JPH08131710A - Apparatus for transferring air bubble in liquid utilizing magnetic field - Google Patents

Apparatus for transferring air bubble in liquid utilizing magnetic field

Info

Publication number
JPH08131710A
JPH08131710A JP6274838A JP27483894A JPH08131710A JP H08131710 A JPH08131710 A JP H08131710A JP 6274838 A JP6274838 A JP 6274838A JP 27483894 A JP27483894 A JP 27483894A JP H08131710 A JPH08131710 A JP H08131710A
Authority
JP
Japan
Prior art keywords
magnetic field
bubbles
liquid
air bubbles
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6274838A
Other languages
Japanese (ja)
Other versions
JP2615431B2 (en
Inventor
Nobuko Wakayama
信子 若山
Kenichi Itou
献一 伊藤
Osamu Fujita
修 藤田
Hiroyuki Ito
弘行 伊東
Yukio Kuroda
幸生 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6274838A priority Critical patent/JP2615431B2/en
Publication of JPH08131710A publication Critical patent/JPH08131710A/en
Application granted granted Critical
Publication of JP2615431B2 publication Critical patent/JP2615431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE: To move air bubbles in a liq. in the cosmic space where buoyancy is not present by an apparatus wherein a pair of magnetic poles forming a gradient magnetic field are provided in the liq. contg. the air bubbles therein or on the outside thereof and moving the air bubbles in the direction of the gradient magnetic field by utilizing the gradient magnetic field. CONSTITUTION: A pair of magnetic poles 4 and 4 forming a gradient magnetic field are provided in a liq. 2 contg. air bubbles 3 therein or on the outside thereof and a force of the magnetic field is applied on the air bubbles by utilizing the gradient magnetic field based on the difference in vol. susceptibilities of the liq. 2 and gas in the air bubbles 3 to move the air bubbles in the direction of the gradient magnetic field. In this case, the magnetic poles 4 and 4 are bound each other with a soft iron supporting body 15 and when the distance (t) between the magnetic poles is changed along gradient faces 4a and 4b of the magnetic poles 4 and 4, a large gradient magnetic field is generated between both magnetic poles. Therefore, it can be used for removal of mixed air bubbles in a carrying pipe, removal of air bubbles on the surface of electrodes of a battery, removal of air bubbles in the electrophoresis layer of an electrophoresis apparatus, removal of air bubbles in a cooling water and removal of air bubbles in a fuel tank and it is especially effective under microforce of gravity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微小重力下においてモ
ータなどの機械的装置を用いずに液体中の気泡の移動と
脱泡を行うことができる装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device capable of moving and defoaming bubbles in a liquid under microgravity without using a mechanical device such as a motor.

【0002】[0002]

【従来の技術】地球上では重力が存在し、液体中の気泡
は浮力により上方に移動する。しかし無重力下では液体
と気体は混在したままで、液体中の気体(気泡)を移動
させる手段として、振動を与える以外に適当な手段が存
在しないのが現状である。
2. Description of the Related Art Gravity exists on the earth, and bubbles in liquid move upward due to buoyancy. However, at present, there is no suitable means for moving the gas (bubbles) in the liquid while the liquid and the gas remain mixed under zero gravity, except for applying vibration.

【0003】[0003]

【発明が解決しようとする課題】宇宙空間のような微小
重力下では、浮力が存在しないため気泡と液体が混在し
たままで、泡の存在が大きな問題になってくる。例えば
平成6年の向井氏らが乗り込んだスペースシャトル「コ
ロンビア」の実験では、電気泳動装置の冷却水に泡が入
っていたため、装置が動かなくなってしまうという問題
があった。さらに電気泳動装置を使用した実験中に泳動
層にも泡が入ったため、装置が正常に作動しなかった等
の問題が発生したことが知られている(ニュ−トン、平
成6年、10月号、P.59−60、教育社)。さらに
宇宙でバッテリーを使用する場合、電極表面に発生した
気体が留まり、電極反応が抑制されることが問題になっ
ている(Water Electrolysis Under Microgravity Cond
ition by Parabolic Flight 、H.Kaneko et al. Electr
ochimicaActa 38, 729-733,1993)。このように微小重
力下では液体中の気泡のコントロ−ルは重要な問題であ
り、取り除く適当な手段がないのが現状である。
In microgravity such as outer space, since buoyancy does not exist, bubbles and liquid remain mixed and the presence of bubbles becomes a big problem. For example, in the experiment of the Space Shuttle "Colombia" in which Mr. Mukai et al. Got in in 1994, there was a problem in that the cooling water of the electrophoresis apparatus had a bubble, so that the apparatus could not be operated. Further, it is known that bubbles also entered the electrophoresis layer during the experiment using the electrophoresis apparatus, which caused problems such as malfunction of the apparatus (Newton, October, 1994) No., pp. 59-60, Kyoikusha). Furthermore, when a battery is used in space, the gas generated on the electrode surface remains and the electrode reaction is suppressed (Water Electrolysis Under Microgravity Cond).
ition by Parabolic Flight, H.Kaneko et al. Electr
ochimicaActa 38, 729-733, 1993). As described above, under the microgravity, the control of the bubbles in the liquid is an important problem, and at present, there is no appropriate means for removing the bubbles.

