JPH08131940A - Preparation of water-repellent film - Google Patents

Preparation of water-repellent film

Info

Publication number
JPH08131940A
JPH08131940A JP28051494A JP28051494A JPH08131940A JP H08131940 A JPH08131940 A JP H08131940A JP 28051494 A JP28051494 A JP 28051494A JP 28051494 A JP28051494 A JP 28051494A JP H08131940 A JPH08131940 A JP H08131940A
Authority
JP
Japan
Prior art keywords
fine particles
water
resin
coating film
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28051494A
Other languages
Japanese (ja)
Other versions
JP3370459B2 (en
Inventor
Shigeki Nomura
茂樹 野村
Atsuyoshi Nagata
敦善 永田
Motokazu Yuasa
基和 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP28051494A priority Critical patent/JP3370459B2/en
Publication of JPH08131940A publication Critical patent/JPH08131940A/en
Application granted granted Critical
Publication of JP3370459B2 publication Critical patent/JP3370459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

PURPOSE: To provide a method for preparing a film applicable to various bases and of stabilized water-repellent performance. CONSTITUTION: The preparation method consists of (a) a process of plasma treating fine particles (for example, graphite fluoride) composed of a base having a contact angle with water of 90 deg.C or more, (b) a process of applying resin to the base and forming a resin film on the base, (c) a process of providing the uncured or semi-cured state of the resin film formed by the process (b) and making the plasma-treated fine particles prepared by the process (a) adhere to the resin film in a manner of being exposed on an area of at least 20% of the resin film surface area after curing the resin film, and (d) a process of curing the resin film on which fine particles adhere which has been prepared by the process (c) and fixing the fine particles to the resin film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撥水材、氷雪固着防止
剤、防汚材等に利用される撥水性被膜の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a water-repellent film used as a water-repellent material, a snow and ice sticking preventive agent, an antifouling material and the like.

【0002】[0002]

【従来の技術】撥水性被膜としては、従来からシリコー
ン系又はフッ素系樹脂化合物の被膜が多く用いられ、撥
水性被膜の製造方法としては、一般的にはポリテトラフ
ルオロエチレン等のフルオロカーボン系微粉末をエタノ
ール等に懸濁させた塗料を塗布し、乾燥後約400℃で
1時間程度焼き付け処理を行う方法等が多く用いられて
いる(特開昭62−186133号公報)。
2. Description of the Related Art As a water-repellent coating, a silicone-based or fluorine-based resin compound coating has been conventionally used in many cases. As a method for producing a water-repellent coating, a fluorocarbon-based fine powder such as polytetrafluoroethylene is generally used. A method of applying a coating material prepared by suspending the above in ethanol or the like and baking it at about 400 ° C. for about 1 hour after drying is often used (Japanese Patent Laid-Open No. 62-186133).

【0003】しかしながら、フルオロカーボン系微粉末
の焼き付けによる方法では表面が平坦化されるため、撥
水性としてはポリテトラフルオロエチレン板と同程度
(水との接触角で110゜程度)が限界であり、いわゆ
る蓮の葉が水を弾くような撥水性(水との接触角で12
0゜以上)は得られず、その上約400℃の高温で焼き
付け工程を行うため、木材やプラスチック等には適用が
不可能であるという欠点があった。
However, since the surface is flattened by the method of baking the fluorocarbon fine powder, the water repellency is limited to the same level as that of the polytetrafluoroethylene plate (about 110 ° in contact angle with water). So-called lotus leaf repels water (contact angle with water is 12
(0 ° or more) cannot be obtained, and since the baking process is performed at a high temperature of about 400 ° C., it cannot be applied to wood, plastics and the like.

【0004】また、表面に微細な凹凸形状を設けること
によって撥水性を発現する撥水性被膜も提案され、この
撥水性の被膜を形成する方法としては、基体表面をプラ
ズマによるエッチング等で粗面化して凸状体を形成した
後、該凸状体の表面にフッ素系化合物の層を形成する方
法(特開平4−343764号公報)、撥水性の樹脂中
にシリカ等の無機微粒子や有機微粒子を混合させた組成
物を基体上に塗布して撥水性被膜とする方法(特開平3
−244679号公報)等が開示されている。
A water-repellent coating which exhibits water repellency by providing fine irregularities on the surface has also been proposed. As a method for forming this water-repellent coating, the substrate surface is roughened by etching with plasma or the like. To form a convex body, and then form a layer of a fluorine-based compound on the surface of the convex body (Japanese Patent Laid-Open No. 4-343674), and inorganic fine particles such as silica or organic fine particles in a water-repellent resin. A method of applying a mixed composition onto a substrate to form a water-repellent coating (Japanese Patent Laid-Open No. HEI 3)
No. 244679) is disclosed.

【0005】しかしながら、これらの方法においては、
得られた表面に凹凸形状を持つ撥水性被膜は、蓮の葉に
近い、或いは同程度の撥水性を発現するものの、粗面化
を行う前処理が必要であったり、樹脂中に粉体を分散さ
せて凹凸形状を発現するため、粉体の分散のむらにより
撥水性能にばらつきが生じたり、さらに粉体の上を樹脂
層が覆うため、凹凸形状が発現しにくい等の欠点があっ
た。
However, in these methods,
The resulting water-repellent coating with irregularities has a water repellency similar to or similar to lotus leaves, but requires pretreatment for roughening or powder in the resin. Since the irregularities are expressed by being dispersed, the water repellency is varied due to uneven distribution of the powder, and the resin layer covers the powder, so that the irregularities are difficult to develop.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記問題点に
鑑みてなされたものであり、その目的は種々の基体に適
応可能で、安定した撥水性能を有する被膜の製造方法を
提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object thereof is to provide a method for producing a coating film which is adaptable to various substrates and has stable water repellency. Is.

