JPH08131837A - Catalyst for purification of exhaust gas from combustion engine - Google Patents

Catalyst for purification of exhaust gas from combustion engine

Info

Publication number
JPH08131837A
JPH08131837A JP6272209A JP27220994A JPH08131837A JP H08131837 A JPH08131837 A JP H08131837A JP 6272209 A JP6272209 A JP 6272209A JP 27220994 A JP27220994 A JP 27220994A JP H08131837 A JPH08131837 A JP H08131837A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
combustion engine
internal combustion
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6272209A
Other languages
Japanese (ja)
Other versions
JP3567507B2 (en
Inventor
Keiji Yamada
啓司 山田
Toshitsugu Kamioka
敏嗣 上岡
Tomoji Ichikawa
智士 市川
Takahiro Kurokawa
貴弘 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP27220994A priority Critical patent/JP3567507B2/en
Publication of JPH08131837A publication Critical patent/JPH08131837A/en
Application granted granted Critical
Publication of JP3567507B2 publication Critical patent/JP3567507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To provide a catalyst adsorbing hydrocarbons in exhaust gas from an internal-combustion engine and capable of efficiently decomposing and releasing the adsorbed hydrocarbons. CONSTITUTION: This catalyst has an adsorption catalyst part with an adsorption catalyst and a heat generating part with a heat generating agent (e.g. CaO) which generates heat by absorbing moisture. The adsorption catalyst is obtd. by depositing a catalytic metal for decomposition of hydrocarbons on an adsorbent adsorbing hydrocarbons and moisture in exhaust gas from an internal-combustion engine. The heat generating part is disposed on the downstream side of a flow of exhaust gas so that it is made adjacent to the adsorption catalyst part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の排気ガス浄化
用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for an internal combustion engine.

【0002】[0002]

【従来の技術】自動車の内燃機関から排出される炭化水
素は一般には三元触媒によって分解されているが、内燃
機関のコールドスタート時のように三元触媒が活性温度
に達していない場合には、これによる炭化水素の浄化を
期待することができない。これに対して、炭化水素を吸
着するHC(HCは炭化水素を表わす。以下、同じ)吸
着剤を内燃機関の排気系に配置して炭化水素が未浄化の
まま排出されることを防止する技術が一般に知られてい
る。
2. Description of the Related Art Hydrocarbons emitted from an internal combustion engine of an automobile are generally decomposed by a three-way catalyst, but when the three-way catalyst does not reach an activation temperature such as at the cold start of the internal combustion engine, However, the purification of hydrocarbons by this cannot be expected. On the other hand, a technique for arranging an HC adsorbent that adsorbs hydrocarbons (HC represents hydrocarbons; the same applies hereinafter) in the exhaust system of an internal combustion engine to prevent hydrocarbons from being discharged unpurified. Is generally known.

【0003】例えば、特開平4−293519号公報に
は、ZSM−5(MFI型ゼオライト)に銅(Cu)を
イオン交換によって担持させてなる粉末と、ZSM−5
にパラジウム(Pd)をイオン交換によって担持させて
なる粉末とを混合しなる混合粉末を吸着剤とし、該吸着
剤をモノリス担体にコートしてなるものが開示されてい
る。このものは、適宜の金属をゼオライトに担持させる
ことによって、各ゼオライトの吸着性能のピークが異な
る温度域で現れるようにし、これによって広い温度範囲
で炭化水素吸着能を発揮させようとするものである。排
気ガス温度が低いときに上記吸着剤によって吸着された
炭化水素は排気ガス温度の上昇に伴って放出される。上
記公報のものでは、吸着剤から放出された炭化水素をそ
の下流側に配置した三元触媒によって浄化するようにな
されている。
For example, JP-A-4-293519 discloses a powder in which ZSM-5 (MFI type zeolite) is loaded with copper (Cu) by ion exchange, and ZSM-5.
Patent Document 1 discloses that a mixed powder obtained by mixing powder of palladium (Pd) supported by ion exchange is used as an adsorbent, and the adsorbent is coated on a monolith carrier. This is intended to allow a suitable metal to be supported on zeolite so that the peak of the adsorption performance of each zeolite appears in a different temperature range, thereby exerting a hydrocarbon adsorption ability in a wide temperature range. . The hydrocarbons adsorbed by the adsorbent when the exhaust gas temperature is low are released as the exhaust gas temperature rises. In the above publication, the hydrocarbon released from the adsorbent is purified by the three-way catalyst arranged on the downstream side.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述の如きH
C吸着剤が炭化水素を吸着することができる温度域は一
般には百数十度までであって、それよりも高温(例えば
200℃前後)になると炭化水素を実質的には吸着する
ことができず、吸着していた炭化水素の放出が始まる
が、その一方、上記三元触媒は200℃前後の温度では
未だ充分な活性を呈しない。特に、HC吸着剤の下流側
に配置されている三元触媒は排気ガスの熱による温度上
昇がHC吸着剤よりも遅れる。
However, the above-mentioned H
The temperature range in which the C adsorbent can adsorb hydrocarbons is generally up to a hundred and several tens of degrees Celsius, and at higher temperatures (for example, around 200 ° C.), hydrocarbons can be substantially adsorbed. However, the adsorbed hydrocarbons start to be released, but on the other hand, the above three-way catalyst does not yet exhibit sufficient activity at temperatures around 200 ° C. In particular, the temperature increase due to the heat of the exhaust gas of the three-way catalyst arranged downstream of the HC adsorbent is delayed as compared with that of the HC adsorbent.

【0005】これに対して、上述のHC吸着剤に炭化水
素を分解する触媒金属を担持させることによって、排気
ガス中の炭化水素を吸着するとともに、この吸着した炭
化水素を分解して放出させることが考えられる。しか
し、その場合でも、HC吸着剤が炭化水素を放出する温
度に達しても、上記触媒金属は未だ十分な活性を呈さ
ず、従って炭化水素を浄化する能力が低い若しくは零で
あるのが通常であり、該触媒金属が充分な活性を呈する
ようになるまでは吸着していた炭化水素が分解されない
まま放出されることになる。
On the other hand, by supporting a catalyst metal for decomposing hydrocarbons on the above HC adsorbent, hydrocarbons in exhaust gas are adsorbed and the adsorbed hydrocarbons are decomposed and released. Can be considered. However, even in that case, even when the HC adsorbent reaches the temperature at which hydrocarbons are released, the above-mentioned catalyst metal does not yet exhibit sufficient activity, and therefore the ability to purify hydrocarbons is usually low or zero. Therefore, the adsorbed hydrocarbons are released without being decomposed until the catalytic metal becomes sufficiently active.

【0006】そこで、本発明は、内燃機関の排気ガス中
の炭化水素を単に吸着するのではなく、この吸着した炭
化水素を効率良く分解して放出させることができる排気
ガス浄化用触媒を提供することにある。
Therefore, the present invention provides an exhaust gas purifying catalyst capable of efficiently decomposing and adsorbing the adsorbed hydrocarbons instead of simply adsorbing the hydrocarbons in the exhaust gas of the internal combustion engine. Especially.

【0007】[0007]

【課題を解決するための手段及びその作用】本発明は、
上記課題に対して、HC吸着剤に炭化水素を分解する触
媒金属を担持させた吸着触媒とは別に、排気ガス中の水
分を吸して発熱する発熱剤を設け、該発熱を利用して吸
着触媒が炭化水素放出温度に達した後の昇温を促進し、
該吸着触媒が早く活性温度に達するようにするものであ
る。以下、特許請求の範囲の各請求項に係る発明につい
て具体的に説明する。
SUMMARY OF THE INVENTION The present invention provides
In order to solve the above problems, a heat generating agent that absorbs moisture in exhaust gas to generate heat is provided separately from the adsorption catalyst in which a catalyst metal that decomposes hydrocarbons is supported on the HC adsorbent, and the generated heat is used for adsorption. Accelerates the temperature rise after the catalyst reaches the hydrocarbon release temperature,
It is intended to allow the adsorption catalyst to reach the activation temperature quickly. Hereinafter, the invention according to each claim of the claims will be specifically described.

【0008】<請求項1に係る発明>この発明は、内燃
機関の排気ガス中の炭化水素及び水分を吸着する吸着剤
に該炭化水素を分解する触媒金属を担持させてなる吸着
触媒を有する吸着触媒部と、上記吸着触媒部に隣接して
排気ガス流れ方向の下流側に配設され上記水分の吸収に
よって発熱する発熱剤を有する発熱部とを備えているこ
とを特徴とする内燃機関の排気ガス浄化用触媒である。
<Invention of Claim 1> The present invention is an adsorption having an adsorption catalyst in which an adsorbent for adsorbing hydrocarbons and water in exhaust gas of an internal combustion engine carries a catalytic metal for decomposing the hydrocarbons. Exhaust gas of an internal combustion engine, comprising: a catalyst portion, and a heat generating portion having a heat generating agent disposed adjacent to the adsorption catalyst portion in a downstream side in the exhaust gas flow direction to generate heat by absorbing the moisture. It is a gas purification catalyst.