【0004】[0004]

【課題を解決するための手段】本発明者らは、微小重力
下において液体中の気泡を制御する方法について鋭意研
究を重ねた結果、液体と気体(気泡)の体積磁化率の相
違に着目し、この液体を所定の勾配磁場におくことによ
り、気泡の移動など制御が可能になることを見い出し、
この知見に基づき本発明をなすに至った。すなわち本発
明は、(1)内部に気泡を有する液体中もしくはその外
側に、勾配磁場を形成する一対の磁極を設けてなり、液
体と気泡中の気体の体積磁化率の差により、前記勾配磁
場を利用して前記気泡に磁場力を印加し、前記気泡を勾
配磁場の方向に移動させるようにしたことを特徴とする
気泡移動装置、(2)液体が反磁性であって、気泡を動
かす方向に沿って磁場強度が増加する勾配磁場であるこ
とを特徴とする(1)項記載の磁場を利用した液体中の
気泡移動装置、(3)液体が常磁性であって、気泡を動
かす方向に沿って磁場強度が減少する勾配磁場であるこ
とを特徴とする(1)項記載の磁場を利用した液体中の
気泡移動装置、及び(4)内部に気泡を有する液体に対
して勾配磁場を形成し、液体と気泡中の気体の体積磁化
率の差により、前記勾配磁場を利用して気泡に磁場力を
印加し、前記気泡を所定方向に移動させることを特徴と
する気泡移動方法を提供するものである。本発明におい
ては液体中の気泡の体積磁化率が液体のそれと大きく相
違すること、そのような気泡に対して勾配磁場において
大きな磁場の力が作用することを利用する。重力場に感
じる単位体積当りの物理量が密度であるように、磁場に
感じる物理量は体積磁化率である。物質は各々固有の体
積磁化率を持ち、殆どの物質は反磁性(体積磁化率の符
号は負)である。酸素ガスや遷移元素の塩などは常磁性
(体積磁化率は正)である。そして液体と気体ではその
密度が大きく異なるように、その体積磁化率も大きく異
なってくる。
Means for Solving the Problems The present inventors have conducted intensive studies on a method for controlling bubbles in a liquid under microgravity, and as a result, focused on the difference in volume susceptibility between a liquid and a gas (bubbles). By placing this liquid in a predetermined gradient magnetic field, it was found that it was possible to control the movement of bubbles and the like,
The present invention has been accomplished based on this finding. That is, the present invention provides (1) a pair of magnetic poles for forming a gradient magnetic field in or outside a liquid having bubbles therein, and the gradient magnetic field is determined by a difference in volume susceptibility between the liquid and the gas in the bubbles. A bubble moving device characterized in that a magnetic field force is applied to the bubble by utilizing the above, and the bubble is moved in the direction of the gradient magnetic field. (2) The direction in which the liquid is diamagnetic and the bubble is moved (1) A bubble moving device in a liquid using a magnetic field according to (1), wherein the liquid is paramagnetic and moves in a direction in which bubbles move. (1) The apparatus for moving bubbles in a liquid using a magnetic field according to the above (1), and (4) forming a gradient magnetic field for a liquid having bubbles inside. And the volume susceptibility of gas in liquid and gas bubbles Accordingly, a magnetic field force is applied to the bubble by using the gradient magnetic field, there is provided a bubble moving method characterized by moving the bubbles in a predetermined direction. The present invention utilizes the fact that the volume susceptibility of bubbles in a liquid is largely different from that of a liquid, and that a large magnetic field force acts on such bubbles in a gradient magnetic field. Just as the physical quantity per unit volume perceived by the gravitational field is the density, the physical quantity perceived by the magnetic field is the volume susceptibility. Each substance has its own volume susceptibility, and most substances are diamagnetic (the sign of the volume susceptibility is negative). Oxygen gas and salts of transition elements are paramagnetic (the volume susceptibility is positive). Just as the density of a liquid differs greatly from that of a gas, the volume susceptibility also differs greatly.