【0007】[0007]

【課題を解決するための手段】本発明の撥水性被膜の製
造方法は、(a) 水との接触角が90°以上である基
材からなる微粒子をプラズマ処理する工程、(b) 樹
脂を基体に塗布して基体上に樹脂塗膜を形成する工程、
(c) 工程(b)によって得られた樹脂塗膜が未硬化
又は半硬化の状態において、工程(a)によって得られ
たプラズマ処理された微粒子を該樹脂塗膜に、該樹脂塗
膜の硬化後に、該微粒子が該樹脂塗膜表面積の20%以
上の領域に露出されるように付着させる工程、及び
(d) 工程(c)によって得られた、微粒子付着樹脂
塗膜を硬化させて該微粒子を該樹脂塗膜に固着させる工
程からなる。
Means for Solving the Problems The method for producing a water-repellent coating of the present invention comprises: (a) a step of plasma-treating fine particles made of a base material having a contact angle with water of 90 ° or more; A step of applying to a substrate to form a resin coating film on the substrate,
(C) In the uncured or semi-cured state of the resin coating film obtained in the step (b), the plasma-treated fine particles obtained in the step (a) are applied to the resin coating film and the resin coating film is cured. After that, the fine particle-adhered resin coating film obtained by the step of adhering the fine particles so as to be exposed in a region of 20% or more of the surface area of the resin coating film and (d) the step (c) is cured to obtain the fine particle particles. Is fixed to the resin coating film.

【0008】本発明で使用される微粒子は、水との接触
角が90°以上である基材からなる微粒子である。
The fine particles used in the present invention are fine particles made of a base material having a contact angle with water of 90 ° or more.

【0009】上記水との接触角が90°以上である基材
としては、例えば、ポリエチレン、ポリプロピレン、フ
ッ化黒鉛、含フッ素樹脂、オルガノポリシロキサン等が
挙げられる。
Examples of the base material having a contact angle with water of 90 ° or more include polyethylene, polypropylene, graphite fluoride, fluororesin, organopolysiloxane and the like.

【0010】上記含フッ素樹脂としては、例えばテトラ
フルオロエチレン、ヘキサフルオロプロピレン、パーフ
ルオロビニルエーテル(パーフルオロメチルエーテル
等)、パーフルオロアリルエーテル、パーフルオロプロ
ピレン、ビニリデンフルオライド等のフッ素含有重合性
モノマーの単独重合体(ポリテトラフルオロエチレン、
ポリビニリデンフルオライド等)、それらの共重合体
(ビニリデンフルオライド−テトラフルオロエチレン−
パーフルオロプロピレン共重合体、ビニリデンフルオラ
イド−ヘキサフルオロプロピレン−テトラフルオロエチ
レン共重合体等)、上記フッ素含有重合性モノマーと例
えばエチレン又はプロピレン等のようなフッ素非含有重
合性モノマーとの共重合体などが挙げられる。
Examples of the fluorine-containing resin include fluorine-containing polymerizable monomers such as tetrafluoroethylene, hexafluoropropylene, perfluorovinyl ether (perfluoromethyl ether, etc.), perfluoroallyl ether, perfluoropropylene, vinylidene fluoride and the like. Homopolymer (polytetrafluoroethylene,
Polyvinylidene fluoride, etc.) and their copolymers (vinylidene fluoride-tetrafluoroethylene-
Perfluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, etc.), a copolymer of the above fluorine-containing polymerizable monomer and a fluorine-free polymerizable monomer such as ethylene or propylene And so on.

【0011】上記基材と水との接触角が小さくなると、
撥水力より濡れ表面を大きくしようとする力の方が大き
いため、凹凸形状になっても撥水性が向上しないので、
水との接触角は90°以上が好ましく、さらには、微細
な凹凸では水が入り込めなくなって水滴が浮いたような
状態となり、表面を水滴が転がるような撥水性を発現す
るためには95°以上がより好ましい。
When the contact angle between the base material and water becomes small,
Since the force to make the wet surface larger than the water repellency is greater, the water repellency does not improve even if it becomes uneven,
The contact angle with water is preferably 90 ° or more. Further, in the case of fine unevenness, water cannot enter and the water droplets float, and in order to exhibit water repellency such that the water droplets roll on the surface, 95 More than ° is more preferable.

【0012】上記微粒子は単独で使用してもよいし、2
種以上を併用してもよい。
The above fine particles may be used alone, or 2
You may use together 1 or more types.

【0013】上記微粒子は、少なくとも表面が水との接
触角が90°以上である基材からなる微粒子であればよ
く、例えば、芯材のまわりに上記の性質を有する基材が
設けられてもよい。
The fine particles may be fine particles made of a base material having a contact angle with water of 90 ° or more on at least the surface. For example, a base material having the above-mentioned properties may be provided around the core material. Good.

【0014】上記微粒子の平均粒径は、小さくなると凹
凸形状の効果が低下して接触角が小さくなり、大きくな
ると細かい水滴に対する撥水性が低下するので、1nm
〜1mmが好ましい。
When the average particle diameter of the fine particles is small, the effect of the uneven shape is reduced and the contact angle is small, and when the average particle diameter is large, the water repellency for fine water droplets is reduced, and therefore 1 nm.
-1 mm is preferable.

【0015】本発明で樹脂塗膜を形成するために使用さ
れる樹脂としては、例えば溶媒乾燥型、熱硬化型、光硬
化型、電子線硬化型等の樹脂や乾性油が挙げられる。
The resin used to form the resin coating film in the present invention includes, for example, solvent drying type, thermosetting type, photocuring type, electron beam curing type resins and drying oil.

【0016】上記樹脂を硬化させる際には必要に応じて
重合開始剤が添加される。さらにこれらの樹脂主成分以
外にも、溶媒、顔料、揺変剤、充填剤、紫外線吸収剤、
酸化防止剤、重合禁止剤、表面改質剤、脱泡剤、硬化助
剤等の各種添加剤を使用してもよい。
When the above resin is cured, a polymerization initiator is added if necessary. Furthermore, in addition to these resin main components, solvents, pigments, thixotropic agents, fillers, ultraviolet absorbers,
Various additives such as an antioxidant, a polymerization inhibitor, a surface modifier, a defoaming agent and a curing aid may be used.