【0009】上記吸着触媒部においては、排気ガス温度
が低く吸着触媒の温度が低いときにはその吸着剤によっ
て排気ガス中の炭化水素が吸着されその排出を防止され
る。この吸着剤に吸着されていた炭化水素は排気ガス温
度(吸着剤の温度)が高くなると放出されるが、この吸
着剤には炭化水素を分解する触媒金属が担持されている
ため、これによって上記炭化水素は分解されて放出され
ることになる。但し、吸着剤が炭化水素の放出を開始す
るときに、上記触媒金属が十分な活性を呈するに至って
いなければ、炭化水素は分解されないまま放出されるこ
とになる。
In the adsorption catalyst section, when the temperature of the exhaust gas is low and the temperature of the adsorption catalyst is low, the adsorbent adsorbs hydrocarbons in the exhaust gas and prevents their discharge. The hydrocarbons adsorbed by this adsorbent are released when the exhaust gas temperature (the temperature of the adsorbent) rises, but since this adsorbent carries a catalytic metal that decomposes hydrocarbons, Hydrocarbons will be decomposed and released. However, if the catalytic metal does not exhibit sufficient activity when the adsorbent starts to release hydrocarbons, the hydrocarbons will be released without being decomposed.

【0010】これに対して、上記吸着触媒部に隣接して
その下流側に配設されている発熱部では、発熱剤が排気
ガス中の水分を吸収することによって発熱する。この発
熱剤の発熱は、内燃機関が排気ガスを排出し始める当初
にはほとんどなく、それから所定時間を経過した後に当
該発熱が盛んになる。これは、上記吸着触媒の吸着剤は
排気ガス中の炭化水素だけでなく水分をも吸着するもの
であるから、排気ガスの排出当初はその水分が上記吸着
剤によって吸着されて上記発熱剤までは多量に流れない
からである。
On the other hand, in the heat generating portion disposed adjacent to and downstream of the adsorption catalyst portion, the heat generating agent absorbs moisture in the exhaust gas to generate heat. The heat generation of the exothermic agent is hardly present at the beginning of discharging the exhaust gas from the internal combustion engine, and the heat generation becomes vigorous after a predetermined time has elapsed. This is because the adsorbent of the adsorption catalyst adsorbs not only the hydrocarbons in the exhaust gas but also the moisture, so that the moisture is adsorbed by the adsorbent at the beginning of the exhaust gas discharge and the heat generating agent is not absorbed. Because it does not flow in large quantities.

【0011】つまり、内燃機関の排気ガスの排出開始か
ら上記所定時間を経過するまでは上記発熱剤の水分吸収
による発熱はほとんどなく、上記吸着触媒は上記発熱剤
によって不必要に加熱されてその炭化水素吸着能が低下
してしまうことはない。そして、上記吸着剤の水分吸着
能が低下し上記発熱剤に多量の水分が到達するようにな
って初めて、該発熱剤の水分の吸収による発熱が盛んに
なり、これにより、上記吸着触媒は排気ガスの熱と発熱
剤の発熱とによって前後から加熱され、温度が急激に上
昇していくことになる。
That is, from the start of exhaust gas emission from the internal combustion engine until the lapse of the predetermined time, there is almost no heat generation due to the absorption of water by the exothermic agent, and the adsorption catalyst is unnecessarily heated by the exothermic agent and carbonized. The hydrogen adsorption capacity does not decrease. Only when a large amount of water reaches the exothermic agent due to a decrease in the water adsorbing ability of the adsorbent, heat generation due to absorption of water by the exothermic agent becomes active, whereby the adsorption catalyst is exhausted. The heat of the gas and the heat of the exothermic agent heat the material from the front and back, causing the temperature to rise rapidly.

【0012】このように、発熱剤の発熱による吸着触媒
の加熱が排気ガスの排出開始から所定時間を経過した後
に生ずるから、上記吸着触媒は、所期の炭化水素吸着能
が発熱剤によって損なわれることはなく、その炭化水素
吸着能が低下し、ひいては吸着していた炭化水素を放出
するようになった後に、上述の如く前後から加熱されて
触媒金属が活性を呈する温度に速やかに到達することに
なる。よって、吸着剤の炭化水素吸着能が低くなってか
ら触媒金属が炭化水素を分解するようになるまでの時
間、あるいは吸着剤が炭化水素を放出するようになって
から触媒金属が炭化水素を分解するようになるまでの時
間が短くなり、一旦吸着した炭化水素を未浄化のまま排
出してしまう量が少なくなる。
As described above, since the heating of the adsorption catalyst due to the heat generation of the exothermic agent occurs after a predetermined time has elapsed from the start of exhaust gas emission, the desired adsorption capacity of the hydrocarbon of the adsorption catalyst is impaired by the exothermic agent. That is, the hydrocarbon adsorbing capacity of the catalyst metal decreases, and after that, the adsorbed hydrocarbons are released, and the catalyst metal is quickly heated to the temperature at which the catalyst metal becomes active as described above. become. Therefore, the time from when the adsorbent's ability to adsorb hydrocarbons decreases until the catalytic metal begins to decompose hydrocarbons, or when the adsorbent releases hydrocarbons and the catalytic metal decomposes hydrocarbons. Therefore, the time until it comes to be reduced becomes shorter, and the amount of hydrocarbons once adsorbed is discharged unpurified.

【0013】ここに、上記吸着触媒の吸着剤としては、
ゼオライトのような結晶格子に金属が含まれミクロの細
孔を有する結晶質の金属含有シリケートが好適である。
この金属含有シリケートとしては、結晶格子を形成する
金属としてAlを用いたアルミノシリケート(ゼオライ
ト)であっても、Alに代えて或いはAlと共にGa、
Ce、Mn、Tb等の他の金属を骨格形成材料として用
いた金属含有シリケートであってもよい。ゼオライトに
ついても、A型、X型、Y型、モルデナイト、ZSM−
5などいずれでもよい。
Here, as the adsorbent of the adsorption catalyst,
A crystalline metal-containing silicate containing a metal in a crystal lattice such as zeolite and having micropores is preferable.
As the metal-containing silicate, even if aluminosilicate (zeolite) using Al as a metal forming a crystal lattice, Ga is used instead of Al or together with Al,
It may be a metal-containing silicate using another metal such as Ce, Mn, or Tb as a skeleton-forming material. As for zeolite, A type, X type, Y type, mordenite, ZSM-
5 or the like may be used.

【0014】また、上記触媒金属の種類についても特に
限定されるものでなく、Pt、Pd、Ir、Rh等の貴
金属を初めとして、貴金属以外の遷移金属、あるいはア
ルカリ土類金属等の典型元素であっても、炭化水素分解
触媒として機能する限りその適用が可能である。
The type of the above-mentioned catalyst metal is not particularly limited, and it is possible to use a noble metal such as Pt, Pd, Ir, and Rh, a transition metal other than the noble metal, or a typical element such as an alkaline earth metal. Even if it exists, its application is possible as long as it functions as a hydrocarbon decomposition catalyst.

【0015】発熱剤についても、CaO、MgOなど水
と反応して発熱するものであれば、その種類は問わな
い。
The heat generating agent may be of any type as long as it generates heat by reacting with water, such as CaO and MgO.

【0016】そうして、上記吸着触媒部及び発熱部は、
上記吸着触媒及び発熱剤の各々を別個のモノリス担体に
担持させてこれらを排気ガス流れ方向の前後に合わせる
ことによって形成することができ、あるいは1つのモノ
リス担体の上流側部位と下流側部位とに上記吸着触媒と
発熱剤とを分けて担持させることによって形成すること
ができる。さらには、上記吸着触媒及び発熱剤の各々を
ペレット状に成形し、多数の吸着触媒ペレットを排気ガ
ス流れ方向の上流側に、多数の発熱剤ペレットをその下
流側に配置することによって吸着触媒部及び発熱部を形
成するようにしてもよい。
Thus, the adsorption catalyst portion and the heat generating portion are
Each of the adsorption catalyst and the exothermic agent can be formed by supporting each of them on a separate monolithic carrier and aligning them before and after in the exhaust gas flow direction, or at the upstream side part and the downstream side part of one monolithic carrier. It can be formed by separately supporting the adsorption catalyst and the exothermic agent. Further, each of the adsorption catalyst and the exothermic agent is formed into a pellet shape, and a large number of adsorption catalyst pellets are arranged on the upstream side in the exhaust gas flow direction, and a large number of exothermic agent pellets are arranged on the downstream side thereof to form an adsorption catalyst section. Also, the heat generating portion may be formed.

【0017】<請求項2に係る発明>この発明は、上記
請求項1に記載されている内燃機関の排気ガス浄化用触
媒において、上記発熱剤がCaOであることを特徴とす
る。
<Invention of Claim 2> This invention is characterized in that, in the exhaust gas purifying catalyst for an internal combustion engine described in claim 1, the exothermic agent is CaO.

【0018】当該発明において、発熱剤としてCaOを
用いるのは、これが発熱剤としての取扱い、発熱量等の
観点から好ましいためである。
In the present invention, CaO is used as the exothermic agent because it is preferable from the viewpoint of handling as the exothermic agent, heat generation amount, and the like.