【0005】反磁性物質である水または有機溶媒の体積
磁化率は負で10-7のオ−ダ−で、例えば純水の20度
Cにおける体積磁化率は−0.720×10-6(CGS
単位)である。殆どの気体も反磁性で、その体積磁化率
は負で室温で10-10 のオーダ−である(化学便覧、基
礎編II、改訂2版、P.1233,1236、丸
善)。例外として酸素ガスは常磁性で、その体積磁化率
は+1.5×10-7である。このように1mLあたりの
体積磁化率は液体は気体に比べて大きく異なるという特
徴がある。 本発明方法を適用する気泡中の気体(体積
磁化率χ)と液体(体積磁化率χ0 )との組合わせにつ
いては特に制限はなく、どのようなものでもよいが、例
えば次のようなものがあげられる。 (a)常磁性気体と反磁性液体 例えば、空気と純水(χ−χ0 =7.5×10-7) 酸素と純水(χ−χ0 =8.7×10-7) (b)常磁性気体と常磁性液体 例えば、空気と、モール塩を1mLあたり0.1g溶解
した水(χ−χ0 =−2.51×10-6) (c)反磁性気体と反磁性液体 例えば、窒素ガスと純水(χ−χ0 =7.2×10-7) (d)反磁性気体と常磁性液体 例えば、窒素ガスとモール塩溶液(χ−χ0 =−2.5
4×10-6
The volume magnetic susceptibility of water or an organic solvent, which is a diamagnetic substance, is negative and of the order of 10 -7 . For example, the volume magnetic susceptibility of pure water at 20 ° C. is -0.720 × 10 -6 ( CGS
Unit). Most gases are also diamagnetic, and their volume susceptibilities are negative and on the order of 10 -10 at room temperature (Chemical Handbook, Basics II, 2nd revised edition, P.1233, 1236, Maruzen). As an exception, oxygen gas is paramagnetic, and its volume susceptibility is + 1.5 × 10 −7 . As described above, the volume susceptibility per 1 mL is characterized in that a liquid is greatly different from a gas. Particular restriction on the combination of the gas in the bubbles of applying the present invention method (volume magnetic susceptibility chi) and liquid (volume magnetic susceptibility chi 0) is not, What is may, but for example, as follows Is raised. (A) Paramagnetic gas and diamagnetic liquid For example, air and pure water (χ−χ 0 = 7.5 × 10 −7 ) Oxygen and pure water (χ−χ 0 = 8.7 × 10 −7 ) (b ) Paramagnetic gas and paramagnetic liquid For example, air and water in which 0.1 g of Mohr's salt is dissolved per mL (χ−χ 0 = −2.51 × 10 −6 ) (c) Diamagnetic gas and diamagnetic liquid , Nitrogen gas and pure water (χ−χ 0 = 7.2 × 10 −7 ) (d) Diamagnetic gas and paramagnetic liquid For example, nitrogen gas and Mohr's salt solution (χ−χ 0 = −2.5)
4 × 10 -6 )

【0006】一般に液体は反磁性のものが多いが、この
ような液体に常磁性イオンを溶解させると常磁性にな
る。このようなものにも本発明を適用することができ
る。例えば、水に常磁性イオンFe2+、Fe3+、Cu2+
等の金属イオンを加えると水溶液は常磁性になり、体積
磁化率は正になり、上記(b)、(d)のように常磁性
もしくは反磁性気体との差χ−χ0 を負にすることがで
きる。液体酸素は常磁性で体積磁化率χ0 は約3×10
-4で非常に大きく、特に本発明が有効である。本発明は
磁場に感じる物理量、体積磁化率が液体と気体で大きく
異なる場合、勾配磁場によって浮力のような力が気泡に
作用することを利用する。本発明では、磁場強度と磁場
勾配の積が大きい程、液体と気泡の体積磁化率の差が大
きい程、作用する磁場の力も大きくなり、本発明の効果
もより大きくなる。本発明において磁場強度と磁場勾配
の積は大きい程望ましく、永久磁石では磁極間のギャッ
プが1cmで150KG2/cm位得ることも可能であ
る。この磁場強度と磁場勾配の積を通常50KG2 /c
m以上として実施することができるが、微小重力下では
これより小さくできる。本発明の装置において磁石の磁
場勾配は、大きい程よく、特に制限はないが、通常50
KG2/cm以上、好ましくは150KG2/cm以上と
する。磁場勾配が小さすぎると液体の粘度が大きい場
合、表面張力が大きい場合など気泡が移動しないことが
ある。
In general, liquids are often diamagnetic, but when paramagnetic ions are dissolved in such liquids, they become paramagnetic. The present invention can be applied to such a device. For example, paramagnetic ions Fe 2+ , Fe 3+ , Cu 2+
When the metal ions are added, the aqueous solution becomes paramagnetic, the volume susceptibility becomes positive, and the difference χ−χ 0 from the paramagnetic or diamagnetic gas becomes negative as in (b) and (d) above. be able to. Liquid oxygen is paramagnetic and volume susceptibility χ 0 is about 3 × 10
-4 is very large, and the present invention is particularly effective. The present invention makes use of the fact that a force such as buoyancy acts on bubbles by a gradient magnetic field when the physical quantity and volume susceptibility sensed by a magnetic field differ greatly between a liquid and a gas. In the present invention, the larger the product of the magnetic field strength and the magnetic field gradient and the larger the difference between the volume susceptibility of the liquid and the bubble, the greater the force of the acting magnetic field, and the greater the effect of the present invention. In the present invention, the product of the magnetic field strength and the magnetic field gradient is preferably as large as possible. In the case of a permanent magnet, a gap between magnetic poles of 1 cm can be about 150 KG 2 / cm. The product of the magnetic field strength and the magnetic field gradient is usually 50 KG 2 / c
m, but can be made smaller under microgravity. In the device of the present invention, the larger the magnetic field gradient of the magnet, the better, and there is no particular limitation.
KG 2 / cm or more, preferably 150 kg 2 / cm or more. If the magnetic field gradient is too small, bubbles may not move, for example, when the viscosity of the liquid is large or when the surface tension is large.