【0017】以下、本発明の撥水性被膜の製造方法を工
程に従って説明する。まず、工程(a)において、水と
の接触角が90°以上である基材からなる微粒子をプラ
ズマ処理して、該微粒子表面層の樹脂に対する濡れ性を
向上させる。
The method for producing the water repellent coating film of the present invention will be described below in accordance with steps. First, in the step (a), fine particles made of a base material having a contact angle with water of 90 ° or more are subjected to plasma treatment to improve wettability of the fine particle surface layer with a resin.

【0018】プラズマ処理に使用されるガスとしては、
例えば、窒素;アンモニア;窒素水素混合ガス(フォー
ミングガス);酸素、オゾン、水蒸気、一酸化炭素、二
酸化炭素、一酸化窒素、二酸化窒素等の酸素含有ガス;
ヘリウム、アルゴン、ネオン、キセノン等の希ガス;フ
ッ素、塩素、ヨウ素等のハロゲンガス;酸素含有ガスに
対して1/2以下の体積比で4フッ化炭素(CF4 )、
6フッ化炭素(C2 6 )、6フッ化プロピレン(C3
6 )等のフッ化炭素ガスを混合した混合ガスなどが挙
げられる。
The gas used for plasma treatment is
For example, nitrogen; ammonia; nitrogen-hydrogen mixed gas (four
Minging gas); oxygen, ozone, water vapor, carbon monoxide, dinitrogen
Oxygen-containing gas such as carbon oxide, nitric oxide, nitrogen dioxide;
Noble gas such as helium, argon, neon, xenon;
Halogen gas such as fluorine, chlorine, iodine; for oxygen-containing gas
In contrast, carbon tetrafluoride (CFFour),
Carbon hexafluoride (C2F 6), Propylene hexafluoride (C3
F6) Etc. mixed gas such as mixed fluorocarbon gas.
You can

【0019】励起手段としては、例えば、直流電圧を印
加してプラズマ分解する方法、高周波電圧を印加してプ
ラズマ分解する方法、マイクロ波放電によってプラズマ
分解する方法、電子サイクロトロン共鳴によってプラズ
マ分解する方法、熱フィラメントによって熱分解する方
法等が挙げられるが、装置の簡便性から直流電圧印加又
は高周波電圧印加してプラズマ分解する方法が好まし
い。
As the excitation means, for example, a method of applying a DC voltage for plasma decomposition, a method of applying a high frequency voltage for plasma decomposition, a method of plasma decomposition by microwave discharge, a method of plasma decomposition by electron cyclotron resonance, A method of thermally decomposing with a hot filament may be mentioned, but a method of plasma decomposing by applying a DC voltage or a high-frequency voltage is preferable from the viewpoint of the simplicity of the apparatus.

【0020】プラズマ処理時の処理圧力は、低くなると
高価な真空チャンバーや真空排気装置が必要になり、高
くなると熱プラズマとなり、ついにはアーク放電に移行
してしまうので、1×10-4〜100Torrの範囲内
で励起手段によって適宜決定される。励起手段として直
流電圧印加法又は高周波電圧印加法を用いる場合は、1
×10-2〜100Torrの範囲が好ましい。
When the processing pressure during the plasma processing becomes low, an expensive vacuum chamber or vacuum exhaust device is required, and when it becomes high, thermal plasma is generated, and finally arc discharge occurs. Therefore, 1 × 10 −4 to 100 Torr. It is appropriately determined by the excitation means within the range. When using the DC voltage application method or the high frequency voltage application method as the excitation means, 1
The range of x10 -2 to 100 Torr is preferable.

【0021】プラズマ処理に要する投入電力は、電極面
積や形状にもよるが、低くなるとプラズマ密度が小さく
なるため処理時間が掛かり非能率的になり、高くなると
処理する微粒子にダメージを与えるので、30〜200
Wが好ましい。
The input power required for the plasma treatment depends on the electrode area and shape, but if it is low, the plasma density will be low and the process will take a long time to be inefficient, and if it is high, the fine particles to be processed will be damaged. ~ 200
W is preferred.

【0022】電極構造が、平行平板型、同軸円筒型、曲
面対向平板型又は双曲面対向平行型の場合、容量結合形
式で電圧は印加される。また、高周波電圧印加の場合、
外部電極を用いて誘導形式で印加することが可能であ
る。
When the electrode structure is a parallel plate type, a coaxial cylinder type, a curved surface opposed flat plate type or a hyperboloid opposed parallel type, a voltage is applied in a capacitive coupling type. Also, in case of applying high frequency voltage,
It is possible to apply in an inductive manner using external electrodes.

【0023】電極間の距離は、処理圧力、微粒子の粒径
等によって適宜決定されるが、長くなるとプラズマ密度
が低下し高電力が必要となるため、微粒子の処理が可能
な範囲でできるだけ短くするのがよい。
The distance between the electrodes is appropriately determined by the processing pressure, the particle size of the fine particles and the like. However, the longer the distance, the lower the plasma density and the higher power required. Is good.

【0024】本発明におけるプラズマ処理は、特に微粒
子を加熱したり冷却したりする必要はなく、室温下で十
分である。
The plasma treatment in the present invention does not require heating or cooling of the fine particles and is sufficient at room temperature.

【0025】プラズマ処理に要する時間は、微粒子の粒
径や投入電力等によって適宜決定され、粒子の粒径が大
きい場合はプラズマ時間を長くする必要があり、投入電
力が高ければ、プラズマ時間が短くて済む。一般的に
は、処理時間が短くなると微粒子の樹脂に対する濡れ性
が不十分となり、必要以上に長くなっても濡れ性の著し
い向上は期待できないので、1〜60分程度である。
The time required for the plasma treatment is appropriately determined by the particle size of the fine particles, the input power, and the like. When the particle size is large, it is necessary to lengthen the plasma time, and when the input power is high, the plasma time is short. Complete. Generally, when the treatment time is shortened, the wettability of the fine particles to the resin becomes insufficient, and even if the treatment time is longer than necessary, a remarkable improvement in the wettability cannot be expected, so that the treatment time is about 1 to 60 minutes.