【0019】<請求項3に係る発明>この発明は、上記
請求項1又は請求項2に記載されている内燃機関の排気
ガス浄化用触媒において、上記吸着触媒がセラミック製
のモノリス担体の排気ガス流れ方向の上流側の部位に担
持されて上記吸着触媒部が形成され、上記発熱剤が上記
モノリス担体の排気ガス流れ方向の下流側の部位に担持
されて上記発熱部が形成されていることを特徴とする。
<Invention of Claim 3> The present invention is the exhaust gas purifying catalyst for an internal combustion engine according to claim 1 or 2, wherein the adsorption catalyst is an exhaust gas of a ceramic monolith carrier. The adsorption catalyst portion is formed on the upstream side portion in the flow direction, and the exothermic agent is formed on the downstream side portion in the exhaust gas flow direction of the monolith carrier to form the exothermic portion. Characterize.

【0020】当該発明において、吸着触媒及び発熱剤を
セラミック製のモノリス担体に担持させているのは、メ
タル担体に比べて吸着触媒等の担持性がよく、また、耐
久性も得られるためである。このようなセラミック製の
モノリス担体としては、コージェライト製のものが好適
である。
In the present invention, the reason why the adsorption catalyst and the exothermic agent are supported on the ceramic monolith carrier is that the adsorption catalyst and the like can be carried better than the metal carrier and the durability can be obtained. . As such a ceramic monolithic carrier, one made of cordierite is suitable.

【0021】<請求項4に係る発明>この発明は、上記
請求項3に記載されている内燃機関の排気ガス浄化用触
媒において、上記吸着剤がゼオライトであることを特徴
とする。
<Invention of Claim 4> The present invention is characterized in that, in the exhaust gas purifying catalyst for an internal combustion engine described in claim 3, the adsorbent is zeolite.

【0022】当該発明において、吸着剤にゼオライトを
採用しているのは、該ゼオライトが炭化水素及び水の吸
着性に優れているからであり、また、触媒金属を担持さ
せ易いからである。炭化水素の吸着性の観点からはY型
ゼオライトが好適である。
In the present invention, the reason why zeolite is used as the adsorbent is that the zeolite has excellent adsorbability for hydrocarbons and water, and it is easy to support the catalytic metal. From the viewpoint of hydrocarbon adsorption, Y-type zeolite is suitable.

【0023】<請求項5に係る発明>この発明は、上記
請求項4に記載されている内燃機関の排気ガス浄化用触
媒において、上記モノリス担体1リットル当りのCaO
の担持量が15g以上であることを特徴とする。
<Invention of Claim 5> The present invention is the exhaust gas purifying catalyst for an internal combustion engine according to claim 4, wherein CaO per liter of the monolith carrier is used.
Is carried by 15 g or more.

【0024】当該発明において、上記CaOの担持量を
15g以上としているのは、それによって発熱剤による
吸着触媒の加熱の影響が炭化水素の浄化率の向上に明確
に現れてくるためである。
In the present invention, the amount of CaO supported is set to 15 g or more because the effect of heating the adsorption catalyst by the exothermic agent clearly appears in the improvement of the hydrocarbon purification rate.

【0025】<請求項6に係る発明>この発明は、上記
請求項4に記載されている内燃機関の排気ガス浄化用触
媒において、上記モノリス担体1リットル当りのCaO
の担持量が20〜30gであることを特徴とする。
<Invention of Claim 6> The present invention provides the catalyst for purifying exhaust gas of an internal combustion engine according to claim 4, wherein CaO per liter of the monolith carrier is used.
Is carried in an amount of 20 to 30 g.

【0026】当該発明において、上記CaOの担持量を
20〜30gとしているのは、それによって炭化水素の
浄化率の向上効果が顕著になるためである。
In the present invention, the amount of CaO supported is set to 20 to 30 g because the effect of improving the purification rate of hydrocarbon becomes remarkable.

【0027】<請求項7に係る発明>この発明は、上記
請求項4に記載されている内燃機関の排気ガス浄化用触
媒において、上記発熱部が上記モノリス担体の下流端か
ら該モノリス担体の全長の1/10〜2/5の範囲にわ
たる部位に形成されていることを特徴とする。
<Invention of Claim 7> According to the present invention, in the catalyst for purifying exhaust gas of an internal combustion engine according to claim 4, the heat generating portion is from the downstream end of the monolith carrier to the entire length of the monolith carrier. It is characterized in that it is formed in a site ranging from 1/10 to 2/5.

【0028】当該発明において、発熱部を設ける範囲を
上記の通りに設定しているのは、その範囲がモノリス担
体の下流側1/10未満であれば発熱剤による吸着触媒
の加熱の影響が炭化水素の浄化率の向上に十分に現れ
ず、また、その範囲がモノリス担体の下流側2/5を越
える場合には、相対的に吸着触媒の量が少なくなって炭
化水素の吸着量が減り、結果的には炭化水素の浄化率が
低くなってしまうからである。
In the present invention, the range in which the heat generating portion is provided is set as described above because if the range is less than 1/10 on the downstream side of the monolith carrier, the effect of heating the adsorption catalyst by the heat generating agent is carbonized. When it does not appear enough to improve the purification rate of hydrogen, and when the range exceeds 2/5 on the downstream side of the monolith carrier, the amount of the adsorbing catalyst becomes relatively small and the adsorbing amount of hydrocarbons decreases, As a result, the purification rate of hydrocarbons becomes low.

【0029】<請求項8に係る発明>この発明は、上記
請求項4に記載されている内燃機関の排気ガス浄化用触
媒において、上記発熱部が上記モノリス担体の下流端か
ら該モノリス担体の全長の1/5〜1/3の範囲にわた
る部位に形成されていることを特徴とする。
<Invention of Claim 8> According to the present invention, in the exhaust gas purifying catalyst for an internal combustion engine according to claim 4, the heat generating portion is from the downstream end of the monolith carrier to the entire length of the monolith carrier. It is characterized in that it is formed in a site ranging from 1/5 to 1/3.

【0030】当該発明において、発熱部を設ける範囲を
上記の通りに設定しているのは、それによって炭化水素
浄化率の向上の効果が顕著になるからである。
In the present invention, the range in which the heat generating portion is provided is set as described above because the effect of improving the hydrocarbon purification rate becomes remarkable.

【0031】<請求項9に係る発明>この発明は、上記
請求項4に記載されている内燃機関の排気ガス浄化用触
媒において、上記吸着触媒が、ゼオライトにPdとセリ
アとを担持させてなることを特徴とする。
<Invention of Claim 9> According to the present invention, in the exhaust gas purifying catalyst for an internal combustion engine according to claim 4, the adsorption catalyst comprises zeolite carrying Pd and ceria. It is characterized by

【0032】当該発明の場合、触媒金属としてのPdは
他の貴金属等に比べて低い温度から炭化水素の分解を開
始するため、吸着触媒から炭化水素が未浄化のまま放出
される量を少なくする上で有利になり、また、上記炭化
水素の分解には酸素の存在が必要であるところ、セリア
はO2 ストレージ効果を奏し、排気ガス中の酸素濃度が
変動してもPdによる炭化水素の分解に必要な酸素を確
保する。従って、当該排気ガス浄化用触媒よりも上流側
に三元触媒を配置して排気ガスを浄化させる場合におい
て、該三元触媒によって排気ガス中の酸素が消費されて
も、該三元触媒が活性を呈する前にセリアによって吸蔵
していた酸素を上記吸着触媒のPdによる炭化水素の分
解に利用することができる。
In the case of the present invention, since Pd as the catalytic metal starts decomposing hydrocarbons at a temperature lower than that of other noble metals and the like, the amount of hydrocarbons released from the adsorption catalyst without being purified is reduced. In addition, the presence of oxygen is required for the above hydrocarbon decomposition, and ceria has an O 2 storage effect, and even if the oxygen concentration in the exhaust gas fluctuates, the decomposition of hydrocarbons by Pd To secure the oxygen needed for. Therefore, when the three-way catalyst is arranged upstream of the exhaust gas purifying catalyst to purify the exhaust gas, the three-way catalyst is activated even if oxygen in the exhaust gas is consumed by the three-way catalyst. Oxygen stored by the ceria before the occurrence of C can be utilized for the decomposition of hydrocarbons by Pd of the adsorption catalyst.

【0033】[0033]

【発明の効果】請求項1に係る発明によれば、炭化水素
及び水分を吸着する吸着剤に該炭化水素を分解する触媒
金属を担持させてなる吸着触媒を有する吸着触媒部と、
水分の吸収によって発熱する発熱剤を有する発熱部と
を、排気ガス流れ方向の上流側と下流側とに隣接させて
配設したから、内燃機関の始動後の所定時間は吸着触媒
の温度上昇を加速しないようにして排気ガス中の炭化水
素を該吸着触媒に確実に吸着させながら、該所定時間を
経過した後は吸着触媒の温度を急激に上昇させて触媒金
属を活性温度に速やかに到達させることができ、一旦吸
着した炭化水素を未浄化のまま排出してしまう量が少な
くなる。
According to the invention of claim 1, an adsorption catalyst section having an adsorption catalyst in which an adsorbent for adsorbing hydrocarbons and moisture carries a catalytic metal for decomposing the hydrocarbons,
Since the heat generating portion having a heat generating agent that generates heat due to absorption of water is arranged adjacent to the upstream side and the downstream side in the exhaust gas flow direction, the temperature of the adsorption catalyst does not rise for a predetermined time after the start of the internal combustion engine. While surely adsorbing the hydrocarbon in the exhaust gas to the adsorption catalyst without accelerating, the temperature of the adsorption catalyst is rapidly increased after the predetermined time has passed so that the catalytic metal quickly reaches the activation temperature. It is possible to reduce the amount of hydrocarbons that have once been adsorbed and discharged without being purified.