【0007】本発明の気泡移動装置において体積Vm
L、体積磁化率χの気泡が体積磁化率χo の液体中に存
在する場合、磁場勾配(δH/δX)で、磁場強度
(H)の勾配磁場中では気泡にX軸方向に作用する力は
次式で与えられる。 F=V×(χ−χo )×H×(δH/δX) 式(1) 前述したように反磁性気体の体積磁化率は液体に比べて
大変、小さいため、式(1)で気体の体積磁化率を省略
できる。 F=−V×χo ×H×(δH/δX) 式(2) この式は気泡がX軸方向に受ける力を表し、液体が体積
磁化率が負である反磁性物質の場合、磁場が増加する方
向に力が作用することを示す。液体が液体酸素のような
常磁性の場合、気泡には反対に磁場が減少する方向に力
が作用する。水は反磁性であるが、冷却水として使用す
る場合に、常磁性イオンを溶解させることにより体積磁
化率を制御して正の値にすることも可能である。
In the bubble moving device of the present invention, the volume Vm
L, when bubbles of the volume magnetic susceptibility chi is present in the liquid volume magnetic susceptibility chi o, with field gradient (δH / δX), acting in the X-axis direction in bubbles in the gradient magnetic field of the magnetic field intensity (H) Power Is given by the following equation. F = V × (χ−χ o ) × H × (δH / δX) Equation (1) As described above, since the volume susceptibility of diamagnetic gas is much smaller than that of liquid, the gas of Equation (1) The volume susceptibility can be omitted. F = -V × χ o × H × (δH / δX) Formula (2) This equation represents the force bubbles undergoes X-axis direction, when the liquid volume magnetic susceptibility of the diamagnetic material is negative, a magnetic field is It shows that the force acts in the increasing direction. When the liquid is paramagnetic such as liquid oxygen, a force acts on the gas bubbles in the direction in which the magnetic field decreases. Water is diamagnetic, but when used as cooling water, it is also possible to control the volume susceptibility to a positive value by dissolving paramagnetic ions.

【0008】本発明の気泡除去方法及び気泡移動装置
は、純水や、常磁性遷移元素の塩を溶解させた水溶液な
ど各種の水溶液、アルコール、ベンゼン、トルエンなど
の各種有機溶媒中の気泡の除去に適用される。具体的に
は、輸送パイプ中の混入気泡の除去、バッテリーの電極
表面の気泡の除去、電気泳動装置の泳動層の除泡、冷却
水中の除泡、燃料タンク中の気泡の除去(ロケット燃料
用液体酸素中の気体O2の除去など)に用いることがで
きる。これらの利用は地球の重力の作用する場でも行え
るが、微小重力下で行うのがより好ましい。
The bubble removing method and bubble moving apparatus of the present invention removes bubbles in various aqueous solutions such as pure water and an aqueous solution in which a salt of a paramagnetic transition element is dissolved, and various organic solvents such as alcohol, benzene and toluene. Applied to. Specifically, removal of air bubbles mixed in the transport pipe, removal of air bubbles on the electrode surface of the battery, removal of the migration layer of the electrophoresis device, removal of the bubbles in the cooling water, removal of the bubbles in the fuel tank (for rocket fuel Removal of gas O 2 in liquid oxygen). These applications can be performed in a place where the earth's gravity acts, but it is more preferable to use them under microgravity.

【0009】[0009]