【0026】プラズマ処理に際しては、微粒子の全面に
渡って均一に処理するために、粒子を攪拌しながら行う
のが好ましい。この攪拌方法としては、微粒子を封入し
た容器を回転させる方法、振動によって微粒子を混合す
る方法等が挙げられ、これらの方法は、微粒子の粒径、
処理量等により適宜決定される。
The plasma treatment is preferably performed while stirring the particles in order to uniformly treat the entire surface of the fine particles. Examples of the stirring method include a method of rotating a container containing fine particles, a method of mixing fine particles by vibration, and the like.
It is appropriately determined depending on the processing amount and the like.

【0027】プラズマ処理された微粒子は、樹脂に対す
る濡れ性が向上し、樹脂と付着後、樹脂が硬化すると、
微粒子と樹脂との密着性が向上する。微粒子に対するプ
ラズマ処理は、微粒子の極く表層部の処理であるため、
露出したプラズマ処理表層部は経時的に微粒子内部に拡
散するので、微粒子表面の樹脂に対する濡れ性は経時的
に低下する。従って、プラズマ処理された微粒子を後述
の工程(c)に使用するまでの時間はできるだけ短い方
が良い。この時間が長くなる場合は、プラズマ処理され
た微粒子を冷凍保存するのが良い。
The plasma-treated fine particles have improved wettability with the resin, and when the resin is cured after being attached to the resin,
Adhesion between the fine particles and the resin is improved. Since the plasma treatment for the fine particles is a treatment for the very surface layer of the fine particles,
Since the exposed plasma-treated surface layer portion diffuses into the inside of the fine particles over time, the wettability of the fine particle surface with the resin decreases over time. Therefore, it is preferable that the time until the plasma-treated fine particles are used in the step (c) described later is as short as possible. When this time becomes long, it is preferable to freeze and store the plasma-treated fine particles.

【0028】工程(b)は、樹脂を基体に塗布して基体
上に樹脂塗膜を形成する工程である。上記基体として
は、特に限定されるものではなく、例えばプラスチック
プレートやフィルム、木材合板、金属板等が使用され、
また、繊維強化プラスチック(FRP)等の成形体でも
よい。
The step (b) is a step of applying a resin to a substrate to form a resin coating film on the substrate. The substrate is not particularly limited, for example, plastic plate or film, wood plywood, metal plate, etc.,
Further, a molded body such as fiber reinforced plastic (FRP) may be used.

【0029】樹脂を基体に塗布する方法としては、使用
する樹脂や目的に応じて適当な方法が選択されるが、一
般的には、例えば刷毛塗り、スプレーコート法、バーコ
ート法、ドクターブレード法、ロールコート法、ディッ
ピング法等が利用できる。
As a method of applying the resin to the substrate, an appropriate method is selected depending on the resin used and the purpose, but generally, for example, brush coating, spray coating method, bar coating method, doctor blade method. The roll coating method, the dipping method, etc. can be used.

【0030】樹脂塗膜の膜厚は、小さくなると後述の工
程(c)において微粒子が十分に付着されず、撥水性能
の耐久性が低下するので、使用する微粒子の平均粒径の
3分の1以上であることが好ましい。
When the film thickness of the resin coating film becomes smaller, the fine particles are not sufficiently adhered in the step (c) described later, and the durability of the water repellency is deteriorated. It is preferably 1 or more.

【0031】工程(c)は、工程(b)によって得られ
た樹脂塗膜が未硬化又は半硬化の状態において、工程
(a)によって得られたプラズマ処理された微粒子を該
樹脂塗膜に付着させる工程である。微粒子を付着させる
前に塗膜を硬化すると微粒子を塗膜に固定することがで
きないので、第2の工程は塗膜が未硬化又は半硬化状態
で行う。
In the step (c), the plasma-treated fine particles obtained in the step (a) are adhered to the resin coating film obtained in the step (b) while the resin coating film obtained in the step (b) is uncured or semi-cured. It is the process of making. If the coating film is cured before attaching the fine particles, the fine particles cannot be fixed to the coating film, so the second step is performed in the uncured or semi-cured state of the coating film.

【0032】微粒子を付着させる方法としては、特に限
定されるものではないが、例えば塗膜上に直接微粒子を
散布する方法、微粒子の入ったパレット等の容器に、樹
脂を塗布した基体を塗膜面が微粒子と接するように載せ
る方法、微粒子中に塗膜面を浸漬する方法等が利用で
き、未硬化又は半硬化状態の塗膜に微粒子を接触させ付
着させればよい。さらに、微粒子を付着させた後に付着
表面を軽くプレスしてもよい。
The method of adhering the fine particles is not particularly limited, but for example, a method of directly dispersing the fine particles on the coating film, or a container such as a pallet containing the fine particles is coated with a resin-coated substrate. A method of placing the fine particles so that the surface thereof contacts the fine particles, a method of immersing the coating film surface in the fine particles, and the like can be used, and the fine particles may be brought into contact with and adhered to the uncured or semi-cured coating film. Further, after adhering the fine particles, the adhering surface may be lightly pressed.

【0033】微粒子を樹脂塗膜に付着させる程度として
は、該樹脂塗膜の硬化後に、該微粒子が該樹脂塗膜表面
積の20%以上の領域に露出されるように付着させる。
その理由は、上記微粒子が樹脂塗膜を被覆する面積が少
なくなると塗膜表面の水接触角が小さくなり撥水性が低
下するので、微粒子が樹脂塗膜を被覆する面積は、20
%以上に限定され、さらには、表面を水滴が転がるよう
な撥水性能を安定して発現するためには70%以上がよ
り好ましいからである。上記微粒子が樹脂塗膜を被覆す
る面積は、例えば塗膜表面を電子顕微鏡写真に撮り、こ
れを画像処理して微粒子が露出した表面積の割合を求め
ることができる。
As for the degree of adhesion of the fine particles to the resin coating film, after the resin coating film is cured, the fine particles are exposed so as to be exposed in an area of 20% or more of the surface area of the resin coating film.
The reason is that if the area of the fine particles covering the resin coating film decreases, the water contact angle on the surface of the coating film decreases and the water repellency decreases.
% Or more, and 70% or more is more preferable in order to stably develop the water-repellent performance such that water drops roll on the surface. The area where the fine particles cover the resin coating film can be determined, for example, by taking an electron micrograph of the coating film surface and subjecting the image to image processing to determine the ratio of the surface area where the fine particles are exposed.