【0034】請求項2に係る発明によれば、上記請求項
1に記載されている内燃機関の排気ガス浄化用触媒にお
いて上記発熱剤をCaOとしたものであるから、発熱部
が期する機能を確実に発揮し、所期の効果を上げること
ができる。
According to the invention of claim 2, in the exhaust gas purifying catalyst for an internal combustion engine according to claim 1, the exothermic agent is CaO, so that the function of the exothermic part is desired. It can be demonstrated reliably and the desired effect can be achieved.

【0035】請求項3に係る発明によれば、上記請求項
1又は請求項2に記載されている内燃機関の排気ガス浄
化用触媒において、上記吸着触媒がセラミック製のモノ
リス担体の排気ガス流れ方向の上流側の部位に担持され
て上記吸着触媒部が形成され、上記発熱剤が上記モノリ
ス担体の排気ガス流れ方向の下流側の部位に担持されて
上記発熱部が形成されたものであるから、吸着触媒部及
び発熱部が期する機能を確実に発揮し、所期の効果を上
げることができる。
According to the invention of claim 3, in the exhaust gas purifying catalyst for an internal combustion engine according to claim 1 or 2, the adsorption catalyst is a ceramic monolith carrier in the exhaust gas flow direction. The adsorption catalyst portion is formed by being carried on the upstream side portion of the above, and the exothermic agent is formed on the downstream side portion of the monolith carrier in the exhaust gas flow direction to form the heating portion. The desired function of the adsorption catalyst section and the heat generation section can be surely exhibited, and desired effects can be achieved.

【0036】請求項4に係る発明によれば、上記請求項
3に記載されている内燃機関の排気ガス浄化用触媒にお
いて上記吸着剤がゼオライトとされたものであるから、
ゼオライトが吸着剤として期する機能を確実に発揮し、
所期の効果が得られる。
According to the invention of claim 4, in the exhaust gas purifying catalyst for an internal combustion engine according to claim 3, the adsorbent is zeolite.
Zeolites surely exhibit the function expected as an adsorbent,
The desired effect is obtained.

【0037】請求項5に係る発明によれば、上記請求項
4に記載されている内燃機関の排気ガス浄化用触媒にお
いて上記モノリス担体1リットル当りのCaOの担持量
が15g以上とされているから、炭化水素の浄化率が確
実に高くなるという効果が得られる。
According to the invention of claim 5, in the exhaust gas purifying catalyst for an internal combustion engine according to claim 4, the amount of CaO carried per liter of the monolith carrier is 15 g or more. Therefore, the effect of surely increasing the purification rate of hydrocarbons can be obtained.

【0038】請求項6に係る発明によれば、上記請求項
4に記載されている内燃機関の排気ガス浄化用触媒にお
いて上記モノリス担体1リットル当りのCaOの担持量
が20〜30gとされているから、炭化水素の浄化率の
向上効果が顕著になる。
According to the invention of claim 6, in the exhaust gas purifying catalyst for internal combustion engine according to claim 4, the amount of CaO carried per liter of the monolith carrier is 20 to 30 g. Therefore, the effect of improving the purification rate of hydrocarbons becomes remarkable.

【0039】請求項7に係る発明によれば、上記請求項
4に記載されている内燃機関の排気ガス浄化用触媒にお
いて上記発熱部が上記モノリス担体の下流側1/10〜
2/5の部位に形成されたものであるから、吸着触媒に
よる吸着量の低下を最小限に抑えながら、発熱部によっ
て吸着触媒を加熱して所期の効果を上げることができ
る。
According to the seventh aspect of the invention, in the exhaust gas purifying catalyst for an internal combustion engine according to the fourth aspect, the heat generating portion is the downstream side 1/10 to the monolith carrier.
Since it is formed at 2/5, the adsorbing catalyst can be heated by the heat generating part and the desired effect can be achieved while minimizing the decrease in the adsorption amount due to the adsorbing catalyst.

【0040】請求項8に係る発明によれば、上記請求項
4に記載されている内燃機関の排気ガス浄化用触媒にお
いて上記発熱部が上記モノリス担体の下流側1/5〜1
/3の部位に形成されたものであるから、炭化水素の浄
化率の向上の効果が顕著になる。
According to the eighth aspect of the present invention, in the exhaust gas purifying catalyst for an internal combustion engine according to the fourth aspect, the heat generating portion has the downstream side 1/5 to 1 of the monolith carrier.
Since it is formed in the part of / 3, the effect of improving the purification rate of hydrocarbons becomes remarkable.

【0041】請求項9に係る発明によれば、上記請求項
4に記載されている内燃機関の排気ガス浄化用触媒にお
いて上記吸着触媒がゼオライトにPdとセリアとを担持
させてなるものであるから、排気ガス中の酸素濃度が変
動する場合でも、吸着触媒に吸着した炭化水素を比較的
低い温度から分解することができ、発熱剤による加熱効
果と相俟って炭化水素の浄化率を格段と高めることがで
きるようになる。
According to the invention of claim 9, in the exhaust gas purifying catalyst for an internal combustion engine according to claim 4, the adsorption catalyst comprises zeolite carrying Pd and ceria. Even if the oxygen concentration in the exhaust gas fluctuates, the hydrocarbons adsorbed on the adsorption catalyst can be decomposed from a relatively low temperature, and the heating efficiency of the exothermic agent makes the purification rate of hydrocarbons remarkable. You will be able to raise it.

【0042】[0042]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0043】<実施例1〜5の排気ガス浄化用触媒の調
製> −実施例1− 断面積64cm2 、長さ14.5cmのコージェライト製モ
ノリス(ハニカム)担体に、吸着剤として超安定Y型ゼ
オライトを該担体1リットル当り150gとなるように
ウォッシュコートによって担持させて焼成を行なった。
これに、CeO2 とPdとを前者が担体1リットル当り
70g、後者が担体1リットル当り10gとなるように
含浸法によって担持させることにより、上記担体の表面
(ハニカム孔の表面)に吸着触媒層を形成した。次に、
当該担体の排気ガス流れ方向における下流側1/5の部
位(担体の下流端から該担体全長の1/5の範囲にわた
る部位)に発熱剤としてCaOを担体1リットル当り1
0gとなるように担持させることにより、自動車の内燃
機関用の排気ガス浄化用触媒を得た。この場合、排気ガ
ス浄化用触媒における排気ガス流れ方向の上流側4/5
の部位(担体の上流端から該担体全長の4/5の範囲に
わたる部位)が上記担体に吸着触媒層が形成されてなる
吸着触媒部であり、下流側1/5の部位が上記吸着触媒
層の上にさらにCaOが担持されてなる発熱部である。
<Preparation of Exhaust Gas Purifying Catalysts of Examples 1 to 5> -Example 1-A superstable Y as an adsorbent on a cordierite monolith (honeycomb) carrier having a cross-sectional area of 64 cm 2 and a length of 14.5 cm. Calcium-type zeolite was carried by a wash coat so as to be 150 g per liter of the carrier and calcined.
Then, CeO 2 and Pd were supported by an impregnation method so that the former was 70 g per liter of the carrier and the latter was 10 g per liter of the carrier, and the adsorption catalyst layer was formed on the surface of the carrier (the surface of the honeycomb holes). Was formed. next,
CaO is used as a heat generating agent at 1/5 downstream of the carrier in the exhaust gas flow direction (a region extending from the downstream end of the carrier to 1/5 of the entire length of the carrier) per liter of the carrier.
By loading so as to be 0 g, an exhaust gas purifying catalyst for an automobile internal combustion engine was obtained. In this case, the upstream side 4/5 in the exhaust gas flow direction in the exhaust gas purification catalyst
Is a part of the adsorption catalyst formed by forming an adsorption catalyst layer on the carrier (the part extending from the upstream end of the carrier to a range of 4/5 of the entire length of the carrier), and the downstream 1/5 part is the adsorption catalyst layer. It is a heat generating part in which CaO is further supported on the above.

【0044】−実施例2− CaOの担持量を担体1リットル当り20gとなるよう
にする他は上記実施例1と同様にして排気ガス浄化用触
媒を得た。
-Example 2- An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that the amount of CaO supported was 20 g per liter of the carrier.

【0045】−実施例3− CaOの担持量を担体1リットル当り30gとなるよう
にする他は上記実施例1と同様にして排気ガス浄化用触
媒を得た。
Example 3 An exhaust gas purifying catalyst was obtained in the same manner as in Example 1 except that the supported amount of CaO was 30 g per liter of the carrier.

【0046】−実施例4− CaOの担持量を担体1リットル当り30gとなるよう
にするとともに、発熱部を上記下流側1/3の範囲とす
る他は上記実施例1と同様にして排気ガス浄化用触媒を
得た。
Example 4-Exhaust gas as in Example 1 except that the carried amount of CaO was 30 g per liter of the carrier and the heat generating part was in the range of 1/3 on the downstream side. A purification catalyst was obtained.