【実施例】次に本発明を実施例に基づきさらに詳細に説
明する。 実施例1 本発明を図示の一実施例にしたがって説明すると、図1
は本発明に係わる磁場利用の液体中の気泡移動装置の説
明図である。1は液体2が存在する容器またはパイプで
あり、気泡3が液体中に存在する。4、4は永久磁石の
一対の磁極で、気泡3の存在する空間に勾配磁場mを発
生させるためのものである。磁極の形状は磁場強度と磁
場勾配の積が最大になるように設計されている。磁場の
発生には永久磁石に代えて電磁石などを使用してもよ
い。一般に磁極4、4は軟鉄の支持体15で互いに結合
されている。4a、4aは磁極4、4の勾配面であり、
この面に沿って磁極間の距離tが変化する場合、両磁極
間に大きい勾配磁場が発生する。本発明の気泡移動装置
を使用する場合、磁石を容器の外部に設置する時、対象
とする液体を収容する容器、パイプなどの材質は鉄のよ
うな磁力を遮断、妨害するものでなければどのようなも
のでもよく、例えばプラスチック、ガラス、アルミ、銅
などが用いられる。図2は図1の気泡移動装置によって
形成される勾配磁場mの説明図である。横軸は位置座標
のX軸で、図1に示すX軸に対応し、aは図1における
磁極4の左側の端縁の位置、0は気泡3の重心の位置を
示す。縦軸は磁場強度(H)を表わし、矢印5の方向に
沿って磁場強度は増加するものとする。このような勾配
磁場mをかけた場合、液体が反磁性物質の場合、矢印5
の方向に気泡に磁場力が作用し、気泡を矢印方向5へ動
かすことができる。例えば反磁性である純水中に1mL
の窒素ガスのような反磁性ガスの気泡が存在する場合、
気泡に作用する磁場力は式(2)を用いると、磁場強度
Hが15kGで、磁場勾配が10kG/cmの場合、 F=0.720×10-6×1.5×104 ×10×10
3 =108ダイン となる。重力場で気泡1mLに作用する浮力、980ダ
インと比較すれば小さいが、重力が存在しない宇宙空間
では有効に作用すると考えられる。
Next, the present invention will be described in more detail with reference to examples. Embodiment 1 The present invention will be described with reference to an embodiment shown in FIG.
FIG. 4 is an explanatory view of a device for moving bubbles in a liquid using a magnetic field according to the present invention. 1 is a container or pipe in which the liquid 2 exists, and bubbles 3 exist in the liquid. Reference numerals 4 and 4 denote a pair of magnetic poles of a permanent magnet for generating a gradient magnetic field m in the space where the bubble 3 exists. The shape of the magnetic pole is designed such that the product of the magnetic field strength and the magnetic field gradient is maximized. An electromagnet or the like may be used instead of a permanent magnet to generate a magnetic field. In general, the magnetic poles 4, 4 are connected to each other by a soft iron support 15. 4a and 4a are gradient surfaces of the magnetic poles 4 and 4,
When the distance t between the magnetic poles changes along this plane, a large gradient magnetic field is generated between the magnetic poles. When the bubble moving device of the present invention is used, when the magnet is installed outside the container, the material of the container containing the target liquid, the pipe, and the like may be any material that does not block or obstruct the magnetic force such as iron. For example, plastic, glass, aluminum, copper, etc. are used. FIG. 2 is an explanatory diagram of the gradient magnetic field m formed by the bubble moving device of FIG. The horizontal axis is the X-axis of the position coordinates, which corresponds to the X-axis shown in FIG. 1, where a indicates the position of the left edge of the magnetic pole 4 in FIG. 1 and 0 indicates the position of the center of gravity of the bubble 3. The vertical axis represents the magnetic field strength (H), and the magnetic field strength increases along the direction of arrow 5. When such a gradient magnetic field m is applied, when the liquid is a diamagnetic substance, an arrow 5
A magnetic field force acts on the bubble in the direction of, and the bubble can be moved in the arrow direction 5. For example, 1 mL in diamagnetic pure water
If there are bubbles of diamagnetic gas such as nitrogen gas,
When the magnetic field force acting on the bubble is expressed by the equation (2), when the magnetic field strength H is 15 kG and the magnetic field gradient is 10 kG / cm, F = 0.720 × 10 −6 × 1.5 × 10 4 × 10 × 10
3 = 108 dynes. Buoyancy acting on 1 mL of bubbles in the gravitational field, which is small compared to 980 dynes, but it is considered to work effectively in outer space where gravity does not exist.

【0010】実施例2 次に実施例1の液体2中に予め常磁性の塩を溶解させ、
体積磁化率の符号や値を大きく変えた場合について試験
した。純水1mLあたりモール塩(FeSO4(NH
42 SO4 ・6H2 O)を0.1g溶解した場合、溶
液の体積磁化率は(3.26−0.72)×10-6で、
正の値を示す。ちなみにモール塩の室温の1gあたりの
磁化率は32.6×10-6である。この溶液中に1mL
の気泡が存在する場合、図1で磁場強度Hが15kG
で、磁場勾配が10kG/cmの場合の磁場をかける
と、 F=2.54×10-6×1.5×104 ×10×103
=381ダイン の力が作用し、気泡3を磁場強度が減少する矢印6の方
向へ移動させることができる。
Example 2 Next, a paramagnetic salt was previously dissolved in the liquid 2 of Example 1,
The test was performed when the sign and value of the volume susceptibility were significantly changed. Mall salt (FeSO 4 (NH
4 ) When 0.1 g of 2 SO 4 .6H 2 O) is dissolved, the volume susceptibility of the solution is (3.26-0.72) × 10 −6 ,
Indicates a positive value. Incidentally, the magnetic susceptibility per 1 g of the Mohr salt at room temperature is 32.6 × 10 −6 . 1 mL in this solution
In case of the presence of bubbles, the magnetic field strength H is 15 kG in FIG.
Applying a magnetic field when the magnetic field gradient is 10 kG / cm, F = 2.54 × 10 −6 × 1.5 × 10 4 × 10 × 10 3
= 381 dynes acts, and the bubble 3 can be moved in the direction of the arrow 6 where the magnetic field intensity decreases.

