edge portion has a free shape. In this way, the outer peripheral edge portion of the glass is not regulated on the entire surface and is partially free to make an escape, and the glass is thermally cooled at the moment when the molten glass comes into contact with the mold, so that the glass is thermally contracted, so that the mold release can be easily performed.

【0050】次に接合レンズの組み込み方法について図
7を用いて説明する。レンズ(10)の円筒面(10
a)と、レンズ(11)の基準面(11a)を当接する
ことで位置決めを行い平行偏心を押さえる。
Next, a method of incorporating the cemented lens will be described with reference to FIG. Cylindrical surface of lens (10) (10
A) and the reference surface (11a) of the lens (11) are brought into contact with each other to perform positioning and suppress parallel eccentricity.

【0051】同時にレンズ(10)の光軸と垂直方向の
支持部材(10b)とレンズ(11)の基準面(11
b)を当接することで位置決めを行い、傾き偏心を押さ
える。この状態で鏡胴の支持部材とレンズを接着、固定
する。接着、固定は、例えば紫外線硬化樹脂、エポキシ
系樹脂を用いた接着または、押え環を用いたネジ込みに
よる固定により行うことができる。
At the same time, the support member (10b) perpendicular to the optical axis of the lens (10) and the reference plane (11) of the lens (11).
Positioning is performed by abutting b), and tilt eccentricity is suppressed. In this state, the supporting member of the lens barrel and the lens are bonded and fixed. Adhesion and fixing can be performed by, for example, adhesion using an ultraviolet curable resin or an epoxy resin, or fixing by screwing using a retaining ring.

【0052】上記組み込み手法によれば、厳密な光軸調
整を必要とせず、容易に接合レンズの組み込みが行え
る。
According to the above assembling method, the cemented lens can be easily incorporated without requiring strict optical axis adjustment.

【0053】[0053]

【発明の効果】本発明によりレンズの有効径外周に、鏡
胴への組み込み基準面を有効径と同時形成することによ
り、芯取り工程が不要となる。
According to the present invention, the centering step is unnecessary by forming the reference surface to be incorporated into the lens barrel simultaneously with the effective diameter on the outer circumference of the effective diameter of the lens.

【0054】またレンズ有効径外周に光軸と平行方向の
位置決め基準面と、光軸の垂直方向の位置決め基準面の
二面を有効径と同時形成することにより、レンズの鏡胴
への組み込みにおいて、複雑な光軸調整工程が不要とな
り、容易に高精度の組み込みが達成できる。
Further, by forming two surfaces, a positioning reference plane parallel to the optical axis and a positioning reference plane perpendicular to the optical axis, on the outer circumference of the effective diameter of the lens at the same time as the effective diameter, the lens is incorporated in the lens barrel. As a result, a complicated optical axis adjustment process is unnecessary, and highly accurate assembly can be easily achieved.

【0055】特に有効径の少なくとも一面が非球面であ
るレンズを製造する場合、芯取り工程での偏心誤差(芯
取り誤差、外径振れ)を含まず、高精度の鏡胴への組み
込みが達成できる。
In particular, when manufacturing a lens in which at least one surface of the effective diameter is an aspherical surface, eccentricity error (centering error, outer diameter deviation) in the centering process is not included, and highly accurate assembly into the lens barrel is achieved. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のガラスプレス用金型の概略断面図で
ある。
FIG. 1 is a schematic sectional view of a glass press mold of the present invention.

【図2】 図1の金型により得られたガラスプレスレン
ズの概略断面形状を表す図である。
FIG. 2 is a diagram showing a schematic cross-sectional shape of a glass press lens obtained by the mold of FIG.

【図3】 レンズの鏡胴への組み込み手法を説明するた
めの図である。
FIG. 3 is a diagram for explaining a method of incorporating a lens into a lens barrel.

【図4】 本発明の別のガラスプレス用金型の概略断面
図である。
FIG. 4 is a schematic sectional view of another glass press mold of the present invention.

【図5】 図4の金型により得られたガラスプレスレン
ズの概略断面形状を表す図である。
5 is a diagram showing a schematic cross-sectional shape of a glass press lens obtained by the mold of FIG.

【図6】 レンズの鏡胴への組み込み手法を説明するた
めの図である。
FIG. 6 is a diagram for explaining a method of incorporating a lens into a lens barrel.