【0047】−実施例5− CaOの担持量を担体1リットル当り30gとなるよう
にするとともに、発熱部を上記下流側2/5の範囲とす
る他は上記実施例1と同様にして排気ガス浄化用触媒を
得た。
Example 5-Exhaust gas as in Example 1 except that the supported amount of CaO is 30 g per liter of the carrier and the heat generating portion is in the range of 2/5 on the downstream side. A purification catalyst was obtained.

【0048】−実施例6− 断面積88cm2 、長さ10.5cmのコージェライト製モ
ノリス(ハニカム)担体に、吸着剤として超安定Y型ゼ
オライトを該担体1リットル当り150gとなるように
ウォッシュコートによって担持させて焼成を行なった。
これに、CeO2 とPdとを前者が担体1リットル当り
70g、後者が担体1リットル当り10gとなるように
含浸法によって担持させることにより、上記担体の表面
(ハニカム孔の表面)に吸着触媒層を形成した。次に、
当該担体の排気ガス流れ方向における下流側1/3の部
位に発熱剤としてCaOを担体1リットル当り30gと
なるように担持させることにより、自動車の内燃機関用
の排気ガス浄化用触媒を得た。
Example 6 A cordierite monolith (honeycomb) carrier having a cross-sectional area of 88 cm 2 and a length of 10.5 cm was wash-coated with 150 g of ultra-stable Y zeolite as an adsorbent per liter of the carrier. Was carried and baked.
Then, CeO 2 and Pd were supported by an impregnation method so that the former was 70 g per liter of the carrier and the latter was 10 g per liter of the carrier, and the adsorption catalyst layer was formed on the surface of the carrier (the surface of the honeycomb holes). Was formed. next,
An exhaust gas purifying catalyst for an internal combustion engine of an automobile was obtained by carrying CaO as a heat generating agent on the downstream side ⅓ of the carrier in the exhaust gas flow direction so that the amount of CaO was 30 g per liter of the carrier.

【0049】<比較例1,2の排気ガス浄化用触媒の調
製> −比較例1− 上記実施例1と同じ担体に、吸着剤として超安定Y型ゼ
オライトを該担体1リットル当り150gとなるように
ウォッシュコートによって担持させて焼成を行ない、さ
らに、CeO2 とPdとを前者が担体1リットル当り7
0g、後者が担体1リットル当り10gとなるように含
浸法によって担持させることにより、上記担体の表面に
吸着触媒層が形成された排気ガス浄化用触媒を得た。当
該比較例1の実施例1との相違点は発熱剤が担持されて
いない点にある。
<Preparation of Exhaust Gas Purifying Catalysts of Comparative Examples 1 and 2> -Comparative Example 1-In the same carrier as in Example 1 above, 150 g of ultra-stable Y zeolite as an adsorbent was added per liter of the carrier. Is carried by a washcoat and baked, and CeO 2 and Pd are added to the former in an amount of 7 per liter of the carrier.
An exhaust gas purifying catalyst having an adsorption catalyst layer formed on the surface of the carrier was obtained by supporting the carrier by an impregnation method so that the carrier was 0 g and the latter was 10 g per liter of the carrier. The difference between Comparative Example 1 and Example 1 is that the exothermic agent is not supported.

【0050】−比較例2− 上記実施例6と同じ担体に、吸着剤として超安定Y型ゼ
オライトを該担体1リットル当り150gとなるように
ウォッシュコートによって担持させて焼成を行ない、さ
らに、CeO2 とPdとを前者が担体1リットル当り7
0g、後者が担体1リットル当り10gとなるように含
浸法によって担持させることにより、上記担体の表面に
吸着触媒層が形成された排気ガス浄化用触媒を得た。当
該比較例2の実施例6との相違点は発熱剤が担持されて
いない点にある。
[0050] - the same support as in Comparative Example 2 Example 6 above, the ultrastable Y-type zeolite as an adsorbent is supported by the washcoat so that the carrier per liter of 150g performs firing, further, CeO 2 And Pd is 7 for each liter of carrier.
An exhaust gas purifying catalyst having an adsorption catalyst layer formed on the surface of the carrier was obtained by supporting the carrier by an impregnation method so that the carrier was 0 g and the latter was 10 g per liter of the carrier. The difference between the comparative example 2 and the example 6 is that the exothermic agent is not supported.

【0051】<実施例及び比較例のHC吸着率及びY1
浄化率の評価>上記各例の排気ガス浄化用触媒を実車に
装着し、LA−4−Y1テストモードにて排出ガスの試
験を行ない、スタートから60秒経過までのHC吸着率
(炭化水素の浄化率のことであるが、60秒を経過する
までは触媒が炭化水素を分解する温度にまで達しないた
め、当該浄化率は当該触媒による炭化水素の吸着率に相
当する)と、Y1浄化率(Y1テストモードでの炭化水
素の浄化率)とを測定した。結果は表1に示されてい
る。
<HC Adsorption Rate and Y1 of Examples and Comparative Examples
Evaluation of purification rate> The exhaust gas purification catalyst of each of the above examples was mounted on an actual vehicle, and an exhaust gas test was performed in the LA-4-Y1 test mode. The HC adsorption rate (hydrocarbon content) from the start to 60 seconds The purification rate means that the catalyst does not reach the temperature at which the catalyst decomposes hydrocarbons until 60 seconds have passed, so the purification rate corresponds to the adsorption rate of hydrocarbons by the catalyst) and the Y1 purification rate. (The purification rate of hydrocarbons in the Y1 test mode) was measured. The results are shown in Table 1.

【0052】[0052]

【表1】 [Table 1]

【0053】実施例1〜5と比較例1とを比べた場合、
実施例ではHC吸着率が比較例よりも少し低くなってい
るものの、Y1浄化率は実施例の方が高くなっている。
実施例のHC吸着率が比較例のそれよりも低くなってい
るのは、触媒下流部位へのCaOの担持によって吸着触
媒部の絶対量が比較例よりも少なくなっているためと認
められる。実施例のY1浄化率が比較例のそれよりも高
くなっているのは、上記CaOが排気ガス中の水分を吸
収するようになった後に、該吸収による発熱によって触
媒温度が急激に上昇し、PdとCeO2 とによる炭化水
素の分解が比較的早く開始されたためと認められる。
When Examples 1 to 5 and Comparative Example 1 are compared,
Although the HC adsorption rate in the example is slightly lower than that in the comparative example, the Y1 purification rate is higher in the example.
The reason why the HC adsorption rate of the example is lower than that of the comparative example is considered to be that the absolute amount of the adsorption catalyst portion is smaller than that of the comparative example due to the loading of CaO on the catalyst downstream portion. The Y1 purification rate of the example is higher than that of the comparative example because the catalyst temperature rises sharply due to the heat generated by the absorption after CaO comes to absorb the water in the exhaust gas, It is considered that the decomposition of hydrocarbons by Pd and CeO 2 was started relatively early.

【0054】実施例1〜3は、触媒におけるCaOの担
持部分の長さ(発熱部の長さ)の担体全長に対する比率
を同じく1/5としてCaOの担持量を異なる値にした
ものであるが、図1にも示すように、CaOが15g/
l以上になると上記CaOの効果が明白なものになり、
20g/l,30g/lになると、その効果が顕著にな
ることがわかる。なお、図1において、実1〜実3及び
比1の各記号は実施例1〜実施例3及び比較例1の各々
を示す。
In Examples 1 to 3, the ratio of the length of the portion carrying CaO in the catalyst (the length of the heat generating portion) to the total length of the carrier was set to 1/5, and the amount of CaO carried was varied. , As shown in FIG. 1, CaO is 15 g /
When it is 1 or more, the effect of CaO becomes obvious,
It can be seen that the effect becomes remarkable at 20 g / l and 30 g / l. In addition, in FIG. 1, the symbols of Ex 1 to Ex 3 and Ratio 1 indicate each of Examples 1 to 3 and Comparative Example 1.

【0055】実施例3〜5はCaOの担持量を30g/
lとして担体におけるCaOの担持部分の長さの比率を
異なる値にしたものであるが、図2にも示すように、1
/10〜2/5において明白な効果が得られ、1/5,
1/3においてその効果が顕著になることがわかる。上
記長さの比率が大きくなるにつれてY1浄化率が低くな
っているのは、吸着触媒部の長さが相対的に短くなり、
HC吸着率自体が低くなっているためであると考えられ
る。なお、図2において、実3〜実6、比1及び比2の
各記号は実施例3〜実施例6、比較例1及び比較例2の
各々を示す。
In Examples 3 to 5, the carried amount of CaO was 30 g /
As l, the ratio of the lengths of the CaO-carrying portions of the carrier is set to different values. As shown in FIG.
A clear effect is obtained in / 10 to 2/5,
It can be seen that the effect becomes remarkable at 1/3. The Y1 purification rate decreases as the length ratio increases, because the length of the adsorption catalyst portion becomes relatively short.
It is considered that this is because the HC adsorption rate itself is low. In addition, in FIG. 2, each symbol of Ex 3 to Ex 6, Ratio 1 and Ratio 2 indicates each of Examples 3 to 6, Comparative Example 1 and Comparative Example 2.