【0011】実施例3 図3(A)に示した実験装置を用いて、試験した。試験
管中7に白金触媒を含むアルミナペレット8(0.5%
アルミナペレット、エヌイーケムキャット株式会社製)
を1粒配置し、1%の過酸化水素水溶液9を注ぐと、ア
ルミナペレットの表面で発生した酸素ガスの気泡は矢印
10に沿って上方に移動した。この場合の勾配磁場とし
て図3(B)で示したように矢印10の方向である、ア
ルミナペレット8の表面を0とするX軸方向にそって磁
場強度(H)が増加するような磁場(イ)をかけた場
合、かけない場合について発生する酸素ガスの量を測定
した。磁場はアルミナペレットの位置では磁場強度12
kG,磁場勾配3kG/cmである。磁石は電磁石(I
DX株式会社製 ISM−130WV)を使用した。図
3では12は電磁石のポールピースの形状を示す。上記
の勾配磁場をかけた場合、かけない場合に比べて酸素ガ
スの発生量は3%増加した。本反応では、触媒表面から
の酸素ガスの除去が反応の律速段階である。地球上では
浮力により酸素ガスが矢印10の方向に触媒表面から除
かれるが、今回の結果は磁場も酸素ガスの除去に貢献し
たことを示すものである。さらに試験管の位置をずらし
X軸に沿って反対に磁場強度が減少するような勾配磁場
(ロ)をかけた場合、発生する酸素ガスの発生量は、磁
場がない場合に比べて3%減少した。この結果は勾配磁
場が酸素ガスに矢印11の方向に作用し、触媒表面から
の気泡除去を抑制したことを示すものである。これらの
結果は磁場が液体中の気泡の輸送に有効に作用すること
を示すものである。
Example 3 A test was conducted using the experimental apparatus shown in FIG. Alumina pellets 8 containing a platinum catalyst (0.5%
Alumina pellets, manufactured by NE Chemcat Corporation
When 1% aqueous hydrogen peroxide solution 9 was poured, oxygen gas bubbles generated on the surface of the alumina pellets moved upward along arrow 10. As the gradient magnetic field in this case, as shown in FIG. 3B, a magnetic field (H) whose magnetic field strength (H) increases along the X-axis direction where the surface of the alumina pellet 8 is 0, which is the direction of arrow 10. The amount of oxygen gas generated when b) was applied and when it was not applied was measured. The magnetic field strength is 12 at the position of the alumina pellet.
kG and a magnetic field gradient of 3 kG / cm. The magnet is an electromagnet (I
DX ISM-130WV) was used. In FIG. 3, reference numeral 12 denotes the shape of the pole piece of the electromagnet. When the above gradient magnetic field was applied, the amount of generated oxygen gas increased by 3% as compared with the case where no gradient magnetic field was applied. In this reaction, removal of oxygen gas from the catalyst surface is the rate-determining step of the reaction. On the earth, buoyancy causes oxygen gas to be removed from the catalyst surface in the direction of arrow 10, but this result indicates that the magnetic field also contributed to oxygen gas removal. Further, when the position of the test tube is shifted and a gradient magnetic field (b) is applied along the X axis so that the magnetic field intensity decreases in the opposite direction, the amount of generated oxygen gas is reduced by 3% as compared with the case without the magnetic field. did. This result shows that the gradient magnetic field acted on the oxygen gas in the direction of the arrow 11 to suppress the removal of bubbles from the catalyst surface. These results indicate that the magnetic field effectively affects the transport of bubbles in the liquid.

【0012】実施例4 実施例3では電磁石を用いたが、本実施例では超伝導磁
石(オックスフォード社製、SMI型)を利用した。図
4(A)に示すように磁場の発生する場所13は円筒状
で、水平方向である。図4(B)に示すように磁場強度
は円筒の中央0点で60KGの最高となり、外側に向か
って10KG/cmの勾配で減少する。L字形のガラス
管の底を封じたもの14を、図4(A)のように水平よ
り約20°傾けて磁場中13に挿入した。0点のあたり
に配置した白金触媒を含むアルミナペレット8に1%の
過酸化水溶液9を注ぐと、発生した酸素ガスの気泡15
は0点のあたりに留まったままであった。この際、0点
の近辺で酸素ガス1mLに作用する力は式(2)により F=(1.5+7.2)×10-7×6×104 ×104
=522ダイン/mL と計算され、矢印16の方向に作用する。磁場を切った
場合、気泡15は矢印17の方向にただちに移動した。
これらの結果は磁場が液体中の気泡の輸送に有効に作用
することを示すものである。
Embodiment 4 Although an electromagnet was used in Embodiment 3, a superconducting magnet (SMI type, manufactured by Oxford) was used in this embodiment. As shown in FIG. 4A, the location 13 where the magnetic field is generated is cylindrical and horizontal. As shown in FIG. 4B, the magnetic field intensity reaches a maximum of 60 KG at the center 0 point of the cylinder and decreases outward at a gradient of 10 KG / cm. The L-shaped glass tube 14 whose bottom was sealed was inserted into the magnetic field 13 at an angle of about 20 ° from the horizontal as shown in FIG. When a 1% aqueous peroxide solution 9 was poured into an alumina pellet 8 containing a platinum catalyst, which was placed around the zero point, a bubble 15 of oxygen gas was generated.
Remained around 0. At this time, the force acting on 1 mL of oxygen gas in the vicinity of the 0 point is F = (1.5 + 7.2) × 10 −7 × 6 × 10 4 × 10 4 according to the equation (2).
= 522 dynes / mL, acting in the direction of arrow 16. When the magnetic field was turned off, the bubble 15 immediately moved in the direction of arrow 17.
These results indicate that the magnetic field effectively affects the transport of bubbles in the liquid.