【0034】工程(d)は、工程(c)によって得られ
た、微粒子付着樹脂塗膜を硬化させて該微粒子を該樹脂
塗膜に固着させる工程である。硬化方法は、使用した樹
脂に応じて適当な方法が選択される。
The step (d) is a step of curing the fine particle-adhered resin coating film obtained in the step (c) to fix the fine particles to the resin coating film. As the curing method, an appropriate method is selected according to the resin used.

【0035】この硬化終了後、必要に応じて塗膜に固定
されなかった過剰の微粒子を取り除く。
After the completion of this curing, excess fine particles not fixed to the coating film are removed if necessary.

【0036】塗膜に固定されなかった過剰の微粒子を取
り除く方法としては、特に限定されるものではないが、
例えばエアースプレーにより除去する方法等が利用でき
る。尚、未硬化又は半硬化状態での塗膜の粘着性の大き
い樹脂の場合は塗膜の硬化前に過剰の微粒子を取り除
き、その後樹脂を硬化させてもよい。取り除かれた過剰
の微粒子は回収して再利用することによって、使用する
微粒子の量を最小限に抑えることができる。
The method for removing excess fine particles not fixed to the coating film is not particularly limited,
For example, a method of removing by air spray can be used. In the case of a resin having a high tackiness in the coating film in the uncured or semi-cured state, excess fine particles may be removed before the coating film is cured, and then the resin may be cured. The amount of the used fine particles can be minimized by collecting and reusing the removed excess fine particles.

【0037】また、硬化終了後、この被膜を放置し、微
粒子の表面の撥水性を復元する。微粒子に対するプラズ
マ処理は、微粒子の極く表層部の処理であるため、露出
したプラズマ処理表層部は経時的に微粒子内部に拡散す
るので、微粒子表面は時間が経つと本来の撥水性を回復
する。このとき、撥水性を十分に回復させるには5日以
上放置するのが望ましく、更に短期間で撥水性を回復さ
せたい場合には、室温以上の温度で保存するのが良い。
保存温度は基体又は被膜に影響を及ぼさない範囲であれ
ば任意である。
After the completion of curing, the coating is left to restore the water repellency of the surface of the fine particles. Since the plasma treatment for the fine particles is a treatment for the very surface layer portion of the fine particles, the exposed plasma-treated surface layer portion diffuses inside the fine particles over time, so that the surface of the fine particles recovers its original water repellency over time. At this time, it is desirable to leave it for 5 days or longer in order to sufficiently restore the water repellency, and if it is desired to restore the water repellency in a shorter period of time, it is preferable to store it at room temperature or higher.
The storage temperature is arbitrary as long as it does not affect the substrate or the coating.

【0038】以上のようにして、高撥水性を有し、且
つ、微粒子の密着性が向上した撥水性被膜を得ることが
できる。
As described above, a water-repellent coating having high water repellency and improved adhesion of fine particles can be obtained.

【0039】[0039]

【作用】プラズマ処理された微粒子は、樹脂に対する濡
れ性が向上し、樹脂と付着後、樹脂が硬化すると、微粒
子と樹脂との密着性が向上する。微粒子に対するプラズ
マ処理は、微粒子の極く表層部の処理であるため、露出
したプラズマ処理表層部は経時的に微粒子内部に拡散す
るので、微粒子表面は時間が経つと本来の撥水性を回復
する。一方、樹脂と接している微粒子のプラズマ処理部
分は、樹脂と接着しているため時間を経ても微粒子内部
へ拡散することなく、接着性は維持される。このように
して、撥水性を有する微粒子と樹脂との接着性が向上す
るため、被膜表面の高撥水性とその被膜の耐久性が向上
する。
The plasma-treated fine particles have improved wettability with respect to the resin, and when the resin is cured after being attached to the resin, the adhesion between the fine particles and the resin is improved. Since the plasma treatment for the fine particles is a treatment for the very surface layer portion of the fine particles, the exposed plasma-treated surface layer portion diffuses inside the fine particles over time, so that the surface of the fine particles recovers its original water repellency over time. On the other hand, since the plasma-treated portion of the fine particles in contact with the resin is adhered to the resin, the adhesive property is maintained without diffusion into the inside of the fine particles even after a lapse of time. In this way, the adhesion between the water-repellent fine particles and the resin is improved, so that the high water repellency of the coating surface and the durability of the coating film are improved.

【0040】[0040]

【実施例】以下に本発明を実施例につき説明する。以下
「部」としたものは「重量部」を意味する。 (実施例1)水との接触角が90°以上である基材から
なる微粒子(フッ化黒鉛、セントラル硝子社製、商品名
「セフボンCMA」、平均粒径2μm)を、内容積50
0mlのフラスコに30g入れ、フラスコ内を0.05
Torrまで排気後、酸素雰囲気下0.11Torr、
投入電力40Wで、粉体プラズマ処理装置(サムコイン
ターナショナル社製、型式PT−500)により、1
3.56MHzの高周波を印加して、室温で40分間プ
ラズマ処理した。
EXAMPLES The present invention will be described below with reference to examples. Hereinafter, "parts" means "parts by weight". (Example 1) Fine particles made of a base material having a contact angle with water of 90 ° or more (fluorinated graphite, manufactured by Central Glass Co., Ltd., trade name "Cefbon CMA", average particle diameter 2 µm) were used in an internal volume of 50.
Put 30g in a 0ml flask and put 0.05g in the flask.
After exhausting to Torr, 0.11 Torr in oxygen atmosphere,
With a power input of 40 W, a powder plasma processing device (Model PT-500 manufactured by Samco International Co., Ltd.)
A high frequency of 3.56 MHz was applied and plasma processing was performed for 40 minutes at room temperature.