【図7】 接合レンズの概略断面図を示す。FIG. 7 shows a schematic cross-sectional view of a cemented lens.

【図8】 本発明の別のガラスプレス用金型の概略断面
図である。
FIG. 8 is a schematic sectional view of another glass press mold of the present invention.

【符号の説明】[Explanation of symbols]

1:レンズ、1a:光軸平行方向位置決め基準面、1
b:光軸垂直方向位置決め基準面、2:金型、2a:光
軸平行方向位置決め基準面、2b:光軸垂直方向位置決
め基準面、3:金型、4:鏡胴、4a:光軸平行方向支
持部、4b:光軸垂直方向支持部、5:レンズ、5a:
光軸平行方向位置決め基準面、5b:光軸垂直方向位置
決め基準面、6:金型、6a:光軸平行方向位置決め基
準面、7:金型、8:嵌合部材、8a:光軸平行方向位
置決め基準面、8b:光軸垂直方向位置決め基準面、
9:鏡胴、9a:光軸平行方向支持部、9b:光軸垂直
方向支持部
1: Lens, 1a: Positioning reference plane parallel to the optical axis, 1
b: Optical axis vertical direction reference plane, 2: Mold, 2a: Optical axis parallel direction reference plane, 2b: Optical axis vertical direction reference plane, 3: Mold, 4: Lens barrel, 4a: Optical axis parallel Direction support parts, 4b: Optical axis vertical direction support parts, 5: Lens, 5a:
Optical axis parallel direction positioning reference surface, 5b: Optical axis vertical direction positioning reference surface, 6: Mold, 6a: Optical axis parallel direction positioning reference surface, 7: Mold, 8: Fitting member, 8a: Optical axis parallel direction Positioning reference plane, 8b: Optical axis vertical direction reference plane,
9: lens barrel, 9a: optical axis parallel direction support portion, 9b: optical axis vertical direction support portion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富阪 俊也 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 (72)発明者 森 明博 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 (72)発明者 河合 伸典 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 (72)発明者 坂 真奈美 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 (72)発明者 岡 直子 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiya Tomisaka 2-3-13 Azuchicho, Chuo-ku, Osaka-shi, Osaka, Osaka International Building Minolta Co., Ltd. (72) Inventor Akihiro Mori Azuchi, Chuo-ku, Osaka-shi, Osaka 2-13-3 Machi, Osaka International Building Minolta Co., Ltd. (72) Inventor Shinnori Kawai 2-3-13 Azuchi-cho, Chuo-ku, Osaka City, Osaka Prefecture Minamita International Building (72) Inventor Manami Saka 2-13-3 Azuchi-cho, Chuo-ku, Osaka-shi, Osaka Prefecture Osaka International Building Minolta Co., Ltd. (72) Inventor Naoko Oka 2-3-3 Azuchi-cho, Chuo-ku, Osaka City, Osaka Prefecture Osaka International Building Minolta Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有効径外周に、光軸と平行方向の位置決
め基準面と、光軸と垂直方向の位置決め基準面の2面を
持つガラスプレスレンズ用金型を使用することを特徴と
するガラスプレスレンズの製造方法。
1. A glass press lens mold having, on the outer circumference of an effective diameter, a mold for a glass press lens having two surfaces, a positioning reference surface parallel to the optical axis and a positioning reference surface perpendicular to the optical axis. Press lens manufacturing method.
【請求項2】 有効径外周に、光軸と平行方向の位置決
め基準面と、光軸と垂直方向の位置決め基準面の2面を
持つ、ガラスプレスレンズ用金型。
2. A mold for a glass press lens, which has, on the outer circumference of the effective diameter, a positioning reference surface parallel to the optical axis and a positioning reference surface perpendicular to the optical axis.
JP27753594A 1994-11-11 1994-11-11 Production of glass press lens Pending JPH08133764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27753594A JPH08133764A (en) 1994-11-11 1994-11-11 Production of glass press lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27753594A JPH08133764A (en) 1994-11-11 1994-11-11 Production of glass press lens

Publications (1)

Publication Number Publication Date
JPH08133764A true JPH08133764A (en) 1996-05-28

Family

ID=17584918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27753594A Pending JPH08133764A (en) 1994-11-11 1994-11-11 Production of glass press lens

Country Status (1)

Country Link
JP (1) JPH08133764A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559214B2 (en) 2003-05-19 2009-07-14 Minolta Co., Ltd. Method of manufacturing optical element made of glass
WO2011093502A1 (en) * 2010-02-01 2011-08-04 コニカミノルタオプト株式会社 Method for manufacturing lens unit, imaging device, method for manufacturing die, molding die, and method for forming glass lens array
WO2012032872A1 (en) * 2010-09-07 2012-03-15 コニカミノルタオプト株式会社 Optical element and production method thereof, and light emitting unit comprising optical element and assembly method thereof
JP2020071361A (en) * 2018-10-31 2020-05-07 株式会社タムロン Optical element with antireflection structure, manufacturing die, method for manufacturing optical element with antireflection structure, and imaging device
JP2020106628A (en) * 2018-12-27 2020-07-09 株式会社タムロン Optical element with antireflection structure, manufacturing method of the same, manufacturing-purpose mold manufacturing method and imaging device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559214B2 (en) 2003-05-19 2009-07-14 Minolta Co., Ltd. Method of manufacturing optical element made of glass
WO2011093502A1 (en) * 2010-02-01 2011-08-04 コニカミノルタオプト株式会社 Method for manufacturing lens unit, imaging device, method for manufacturing die, molding die, and method for forming glass lens array
CN102712515A (en) * 2010-02-01 2012-10-03 柯尼卡美能达先进多层薄膜株式会社 Method for manufacturing lens unit, imaging device, method for manufacturing die, molding die, and method for forming glass lens array
JPWO2011093502A1 (en) * 2010-02-01 2013-06-06 コニカミノルタアドバンストレイヤー株式会社 Lens unit manufacturing method, imaging device, mold manufacturing method, molding mold, and glass lens array molding method
WO2012032872A1 (en) * 2010-09-07 2012-03-15 コニカミノルタオプト株式会社 Optical element and production method thereof, and light emitting unit comprising optical element and assembly method thereof
JP2020071361A (en) * 2018-10-31 2020-05-07 株式会社タムロン Optical element with antireflection structure, manufacturing die, method for manufacturing optical element with antireflection structure, and imaging device
JP2020106628A (en) * 2018-12-27 2020-07-09 株式会社タムロン Optical element with antireflection structure, manufacturing method of the same, manufacturing-purpose mold manufacturing method and imaging device

Similar Documents

Publication Publication Date Title
KR100827003B1 (en) Axial symmetric molding glass lens and method for manufacturing an axial symmetric molding glass lens
JPH01106003A (en) Lens element and manufacture thereof
JP4064976B2 (en) Optical lens molding equipment
US20030056544A1 (en) Molding die for optical element with lens-barrel
JPH08133764A (en) Production of glass press lens
JPH11198014A (en) Manufacture of plastic lens
WO2010058740A1 (en) Aspheric lens manufacturing method
JP5112120B2 (en) Optical element manufacturing method and mold assembly for manufacturing the same
JP6037795B2 (en) Optical element mold
JP7407528B2 (en) glass lens mold
JP5269477B2 (en) Optical element manufacturing method, optical element manufacturing apparatus, and optical element
JP4727487B2 (en) Manufacturing method of optical component and mold for molding
JP2001270724A (en) Optical lens and metal mold for forming the same
JP3299785B2 (en) Manufacturing method of optical glass lens
JP4118668B2 (en) Molding apparatus for press molding and method for producing molded body using the same
JPH02102136A (en) Mold for molding optical element and production thereof
JP2008074675A (en) Method of producing die for forming optical element, and method for production of optical element
JP3217153B2 (en) Optical material molding die, optical material molding method using the same, and optical material obtained thereby
JPH1164775A (en) Rotary polygon mirror, metallic mold for the mirror and glass press molding method for the mirror
JPH05301723A (en) Method for forming optical element
JPH01167242A (en) Mold for lens molding
JPH02102134A (en) Molding method of optical element
JP3214922B2 (en) Optical element molding die and method of manufacturing the same
JPH07138035A (en) Forming equipment of optical element
JP3219460B2 (en) Optical element mold and method of manufacturing the same