【0013】実施例5 超伝導マグネットの磁場が発生する場所13は円筒状
で、水平方向である。図5(A)のような内径2cmの
U字形のガラス管20に純水21を満たしたものを配置
した。図5(B)に示すように中央0点で磁場強度は1
00KGの最高になり、左右に10KG/cmの勾配で
減少する。純水21中に空気の気泡22がある場合、気
泡22は磁場が強い中央に移動し、遂に水21は中央で
空気23で分断されるのが観察された。純水を常磁性の
硫酸銅水溶液にした場合、空気の泡は前とは反対に磁場
の弱い外側へ押し出されるのが観察された。
Embodiment 5 The place 13 where the magnetic field of the superconducting magnet generates is cylindrical and horizontal. As shown in FIG. 5A, a U-shaped glass tube 20 having an inner diameter of 2 cm and filled with pure water 21 was arranged. As shown in FIG. 5 (B), the magnetic field strength is 1 at the center 0 point.
It reaches the maximum of 00KG and decreases with a gradient of 10KG / cm to the left and right. When air bubbles 22 were present in the pure water 21, it was observed that the air bubbles 22 moved to the center where the magnetic field was strong, and the water 21 was finally separated at the center by the air 23. When pure water was converted to a paramagnetic copper sulfate aqueous solution, it was observed that air bubbles were pushed out to the outside where the magnetic field was weak, contrary to before.

【0014】[0014]

【発明の効果】以上、説明したように本発明の磁場を利
用した液体中の気泡移動装置は、従来、用いられてきた
ものとは全く異なる原理によって、液体中に発生した気
泡を移動させるもので、浮力が存在しない宇宙空間に於
ける液体中の気泡の移動に特に有効である。本発明では
希土類の永久磁石を利用すると電源を必要とせず、軽
く、携帯可能で、どこでも使用出来、また使用法も簡便
であるという長所を有する。また、この気泡移動装置に
よれば、その駆動にモータ等を必要としないので引火、
爆発の恐れもなく、安全性の高いシステムを組立てるこ
とができるという優れた作用効果を奏する。
As described above, the apparatus for moving bubbles in a liquid using a magnetic field according to the present invention moves bubbles generated in the liquid by a completely different principle from those conventionally used. This is particularly effective for the movement of bubbles in liquid in space where buoyancy does not exist. The present invention has the advantage that the use of a rare earth permanent magnet does not require a power source, is light, portable, can be used anywhere, and is easy to use. Further, according to this bubble moving device, since a motor or the like is not required to drive the bubble moving device, a fire,
It has an excellent effect that a highly safe system can be assembled without fear of explosion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の気泡移動装置の一実施例の模式説明図
である。
FIG. 1 is a schematic explanatory view of one embodiment of a bubble moving device of the present invention.

【図2】図1の気泡移動装置の勾配磁場mのグラフであ
る。
2 is a graph of a gradient magnetic field m of the bubble moving device of FIG.

【図3】(A)本発明の他の実施例による液体中の気泡
の磁場輸送の例を示す説明図である。 (B)(A)における勾配磁場mのグラフである。
FIG. 3A is an explanatory diagram showing an example of magnetic field transport of bubbles in a liquid according to another embodiment of the present invention. (B) It is a graph of the gradient magnetic field m in (A).

【図4】(A)本発明の他の実施例による液体中の気泡
の磁場移動の例を示す説明図である。 (B)(A)における勾配磁場mのグラフである。
FIG. 4A is an explanatory diagram showing an example of magnetic field movement of bubbles in a liquid according to another embodiment of the present invention. (B) It is a graph of the gradient magnetic field m in (A).

【図5】(A)本発明の他の実施例による液体中の気泡
の磁場移動の例を示す説明図である。 (B)(A)における勾配磁場mのグラフである。
FIG. 5A is an explanatory diagram showing an example of magnetic field movement of bubbles in a liquid according to another embodiment of the present invention. (B) It is a graph of the gradient magnetic field m in (A).

【符号の説明】[Explanation of symbols]

1 容器又はパイプ 2 液体 3 気泡 4、4 永久磁石の一対の磁極 5、6 気泡の移動方向 1 container or pipe 2 liquid 3 bubble 4, 4 a pair of permanent magnet magnetic poles 5, 6 bubble moving direction

フロントページの続き (72)発明者 伊東 弘行 北海道札幌市北区北18条西13丁目 北海道 大学恵迪寮F−210 (72)発明者 黒田 幸生 北海道札幌市北区北20条西6丁目 第5青 雲荘202号Front Page Continuation (72) Inventor Hiroyuki Ito 13-chome, Kita-ku, Sapporo, Kita-ku, Hokkaido 13-chome, Keidai Dormitory F-210, Hokkaido University (72) Yukio Kuroda 6-chome, Kita-ku, Kita-ku, Sapporo, Hokkaido Seiunso No. 202