【0041】アルミニウム板上に、不飽和ポリエステル
樹脂(三井東圧化学社製、商品名「エスター V262
−G」)100部に重合開始剤として55重量%メチル
エチルケトンパーオキサイド−ジメチルフタレート溶液
1部、硬化助剤として6重量%ナフテン酸コバルト溶液
0.1部を添加した樹脂をスプレーコート法により塗布
した。これを上記のプラズマ処理済み微粒子で満たした
容器中に浸漬することによって表面に微粒子を付着させ
た後、過剰の微粒子をエアースプレーで除去して60℃
で1時間加熱することにより塗膜の硬化を行った後、7
日間放置して撥水性被膜を得た。
An unsaturated polyester resin (manufactured by Mitsui Toatsu Chemical Co., Inc. under the trade name "Ester V262" is provided on an aluminum plate.
-G ") 100 parts of 55 wt% methyl ethyl ketone peroxide-dimethyl phthalate solution as a polymerization initiator and 0.1 part of 6 wt% cobalt naphthenate solution as a curing aid were applied by a spray coating method. . This is immersed in a container filled with the above plasma-treated fine particles to adhere the fine particles to the surface, and then excess fine particles are removed by air spraying to 60 ° C.
After curing the coating by heating for 1 hour at
After standing for a day, a water-repellent coating was obtained.

【0042】(実施例2)水との接触角が90°以上で
ある基材からなる微粒子(住友スリーエム社製、商品名
「THV200P」、ビニリデンフルオライド−テトラ
フルオロエチレン−パーフルオロプロピレン共重合体、
平均粒径280μm)を、酸素雰囲気下の代わりに、窒
素雰囲気下にしたことの他は実施例1と同様にしてプラ
ズマ処理した。
(Example 2) Fine particles composed of a base material having a contact angle with water of 90 ° or more (trade name "THV200P" manufactured by Sumitomo 3M Limited, vinylidene fluoride-tetrafluoroethylene-perfluoropropylene copolymer) ,
Plasma treatment was performed in the same manner as in Example 1 except that the average particle size was 280 μm) was changed to nitrogen atmosphere instead of oxygen atmosphere.

【0043】木材合板上に、多官能アクリレート樹脂
(日本化薬社製、商品名「カヤラッドDPCA−30、
カプロラクトン変性ジペンタエリスルトールヘキサアク
リレート)100部に光反応開始剤(チバガイギー社
製、商品名「イルガキュア I−184」、1−ヒドロ
キシシクロヘキシルフェニルケトン)2部、硬化助剤
(日本化薬社製、商品名「カヤキュアー EPA」、p
−ジメチルアミノ安息香酸エチル)0.7部を添加した
樹脂をバーコーターを使用して塗布した。これを50℃
で10分間熱風乾燥させた後にこの塗膜に上記のプラズ
マ処理済み微粒子を散布し、直ちに過剰の微粒子をエア
ースプレーにより除去した。これを高圧水銀ランプによ
り照射量が2000mJ/cm2 になるように紫外線硬
化させ、80℃オーブン中で24時間放置し、撥水性被
膜を得た。
Polyfunctional acrylate resin (trade name "Kayarad DPCA-30, manufactured by Nippon Kayaku Co., Ltd.
100 parts of caprolactone-modified dipentaerythritol hexaacrylate) and 2 parts of a photoinitiator (manufactured by Ciba Geigy, trade name "Irgacure I-184", 1-hydroxycyclohexyl phenyl ketone), a curing aid (manufactured by Nippon Kayaku Co., Ltd.) , Product name "Kayakyu EPA", p
-Ethyl dimethylaminobenzoate) 0.7 part was added and the resin was applied using a bar coater. This is 50 ℃
After drying with hot air for 10 minutes, the above-mentioned plasma-treated fine particles were sprayed on this coating film, and excess fine particles were immediately removed by air spray. This was UV-cured with a high-pressure mercury lamp so that the irradiation amount was 2000 mJ / cm 2, and left in an oven at 80 ° C. for 24 hours to obtain a water-repellent coating.

【0044】(実施例3)水との接触角が90°以上で
ある基材からなる微粒子(ダイキン工業社製、商品名
「ルブロン L−2」、ポリテトラフルオロエチレン、
平均粒径5μm)を、酸素雰囲気下の代わりに、酸素と
4フッ化炭素の4:1の体積比のガス雰囲気下にしたこ
との他は実施例1と同様にしてプラズマ処理した。
(Example 3) Fine particles composed of a base material having a contact angle with water of 90 ° or more (manufactured by Daikin Industries, Ltd., trade name "Lubron L-2", polytetrafluoroethylene,
Plasma treatment was performed in the same manner as in Example 1 except that the average particle size of 5 μm) was changed to a gas atmosphere having a volume ratio of oxygen and carbon tetrafluoride of 4: 1 instead of the oxygen atmosphere.

【0045】アクリル樹脂プレート上に、溶媒乾燥型塗
料(大日本色材社製、商品名「ノバフッソ PF−25
0」、クリアーフッソ樹脂塗料<ベース樹脂:ビニリデ
ンフルオライド−テトラフルオロエチレン−パーフルオ
ロプロピレン共重合体>)をドクターブレードを使用し
て塗布した。この塗膜に上記のプラズマ処理済み微粒子
を散布した後に室温で5時間乾燥して塗膜の硬化を行っ
た。硬化後、過剰の微粒子をエアースプレーにより除去
し、さらに7日間室温放置することにより撥水性被膜を
得た。
Solvent drying type paint (manufactured by Dainippon Color Materials Co., Ltd., trade name "Novafusso PF-25" is placed on an acrylic resin plate.
0 ", clear fluorine resin coating <base resin: vinylidene fluoride-tetrafluoroethylene-perfluoropropylene copolymer>) was applied using a doctor blade. The above plasma-treated fine particles were sprayed onto this coating film, and then dried at room temperature for 5 hours to cure the coating film. After curing, excess fine particles were removed by air spraying and left at room temperature for 7 days to obtain a water-repellent coating.

【0046】(実施例4)実施例1において、水との接
触角が90°以上である基材からなる微粒子としてポリ
エチレンからなる微粒子(東ソー社製、商品名「ペトロ
センパウダー NC−11PW」、低密度ポリエチレ
ン、平均粒径17μm)を用いたこと、及びプラズマ処
理時間を10分としたことの他は、実施例1と同様にし
て撥水性被膜を得た。
(Example 4) In Example 1, fine particles made of polyethylene as fine particles made of a base material having a contact angle with water of 90 ° or more (trade name "Petrosene Powder NC-11PW" manufactured by Tosoh Corporation, A water-repellent coating was obtained in the same manner as in Example 1 except that low-density polyethylene, average particle size 17 μm) was used, and the plasma treatment time was 10 minutes.