【0056】次に実施例6については、これを比較例2
と比べると、HC吸着率は比較例2よりも低くなってい
るが、Y1浄化率は比較例2よりも高くなっている。こ
れは上述の実施例1〜5と比較例1との比較の場合と同
様の結果である。よって、基本的には担体の全長及び断
面積のいかんに拘らず、上記発熱剤がHC浄化率の向上
に効を奏する、ということができる。
Next, with respect to Example 6, this is compared with Comparative Example 2.
Compared with, the HC adsorption rate is lower than that of Comparative Example 2, but the Y1 purification rate is higher than that of Comparative Example 2. This is the same result as in the case of comparison between Examples 1 to 5 and Comparative Example 1 described above. Therefore, basically, it can be said that the exothermic agent is effective in improving the HC purification rate regardless of the total length and the cross-sectional area of the carrier.

【0057】<その他>以下ではHC吸着剤に触媒金属
を担持させてなるHC吸着触媒のHC浄化率を高める他
の発明について説明する。
<Others> Hereinafter, another invention for increasing the HC purification rate of the HC adsorption catalyst in which the catalyst metal is supported on the HC adsorbent will be described.

【0058】1.本案の概要 エンジンから排出される未燃炭化水素の8割は排ガス浄
化触媒の温度が上がっていないエンジン始動直後に排出
されたものである。そのため低温時のHCの処理が重要
となる。
1. Outline of the Proposal 80% of unburned hydrocarbons emitted from the engine are emitted immediately after the engine starts when the temperature of the exhaust gas purification catalyst has not risen. Therefore, the treatment of HC at low temperatures is important.

【0059】本案は、エンジンの冷間時排出された未燃
のHCを吸着する高比表面積体(ゼオライト等)よりな
る吸着剤に、該吸着剤の温度が高くなったときに該吸着
剤に吸着されているHCを浄化(分解)する触媒金属が
担持されてなるHC吸着触媒を備えているとともに、該
HC吸着触媒に2次エアをエンジン始動から所定時間供
給する2次エア供給手段を備えていることを特徴とす
る。
The present invention is directed to an adsorbent made of a high specific surface area material (such as zeolite) that adsorbs unburned HC discharged during cold engine operation, and to the adsorbent when the temperature of the adsorbent rises. An HC adsorbing catalyst that carries a catalytic metal that purifies (decomposes) the adsorbed HC is provided, and a secondary air supply unit that supplies secondary air to the HC adsorbing catalyst for a predetermined time from engine start. It is characterized by

【0060】2.従来技術 触媒のHC浄化開始温度を早めるためには酸素過剰な状
態にすればよい。そのため従来はエンジン始動直後から
2次エアーを導入していた。しかし、長時間エアを導入
しなければならず装置が大がかりになっていた。
2. 2. Description of the Related Art In order to accelerate the HC purification start temperature of the catalyst, an oxygen excess state may be set. Therefore, conventionally, secondary air was introduced immediately after the engine was started. However, air had to be introduced for a long time, and the size of the device was large.

【0061】これに対して、HC吸着触媒を用いると一
定時間2次エアを流せば効率よくHCが浄化できること
が判明し、本案が完成されたものである。
On the other hand, when the HC adsorption catalyst was used, it was found that the HC can be efficiently purified by flowing the secondary air for a certain time, and the present invention has been completed.

【0062】3.本案の実施例 −本案の実施例のポイント− 2次エア供給装置に圧縮空気の入ったボンベを使用し、
さらに吸着触媒を併用することで、短時間のエア導入で
効率よくHCを浄化可能にする。またエア導入の時間に
ついては触媒入口ガス温度で判定する。
3. Example of the Present Invention-Points of Example of the Present Invention-A cylinder containing compressed air is used as a secondary air supply device,
Furthermore, by using an adsorption catalyst together, it is possible to efficiently purify HC by introducing air for a short time. Also, the time of air introduction is determined by the catalyst inlet gas temperature.

【0063】−吸着触媒の調製− 細孔径0.5nm以上の高比表面積体(多孔質吸着剤)
をコージェライト製モノリス担体にウォッシュコートし
た。ここで用いる吸着剤は、細孔径が上記の値以上のも
のならなんでもよいが、特にFAU型やMFI型のゼオ
ライトが有効である。ゼオライトを用いる場合はNa
型,H型などなんでもよく、イオン交換、含浸等の方法
によって金属修飾してあってもよい。触媒金属として
は、Pd,Pt,Rh,Co,Ni,Fe等を単独でも
しくは2種以上組み合わせて用いることができ、さら
に、これにセリアを組み合わせて、上記吸着剤に担持さ
せることができる。ウォッシュコートに使用するバイン
ダには水和アルミナ、シリカゾルなどを用いることがで
きるが、その種類は特に問わない。
-Preparation of adsorption catalyst-High specific surface area body (porous adsorbent) having a pore size of 0.5 nm or more
Was code-coated on a cordierite monolith carrier. The adsorbent used here may be any adsorbent having a pore diameter of the above value or more, but FAU type or MFI type zeolite is particularly effective. Na when using zeolite
Type, H type, etc., and may be metal-modified by a method such as ion exchange or impregnation. As the catalyst metal, Pd, Pt, Rh, Co, Ni, Fe and the like can be used alone or in combination of two or more kinds, and further, ceria can be combined and supported on the adsorbent. Hydrated alumina, silica sol, or the like can be used as the binder used in the washcoat, but the type thereof is not particularly limited.

【0064】−吸着触媒の評価− 表2に各金属修飾を行ったFAU型ゼオライトのトルエ
ン吸着量を、表3にMFI型ゼオライトのプロピレン吸
着量を、表4に各種の触媒金属を担持させたゼオライト
のライトオフ温度(最高のHC浄化率の半分のHC浄化
率を示す温度)を、表5に当該評価に使用した模擬排気
ガスの組成及び空間速度を、それぞれ示す。表4のゼオ
ライトはH型である。
-Evaluation of Adsorbed Catalysts-Table 2 shows the amount of toluene adsorbed on the FAU-type zeolite with each metal modification, Table 3 shows the amount of propylene adsorbed on the MFI-type zeolite, and Table 4 shows various catalytic metals. The light-off temperature of zeolite (the temperature at which the HC purification rate is half the maximum HC purification rate) is shown in Table 5, and the composition and space velocity of the simulated exhaust gas used for the evaluation are shown in Table 5, respectively. The zeolites in Table 4 are H type.

【0065】[0065]

【表2】 [Table 2]

【0066】[0066]

【表3】 [Table 3]

【0067】[0067]

【表4】 [Table 4]

【0068】[0068]

【表5】 [Table 5]

【0069】−実車評価− 図3に示すように、エンジン1の排気通路に三元触媒
(アルミナ及びセリアにPt及びRhを担持させてなる
触媒粉をコージェライト製モノリス担体にウォッシュコ
ートによって担持させ焼成を行なったもの)2とHC吸
着触媒(ケイバン比80のH型−FAUをコージェライ
ト製モノリス担体にウォッシュコートによって担持させ
焼成を行なった後、これに、CeO2 とPdとを前者が
担体1リットル当り70g、後者が担体1リットル当り
10gとなるように含浸法によって担持させたもの)3
とを前者が上流側に、後者が下流側になるように連ねて
配置するとともに、吸着触媒3のさらに下流に三元触媒
4を配置し、上流側の三元触媒2よりも上流側から2次
エアを導入するようにした。エンジン1の仕様等は次の
通りである。2次エアはエンジン始動から20秒を経過
した時点から20秒間導入した。エンジン1の排気マニ
ホールドの集合部から上記上流側の三元触媒2までの距
離は20cmである。
-Evaluation of Actual Vehicle- As shown in FIG. 3, a catalyst powder obtained by supporting a three-way catalyst (Pt and Rh on alumina and ceria) in the exhaust passage of the engine 1 was supported on the cordierite monolith carrier by washcoating. Calcination 2) and HC adsorption catalyst (H type-FAU with a Cayvan ratio of 80) were carried on a cordierite monolith carrier by washcoating and calcined, and then CeO 2 and Pd were added to the former carrier. 70 g per liter, the latter being carried by the impregnation method so that the carrier becomes 10 g per liter) 3
Are arranged so that the former is on the upstream side and the latter is on the downstream side, and the three-way catalyst 4 is arranged further downstream of the adsorption catalyst 3 from the upstream side of the upstream three-way catalyst 2. The next air was introduced. The specifications of the engine 1 are as follows. The secondary air was introduced for 20 seconds after 20 seconds had passed since the engine was started. The distance from the exhaust manifold manifold of the engine 1 to the upstream three-way catalyst 2 is 20 cm.