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内部に気泡を有する液体中もしくはその
外側に、勾配磁場を形成する一対の磁極を設けてなり、
液体と気泡中の気体の体積磁化率の差により、前記勾配
磁場を利用して前記気泡に磁場力を印加し、前記気泡を
勾配磁場の方向に移動させるようにしたことを特徴とす
る気泡移動装置。
1. A pair of magnetic poles for forming a gradient magnetic field are provided in or outside a liquid having bubbles therein.
Bubble movement characterized in that a magnetic field force is applied to the bubble using the gradient magnetic field by using a difference in volume susceptibility between a liquid and a gas in the bubble to move the bubble in the direction of the gradient magnetic field. apparatus.
【請求項2】 液体が反磁性であって、気泡を動かす方
向に沿って磁場強度が増加する勾配磁場であることを特
徴とする請求項1記載の磁場を利用した液体中の気泡移
動装置。
2. The apparatus for moving bubbles in a liquid using a magnetic field according to claim 1, wherein the liquid is diamagnetic and a gradient magnetic field whose magnetic field strength increases in a direction in which bubbles move.
【請求項3】 液体が常磁性であって、気泡を動かす方
向に沿って磁場強度が減少する勾配磁場であることを特
徴とする請求項1記載の磁場を利用した液体中の気泡移
動装置。
3. The apparatus for moving bubbles in a liquid using a magnetic field according to claim 1, wherein the liquid is paramagnetic and a gradient magnetic field whose magnetic field intensity decreases in a direction in which bubbles move.
【請求項4】 内部に気泡を有する液体に対して勾配磁
場を形成し、液体と気泡中の気体の体積磁化率の差によ
り、前記勾配磁場を利用して気泡に磁場力を印加し、前
記気泡を所定方向に移動させることを特徴とする気泡移
動方法。
4. A gradient magnetic field is formed with respect to the liquid having bubbles therein, and a magnetic field force is applied to the bubbles by using the gradient magnetic field according to a difference in volume susceptibility between the liquid and the gas in the bubbles. A bubble moving method comprising moving bubbles in a predetermined direction.
JP6274838A 1994-11-09 1994-11-09 Bubble moving device in liquid using magnetic field Expired - Lifetime JP2615431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6274838A JP2615431B2 (en) 1994-11-09 1994-11-09 Bubble moving device in liquid using magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6274838A JP2615431B2 (en) 1994-11-09 1994-11-09 Bubble moving device in liquid using magnetic field

Publications (2)

Publication Number Publication Date
JPH08131710A true JPH08131710A (en) 1996-05-28
JP2615431B2 JP2615431B2 (en) 1997-05-28

Family

ID=17547296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6274838A Expired - Lifetime JP2615431B2 (en) 1994-11-09 1994-11-09 Bubble moving device in liquid using magnetic field

Country Status (1)

Country Link
JP (1) JP2615431B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047812A (en) * 2009-08-27 2011-03-10 Yasuo Ueno Tilt sensor
CN115351243A (en) * 2022-08-09 2022-11-18 芜湖久弘重工股份有限公司 Pouring device for casting large numerical control horizontal machine tool and using method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05220484A (en) * 1992-02-13 1993-08-31 Japan Steel Works Ltd:The Method and apparatus for magnetic deoxygen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05220484A (en) * 1992-02-13 1993-08-31 Japan Steel Works Ltd:The Method and apparatus for magnetic deoxygen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047812A (en) * 2009-08-27 2011-03-10 Yasuo Ueno Tilt sensor
CN115351243A (en) * 2022-08-09 2022-11-18 芜湖久弘重工股份有限公司 Pouring device for casting large numerical control horizontal machine tool and using method thereof

Also Published As

Publication number Publication date
JP2615431B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
Yuzhakov et al. Pattern formation during electropolishing
Pospiech et al. Ionic liquids as selective extractants and ion carriers of heavy metal ions from aqueous solutions utilized in extraction and membrane separation
Rezaee et al. Modeling of electrokinetic remediation of Cd-and Pb-contaminated kaolinite
JP2615431B2 (en) Bubble moving device in liquid using magnetic field
Asadi et al. Rotating electrode in electro membrane extraction: a new and efficient methodology to increase analyte mass transfer
Babaeva et al. Streamer breakdown in elongated, compressed and tilted bubbles immersed in water
Fujiwara et al. Separation of transition metal ions in an inhomogeneous magnetic field
US6596076B1 (en) Apparatus and method for altering the apparent effects of gravity
JP2007203205A (en) Separation method and apparatus
Zhang et al. Affinity extraction of BSA with reversed micellar system composed of unbound cibacron blue
Iwabuchi et al. Influence of sodium carbonate on decomposition of formic acid by pulsed discharge plasma inside bubble in water
Rudge et al. Electrochromatography
Luengviriya et al. Stability of scroll ring orientation in an advective field
JP3278685B2 (en) Gravity control method and device
Broadwater et al. Conductance of binary asymmetric electrolytes in methanol
RU193055U1 (en) UNIVERSAL DEVICE FOR ELECTROIMMUNOIMMOBILIZATION AND ELECTROCHEMICAL OXIDATION OF FUNCTIONAL SURFACES
Watanabe et al. The Magnetic Field Effects on Electrolysis. II. The Anodic Surface Oxidation of Gold
US3364128A (en) Method of purifying mercury and apparatus for using purified mercury
Butcher Transient Inhomogeneous Ionic Solutions
Tsukada et al. Effect of EHD convection on motion of a bubble under microgravity
JP2003045438A (en) Low temperature fuel cell
JPH11114409A (en) Method for controlling position of object and device for controlling position of object
Scarl et al. Two-phase magnetic fluid manipulation in microgravity environments
JPH02157004A (en) Shock resistant settling tank
Yan et al. Cinnamic acid polymer-based monolithic column for capillary electrochromatography

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term