【0047】(比較例1)実施例1において、水との接
触角が90°以上である基材からなる微粒子をプラズマ
処理せずに用いたことの他は、実施例1と同様にして撥
水性被膜を得た。
(Comparative Example 1) The same procedure as in Example 1 was carried out except that fine particles made of a base material having a contact angle with water of 90 ° or more were used without plasma treatment in Example 1. An aqueous film was obtained.

【0048】(比較例2)実施例2において、水との接
触角が90°以上である基材からなる微粒子をプラズマ
処理せずに用いたことの他は、実施例2と同様にして撥
水性被膜を得た。
(Comparative Example 2) The same procedure as in Example 2 was carried out except that fine particles made of a base material having a contact angle with water of 90 ° or more were used without plasma treatment in Example 2. An aqueous film was obtained.

【0049】(比較例3)実施例3において、水との接
触角が90°以上である基材からなる微粒子をプラズマ
処理せずに用いたことの他は、実施例3と同様にして撥
水性被膜を得た。
(Comparative Example 3) The same procedure as in Example 3 was carried out except that fine particles made of a base material having a contact angle with water of 90 ° or more were used without plasma treatment in Example 3. An aqueous film was obtained.

【0050】(比較例4)実施例4において、水との接
触角が90°以上である基材からなる微粒子をプラズマ
処理せずに用いたことの他は、実施例4と同様にして撥
水性被膜を得た。
(Comparative Example 4) The same procedure as in Example 4 was carried out except that fine particles made of a base material having a contact angle with water of 90 ° or more were used without plasma treatment in Example 4. An aqueous film was obtained.

【0051】評価 実施例1〜4及び比較例1〜4で使用した水との接触角
が90°以上である基材からなる微粒子を板状体の上に
多数載せ、次いでこれを圧縮し、得られた平板のプラズ
マ処理しない状態における水との接触角を、後述の被膜
の接触角の測定と同様にして測定し、得られた値を表1
に「基材の接触角」として示した。
Evaluation A large number of fine particles made of a base material having a contact angle with water of 90 ° or more used in Examples 1 to 4 and Comparative Examples 1 to 4 were placed on a plate-like body, and then compressed. The contact angle of the obtained flat plate with water in the state without plasma treatment was measured in the same manner as the measurement of the contact angle of the coating film described later, and the obtained values are shown in Table 1.
Is shown as "contact angle of substrate".

【0052】実施例1〜4及び比較例1〜4で得られた
撥水性被膜について以下のようにして、微粒子露出表面
積、被膜の接触角及び耐摩擦性を測定して表1に示し
た。
With respect to the water-repellent coatings obtained in Examples 1 to 4 and Comparative Examples 1 to 4, the exposed surface area of fine particles, the contact angle of the coating and the abrasion resistance were measured and shown in Table 1.

【0053】微粒子露出表面積:走査型電子顕微鏡写真
から微粒子露出表面積の割合を求めた。撮影は被膜表面
5mm×5mmの部分について、被膜面垂直方向から行
い、写真において微粒子露出部分の映像が占める面積を
撮影部の全面積で除することにより、微粒子露出表面積
の割合を求めた。 被膜の接触角の測定:室温23℃、湿度50%の室内に
おいて、針先に小さい水滴をつけ、これを上記被膜上に
付着させ、その状態で接触角計(協和界面科学社製、接
触角計CA−D型)を使用して接触角の測定を行った。 耐摩擦性の測定:被膜を1kg/cm2 の圧力をかけた
ペーパー(十條キンバリー社製、商品名「キムワイプS
−200」)で100回摩擦し、脱落した微粒子をエア
ースプレーにより除去した後、摩擦部の撥水性を上記の
被膜の接触角の測定と同様にして測定した。
Fine particle exposed surface area: The ratio of the fine particle exposed surface area was determined from the scanning electron micrograph. Photographing was performed on the coating surface 5 mm × 5 mm from the direction perpendicular to the coating surface, and the area occupied by the image of the fine particle exposed portion in the photograph was divided by the total area of the photographing portion to determine the proportion of the fine particle exposed surface area. Measurement of contact angle of coating: A small water droplet is attached to the tip of a needle in a room at room temperature of 23 ° C. and humidity of 50%, and this is attached onto the coating, and in that state, a contact angle meter (Kyowa Interface Science, contact angle The contact angle was measured using a total CA-D type). Measurement of abrasion resistance: Paper with a coating applied with a pressure of 1 kg / cm 2 (manufactured by Tojo Kimberley Co., Ltd., product name “Kimwipe S
After rubbing 100 times with "-200") and the fine particles that had fallen off were removed by air spraying, the water repellency of the rubbed portion was measured in the same manner as the measurement of the contact angle of the above coating.

【0054】[0054]

【表1】 [Table 1]

【0055】表1において、接触角測定の欄で「>16
0」と示したものは、被膜の撥水性が高いためにポリテ
トラフルオロエチレン被覆の針を使用しても被膜に水滴
を落とすことができなかったものであり、接触角160
°の時は水滴を落とすことができたため、この時の接触
角を160°以上と判断したものである。なお、実施例
1〜3の被膜は直接水滴を滴下すると水滴は転がり落ち
た。実施例4の被膜については、接触角は大きいが水滴
は転がり落ちなかった。
In Table 1, ">16" in the column of contact angle measurement
"0" indicates that water droplets could not be dropped onto the coating even when a polytetrafluoroethylene-coated needle was used because the coating had high water repellency.
Since water droplets could be dropped when the angle was °, the contact angle at this time was judged to be 160 ° or more. In addition, in the coating films of Examples 1 to 3, when water drops were dropped directly, the water drops rolled off. The coating of Example 4 had a large contact angle, but water droplets did not roll off.

【0056】[0056]

【発明の効果】本発明の撥水性被膜の製造方法は上述の
とおりであり、水との接触角が90°以上である基材か
らなる微粒子をプラズマ処理したものを使用するので、
樹脂塗膜との接着性が向上し、塗膜への優れた粒子密着
性のため耐久性が向上し、さらに撥水性粗面形成による
安定した撥水性被膜が得られる。また、塗膜となる樹脂
の選択巾が広く、各種の基体対して撥水性を付与するこ
とができる。
The method for producing a water-repellent coating of the present invention is as described above, and since the fine particles made of a base material having a contact angle with water of 90 ° or more are plasma-treated,
Adhesiveness with a resin coating film is improved, durability is improved due to excellent particle adhesion to the coating film, and a stable water-repellent coating film is obtained by forming a water-repellent rough surface. In addition, the resin used as the coating film has a wide selection range, and water repellency can be imparted to various substrates.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C09K 3/00 112 Z 3/18 104 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C09K 3/00 112 Z 3/18 104

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (a) 水との接触角が90°以上であ
る基材からなる微粒子をプラズマ処理する工程、(b)
樹脂を基体に塗布して基体上に樹脂塗膜を形成する工
程、(c) 工程(b)によって得られた樹脂塗膜が未
硬化又は半硬化の状態において、工程(a)によって得
られたプラズマ処理された微粒子を該樹脂塗膜に、該樹
脂塗膜の硬化後に、該微粒子が該樹脂塗膜表面積の20
%以上の領域に露出されるように付着させる工程、及び
(d) 工程(c)によって得られた、微粒子付着樹脂
塗膜を硬化させて該微粒子を該樹脂塗膜に固着させる工
程からなることを特徴とする撥水性被膜の製造方法。
1. A process of plasma-treating fine particles made of a substrate having a contact angle with water of 90 ° or more, (a)
A step of applying a resin to a substrate to form a resin coating film on the substrate, (c) a resin coating film obtained by the step (b) in an uncured or semi-cured state, obtained by the step (a) Plasma-treated fine particles are applied to the resin coating film, and after the resin coating film is cured, the fine particles have a surface area of the resin coating film of 20.
% To be exposed so as to be exposed in the region, and (d) the step of curing the fine particle-adhered resin coating film obtained in step (c) to fix the fine particles to the resin coating film. And a method for producing a water-repellent coating.
JP28051494A 1994-11-15 1994-11-15 Method for producing water-repellent coating Expired - Fee Related JP3370459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28051494A JP3370459B2 (en) 1994-11-15 1994-11-15 Method for producing water-repellent coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28051494A JP3370459B2 (en) 1994-11-15 1994-11-15 Method for producing water-repellent coating

Publications (2)

Publication Number Publication Date
JPH08131940A true JPH08131940A (en) 1996-05-28
JP3370459B2 JP3370459B2 (en) 2003-01-27

Family

ID=17626166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28051494A Expired - Fee Related JP3370459B2 (en) 1994-11-15 1994-11-15 Method for producing water-repellent coating

Country Status (1)

Country Link
JP (1) JP3370459B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024523A1 (en) * 1997-11-12 1999-05-20 Showa Denko K.K. Water-repellent coating material and article with water-repellent surface
WO2000025715A3 (en) * 1998-10-30 2000-08-31 Procter & Gamble Topsheet systems for absorbent articles exhibiting improved hydrophilicity gradients
JP2008235284A (en) * 2000-10-16 2008-10-02 Seiko Epson Corp Method of manufacturing device and method of manufacturing electroluminescent display

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024523A1 (en) * 1997-11-12 1999-05-20 Showa Denko K.K. Water-repellent coating material and article with water-repellent surface
WO2000025715A3 (en) * 1998-10-30 2000-08-31 Procter & Gamble Topsheet systems for absorbent articles exhibiting improved hydrophilicity gradients
US6291050B1 (en) 1998-10-30 2001-09-18 The Procter & Gamble Company Topsheet systems for absorbent articles exhibiting improved hydrophilicity gradients
JP2008235284A (en) * 2000-10-16 2008-10-02 Seiko Epson Corp Method of manufacturing device and method of manufacturing electroluminescent display

Also Published As

Publication number Publication date
JP3370459B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
JPH07328532A (en) Water-repellent film
CN102933373B (en) Method for producing article having fine surface irregularities
JP6825825B2 (en) Laminated thin film and manufacturing method of laminated thin film
JP6879570B2 (en) Methods and systems for low reflectance coatings and substrates
US8414980B2 (en) Method for hydrophobic and oleophobic modification of polymeric materials with atmospheric plasmas
CN101304813A (en) Method of enhancing biocompatibility of elastomeric materials by microtexturing using microdroplet patterning
KR20010052510A (en) Process for producing article coated with water-repellent film, article coated with water-pepellent film, and liquid composition for water-pepellent film coating
TW201411177A (en) Anti-reflective hard coat and anti-reflective article
JP2006527402A (en) Method of forming another coating layer on the temporary outermost coating layer of the coated optical lens or replacing the outermost coating layer thereby
JP2009017305A (en) Method of manufacturing dust-proof light transmissive member, its application and imaging apparatus provided with the member
JP3373065B2 (en) Method of forming water-repellent coating
KR101898559B1 (en) Eco-freindly photomask for improving photolithography yield via excellent cleaning easiness and manufacturing method thereof
JPH08131940A (en) Preparation of water-repellent film
JP2015131481A (en) Method for manufacturing replica die for nanoimprint
JP3165672B2 (en) Article having water / oil repellent coating and method for producing the same
JP2006167490A (en) Coating film formed from new silicone-containing fluorine based copolymer
JP3245972B2 (en) Manufacturing method of super water repellent film
JP2006350208A (en) Optical article and its manufacturing method
AU750205B2 (en) Plasma polymerization on surface of material
JPH08134437A (en) Water-repellent film
JPH11329124A (en) Polymer insulator and its manufacture
JP2013010234A (en) Screen printing squeegee
JP3224865B2 (en) Agricultural coating film and method for producing the same
JP2003329805A (en) Antireflection film and method for manufacturing antireflection film
Zhou et al. Superhydrophobic surfaces prepared by plasma fluorination of lotus-leaf-like amorphous carbon films

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081115

LAPS Cancellation because of no payment of annual fees