【0070】 エンジン ;V型6気筒 排気量3000cc 三元触媒2の容量;0.2リットル 吸着触媒3の容量;0.5リットル 三元触媒4の容量;1.6リットル 2次エア流量 ;200リットル/min 走行モード ;LA−4−Y1Engine: V-type 6 cylinder Displacement 3000 cc Capacity of three-way catalyst 2; 0.2 liter Capacity of adsorption catalyst 3; 0.5 liter Capacity of three-way catalyst 4; 1.6 liter Secondary air flow rate; 200 L / min Running mode; LA-4-Y1

【0071】その結果、このような本案ではY1浄化率
が91.1%になったが、別に、上記吸着触媒を配置せ
ずに三元触媒2,4のみとして、該三元触媒にその上流
側から2次エアを導入する試験を行なったところ(以
下、これを従来例という)、Y1浄化率が82.5%で
あった。また、上記図3と同じ仕様において、エンジン
のアイドル運転を1分間行なった後にLA−4−Y1モ
ードの走行を行なうようにし、2次エアをY1走行開始
より20秒間導入したところ(以下、これを比較例と
いう)、HC浄化率(アイドル運転とY1モード運転で
の浄化率)は88.3%になった。さらに、吸着触媒を
配置せずに三元触媒のみとし、1分間のアイドル運転後
にLA−4−Y1モードの走行を行なうようにし、2次
エアを三元触媒にその上流側からY1走行開始より20
秒間導入したところ(以下、これを比較例という)、
HC浄化率(アイドル運転とY1モード運転での浄化
率)は66.8%になった。
As a result, the Y1 purification rate was 91.1% in such a case, but separately, the three-way catalysts 2 and 4 alone without the above-mentioned adsorption catalyst were placed upstream of the three-way catalyst. When a test was conducted in which secondary air was introduced from the side (hereinafter referred to as a conventional example), the Y1 purification rate was 82.5%. Further, in the same specifications as in FIG. 3, when the engine was idle for 1 minute and then the LA-4-Y1 mode was run, and secondary air was introduced for 20 seconds from the start of Y1 running (hereinafter, Is referred to as a comparative example), and the HC purification rate (the purification rate in the idle operation and the Y1 mode operation) was 88.3%. Further, the adsorbing catalyst is not arranged and only the three-way catalyst is used so that the LA-4-Y1 mode traveling is performed after the idle operation for one minute, and the secondary air is supplied to the three-way catalyst from the upstream side of the Y1 traveling. 20
Introduced for a second (hereinafter referred to as Comparative Example),
The HC purification rate (purification rate in idle operation and Y1 mode operation) was 66.8%.

【0072】以上のことから、上述の吸着触媒を配置
し、エンジン始動から20秒を経過した時点から2次エ
アを20秒間導入する本案が優れていることがわかる。
また、従来例ではエンジン始動直後(触媒が暖まってい
ない)のHCが浄化できていないが、本案ではHC吸着
触媒があるため浄化(低温時吸着し、高温時浄化)でき
ている。また、比較例,のように長時間のアイドル
等で触媒の温度がなかなか上昇しない場合も本案では一
定時間のエア導入で炭化水素を効率よく浄化することが
できる。
From the above, it can be understood that the present invention in which the above-mentioned adsorption catalyst is arranged and the secondary air is introduced for 20 seconds after 20 seconds have passed from the engine start is excellent.
Further, in the conventional example, HC cannot be purified immediately after the engine is started (catalyst is not warmed up), but in the present invention, it can be purified (adsorbed at low temperature and purified at high temperature) due to the HC adsorption catalyst. Further, even in the case where the temperature of the catalyst does not rise easily due to a long period of idling as in the comparative example, the present invention can efficiently purify hydrocarbons by introducing air for a certain period of time.

【0073】4.2次エア導入量とHC浄化率との関係 図4にリグ評価結果(排気ガス中のO2 濃度とT50
(ライトオフ温度)との関係)を示すように、酸素濃度
が2%を越えるとT50が急激に低下(結果としてHC
浄化率の向上に結び付く)することがわかる。このこと
より、実車でも同程度の酸素濃度が確保できれば浄化率
が向上するといえる。しかし実車では加減速等で常に排
気ガス流量が変化するため一定の酸素濃度に保つことが
できない。そこで一定量の空気を流すことで代用するこ
ととしたものである。2次エア流量とY1浄化率との関
係を図5に示す。同図から、100リットル/min以
上が最適であるといえる。
4. Relationship between Secondary Air Introduction Amount and HC Purification Rate FIG. 4 shows the result of rig evaluation (O 2 concentration in exhaust gas and T50).
(Relationship with (light-off temperature)), when oxygen concentration exceeds 2%, T50 sharply decreases (as a result, HC
It leads to improvement of purification rate). From this, it can be said that the purification rate is improved if the same oxygen concentration can be secured even in the actual vehicle. However, in an actual vehicle, the exhaust gas flow rate constantly changes due to acceleration / deceleration, etc., so that a constant oxygen concentration cannot be maintained. Therefore, it was decided to substitute a certain amount of air. The relationship between the secondary air flow rate and the Y1 purification rate is shown in FIG. From the figure, it can be said that 100 liter / min or more is optimal.

【0074】5.2次エア導入時間とHC浄化率との関
係 図6は2次エアを導入しない場合のHC浄化率、図7は
2次エアをエンジン始動直後から100秒まで加えた場
合のHC浄化率、図8は2次エアをエンジン始動から2
0秒を経過した時点から20秒間加えた場合のHC浄化
率を示す。図6〜8において破線で示す曲線が吸着触媒
を配置したもの、実線で示す曲線が吸着触媒を備えてい
ないものである。これによれば、2次エア導入の有無、
2次エア導入開始時間に関係なく、吸着触媒を配置した
ものの方が高いHC浄化率を示している。これは吸着触
媒の存在による。また、これらの図よりHC吸着触媒が
配置されたものは2次エアを常時導入しなくても浄化率
が高いことがわかる。これは、図9に2次エアをエンジ
ン始動直後から100秒まで加えた場合の触媒出口ガス
温度の経時変化を示し、図10に2次エアをエンジン始
動から20秒を経過した時点から20秒間加えた場合の
触媒出口ガス温度の経時変化を示すように(破線で示す
曲線が吸着触媒を配置したもの、実線で示す曲線が吸着
触媒を備えていないものである。)、吸着触媒に吸着さ
れた大量の炭化水素が酸素過剰雰囲気で一気に燃え触媒
温度が急上昇するためであり、従って、ストイキの状態
(理論空燃比における燃焼状態(λ=1)、つまり2次
エアを止めて通常の排気ガス組成になった状態)にもど
っても高い浄化率を維持するためである。
5. Relationship between Secondary Air Introduction Time and HC Purification Rate FIG. 6 shows the HC purification rate when the secondary air is not introduced, and FIG. 7 shows the case where the secondary air is added up to 100 seconds immediately after the engine is started. HC purification rate, Figure 8 shows secondary air from engine start to 2
The HC purification rate in the case of adding for 20 seconds from the time when 0 seconds has passed is shown. In FIGS. 6 to 8, the curved line shown by the broken line is the one in which the adsorption catalyst is arranged, and the curved line shown by the solid line is that without the adsorption catalyst. According to this, whether the secondary air is introduced,
The HC purification rate is higher in the case where the adsorption catalyst is arranged, regardless of the secondary air introduction start time. This is due to the presence of the adsorption catalyst. Further, from these figures, it is understood that the one in which the HC adsorption catalyst is arranged has a high purification rate without always introducing the secondary air. This shows the change over time in the catalyst outlet gas temperature when secondary air is added for 100 seconds immediately after engine startup, and in FIG. 10 for 20 seconds from the time when 20 seconds have elapsed since the secondary air was started. As shown in the time course of the catalyst outlet gas temperature when added (the curve indicated by the broken line is the one in which the adsorption catalyst is arranged, the curve indicated by the solid line is the one without the adsorption catalyst), and is adsorbed by the adsorption catalyst. This is because a large amount of hydrocarbons burn at once in an oxygen-excess atmosphere and the catalyst temperature rises rapidly. Therefore, the stoichiometric state (combustion state at theoretical air-fuel ratio (λ = 1), that is, secondary air is stopped and normal exhaust gas is exhausted. This is to maintain a high purification rate even after returning to the composition state.

【図面の簡単な説明】[Brief description of drawings]

【図1】発熱剤(CaO)担持量とY1浄化率(HC浄
化率)との関係を示すグラフ図
FIG. 1 is a graph showing a relationship between a carrying amount of a heating agent (CaO) and a Y1 purification rate (HC purification rate).

【図2】担体における発熱剤の担持範囲とY1浄化率と
の関係を示すグラフ図
FIG. 2 is a graph showing the relationship between the carrying range of the exothermic agent on the carrier and the Y1 purification rate.

【図3】エンジンの排気系を示すブロック図FIG. 3 is a block diagram showing an exhaust system of the engine.

【図4】排気ガス中のO2 濃度とT50(ライトオフ温
度)との関係を示すグラフ図
FIG. 4 is a graph showing the relationship between the O 2 concentration in exhaust gas and T50 (light-off temperature).

【図5】2次エア流量とY1浄化率との関係を示すグラ
フ図
FIG. 5 is a graph showing the relationship between the secondary air flow rate and the Y1 purification rate.

【図6】2次エアを導入しない場合のHC浄化率の経時
変化を示すグラフ図
FIG. 6 is a graph showing the change over time in the HC purification rate when secondary air is not introduced.

【図7】2次エアをエンジン始動直後から100秒まで
加えた場合のHC浄化率の経時変化を示すグラフ図
FIG. 7 is a graph showing the change over time in the HC purification rate when secondary air is added for 100 seconds immediately after engine startup.

【図8】2次エアをエンジン始動から20秒を経過した
時点から20秒間加えた場合のHC浄化率の経時変化を
示すグラフ図
FIG. 8 is a graph showing the change over time in the HC purification rate when secondary air is added for 20 seconds after 20 seconds have elapsed from the engine start.

【図9】2次エアをエンジン始動直後から100秒まで
加えた場合の触媒出口ガス温度の経時変化を示すグラフ
FIG. 9 is a graph showing the change over time in the catalyst outlet gas temperature when secondary air is added for 100 seconds immediately after engine startup.

【図10】2次エアをエンジン始動から20秒を経過し
た時点から20秒間加えた場合の触媒出口ガス温度の経
時変化を示すグラフ図
FIG. 10 is a graph showing the change over time in the catalyst outlet gas temperature when secondary air is added for 20 seconds after 20 seconds have elapsed from the engine start.

【符号の説明】[Explanation of symbols]

1 エンジン 2 三元触媒 3 HC吸着触媒 1 engine 2 three-way catalyst 3 HC adsorption catalyst

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/72 53/86 ZAB 53/94 B01J 20/18 ZAB D B01D 53/36 ZAB 104 A (72)発明者 黒川 貴弘 広島県安芸郡府中町新地3番1号 マツダ 株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location B01D 53/72 53/86 ZAB 53/94 B01J 20/18 ZAB D B01D 53/36 ZAB 104 A ( 72) Inventor Takahiro Kurokawa 3-1, Shinchi Fuchu-cho, Aki-gun, Hiroshima Prefecture Mazda Motor Corporation

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気ガス中の炭化水素及び水
分を吸着する吸着剤に該炭化水素を分解する触媒金属を
担持させてなる吸着触媒を有する吸着触媒部と、 上記吸着触媒部に隣接して排気ガス流れ方向の下流側に
配設され上記水分の吸収によって発熱する発熱剤を有す
る発熱部とを備えていることを特徴とする内燃機関の排
気ガス浄化用触媒。
1. An adsorption catalyst section having an adsorption catalyst comprising an adsorbent for adsorbing hydrocarbons and water in exhaust gas of an internal combustion engine and a catalytic metal for decomposing the hydrocarbons, and an adsorbing catalyst section adjacent to the adsorbing catalyst section. An exhaust gas purifying catalyst for an internal combustion engine, further comprising: a heat generating portion that is disposed on the downstream side in the exhaust gas flow direction and has a heat generating agent that generates heat by absorbing the moisture.
【請求項2】 請求項1に記載されている内燃機関の排
気ガス浄化用触媒において、 上記発熱剤がCaOであることを特徴とする内燃機関の
排気ガス浄化用触媒。
2. The exhaust gas purifying catalyst for an internal combustion engine according to claim 1, wherein the exothermic agent is CaO.
【請求項3】 請求項1又は請求項2に記載されている
内燃機関の排気ガス浄化用触媒において、 上記吸着触媒がセラミック製のモノリス担体の排気ガス
流れ方向の上流側の部位に担持されて上記吸着触媒部が
形成され、 上記発熱剤が上記モノリス担体の排気ガス流れ方向の下
流側の部位に担持されて上記発熱部が形成されているこ
とを特徴とする内燃機関の排気ガス浄化用触媒。
3. The exhaust gas purifying catalyst for an internal combustion engine according to claim 1 or 2, wherein the adsorption catalyst is carried on a site upstream of the ceramic monolith carrier in the exhaust gas flow direction. An exhaust gas purifying catalyst for an internal combustion engine, wherein the adsorption catalyst section is formed, and the exothermic agent is carried on a downstream side portion of the monolith carrier in the exhaust gas flow direction to form the exothermic section. .
【請求項4】 請求項3に記載されている内燃機関の排
気ガス浄化用触媒において、 上記吸着剤がゼオライトであることを特徴とする内燃機
関の排気ガス浄化用触媒。
4. The exhaust gas purifying catalyst for an internal combustion engine according to claim 3, wherein the adsorbent is zeolite.
【請求項5】 請求項4に記載されている内燃機関の排
気ガス浄化用触媒において、 上記モノリス担体1リットル当りのCaOの担持量が1
5g以上であることを特徴とする内燃機関の排気ガス浄
化用触媒。
5. The catalyst for purifying exhaust gas of an internal combustion engine according to claim 4, wherein the carried amount of CaO is 1 per liter of the monolith carrier.
An exhaust gas purifying catalyst for an internal combustion engine, which is 5 g or more.
【請求項6】 請求項4に記載されている内燃機関の排
気ガス浄化用触媒において、 上記モノリス担体1リットル当りのCaOの担持量が2
0〜30gであることを特徴とする内燃機関の排気ガス
浄化用触媒。
6. The exhaust gas purifying catalyst for an internal combustion engine according to claim 4, wherein the carried amount of CaO is 2 per liter of the monolith carrier.
An exhaust gas purifying catalyst for an internal combustion engine, which has a weight of 0 to 30 g.
【請求項7】 請求項4に記載されている内燃機関の排
気ガス浄化用触媒において、 上記発熱部が上記モノリス担体の下流端から該モノリス
担体の全長の1/10〜2/5の範囲にわたる部位に形
成されていることを特徴とする内燃機関の排気ガス浄化
用触媒。
7. The exhaust gas purifying catalyst for an internal combustion engine according to claim 4, wherein the heat generating portion extends from the downstream end of the monolith carrier to a range of 1/10 to 2/5 of the entire length of the monolith carrier. A catalyst for purifying exhaust gas of an internal combustion engine, which is formed in a portion.
【請求項8】 請求項4に記載されている内燃機関の排
気ガス浄化用触媒において、 上記発熱部が上記モノリス担体の下流端から該モノリス
担体の全長の1/5〜1/3の範囲にわたる部位に形成
されていることを特徴とする内燃機関の排気ガス浄化用
触媒。
8. The exhaust gas purifying catalyst for an internal combustion engine according to claim 4, wherein the heat generating portion extends from the downstream end of the monolith carrier to 1/5 to 1/3 of the entire length of the monolith carrier. A catalyst for purifying exhaust gas of an internal combustion engine, which is formed in a portion.
【請求項9】 請求項4に記載されている内燃機関の排
気ガス浄化用触媒において、 上記吸着触媒が、ゼオライトにPdとセリアとを担持さ
せてなることを特徴とする内燃機関の排気ガス浄化用触
媒。
9. The exhaust gas purifying catalyst for an internal combustion engine according to claim 4, wherein the adsorption catalyst comprises zeolite carrying Pd and ceria. Catalyst.
JP27220994A 1994-11-07 1994-11-07 Exhaust gas purification catalyst for internal combustion engines Expired - Fee Related JP3567507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27220994A JP3567507B2 (en) 1994-11-07 1994-11-07 Exhaust gas purification catalyst for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27220994A JP3567507B2 (en) 1994-11-07 1994-11-07 Exhaust gas purification catalyst for internal combustion engines

Publications (2)

Publication Number Publication Date
JPH08131837A true JPH08131837A (en) 1996-05-28
JP3567507B2 JP3567507B2 (en) 2004-09-22

Family

ID=17510634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27220994A Expired - Fee Related JP3567507B2 (en) 1994-11-07 1994-11-07 Exhaust gas purification catalyst for internal combustion engines

Country Status (1)

Country Link
JP (1) JP3567507B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017202961A (en) * 2016-05-12 2017-11-16 株式会社神戸製鋼所 Hydrogen gas manufacturing method
WO2022112124A1 (en) * 2020-11-26 2022-06-02 Vitesco Technologies GmbH Device for exhaust gas aftertreatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017202961A (en) * 2016-05-12 2017-11-16 株式会社神戸製鋼所 Hydrogen gas manufacturing method
WO2022112124A1 (en) * 2020-11-26 2022-06-02 Vitesco Technologies GmbH Device for exhaust gas aftertreatment

Also Published As

Publication number Publication date
JP3567507B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP3311051B2 (en) Exhaust gas purification method and apparatus
JP3724708B2 (en) Exhaust gas purification catalyst
EP0593898B1 (en) Exhaust gas conversion method and apparatus using thermally stable zeolites
JP3855266B2 (en) Exhaust gas purification catalyst
US20030039597A1 (en) Close coupled catalyst with a SOx trap and methods of making and using the same
JP4390000B2 (en) NOx adsorption device
US5587137A (en) Exhaust gas conversion method using thermally stable zeolites
JPH07124468A (en) Production of hydrocarbon adsorbent and adsorption catalyst
JP3282344B2 (en) Exhaust gas purification device
JPH07332073A (en) Exhaust emission control device
JP2682404B2 (en) Method for producing hydrocarbon adsorbent and catalyst
JP3567507B2 (en) Exhaust gas purification catalyst for internal combustion engines
JP5094199B2 (en) Exhaust gas purification device
JP3695394B2 (en) Exhaust gas purification device and manufacturing method
JP4058588B2 (en) Exhaust gas purification catalyst
JPH07241471A (en) Production of adsorptive catalyst for purification of exhaust gas
JP2003135970A (en) Exhaust gas cleaning catalyst
JP2000135419A (en) Exhaust gas purifying system
JP2004322022A (en) Catalyst for cleaning exhaust gas
JP2002013412A (en) Exhaust emission control system
EP1262642B1 (en) Exhaust gas purifying system
JP3757440B2 (en) Engine exhaust gas purification device
JP2002295247A (en) Purifying device of engine
JP2002263450A (en) Exhaust emission control device
JP2003343252A (en) Exhaust gas purifying system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees