JPH08129070A - Semiconductor radiation detector - Google Patents

Semiconductor radiation detector

Info

Publication number
JPH08129070A
JPH08129070A JP6265759A JP26575994A JPH08129070A JP H08129070 A JPH08129070 A JP H08129070A JP 6265759 A JP6265759 A JP 6265759A JP 26575994 A JP26575994 A JP 26575994A JP H08129070 A JPH08129070 A JP H08129070A
Authority
JP
Japan
Prior art keywords
capacitor
stored
sensor element
current
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6265759A
Other languages
Japanese (ja)
Inventor
Susumu Adachi
晋 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP6265759A priority Critical patent/JPH08129070A/en
Publication of JPH08129070A publication Critical patent/JPH08129070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE: To provide a semiconductor X-ray detector which can increase packaging density and has a good signal detection characteristic and whose output voltage is hard to saturate. CONSTITUTION: Electric charges Q corresponding to a count of X-ray photons entering a sensor element 1 are stored in a capacitor 3 of an integration circuit S, and a voltage V corresponding to the electric charges Q is outputted. At this time, a current I which is the sum of a leak current I1 of the sensor element 1 and a direct current I2 corresponding to an entering rate of the X-ray photons is sent to a MOSFET 41. Tone current operates within a weak inversion area of the MOSFET 41 and therefore a resistance of the MOSFET 41 is changed in inverse proportion to the current I running between a drain D and a source S. As a result, when the electric charges are not stored in the capacitor 3, a value of the resistance is high and the detecting characteristic is turned good. On the other hand, as the electric charges are stored in the capacitor 3, the resistance value is lowered to increase the discharging amount of charges stored in the capacitor 3. An output voltage of an amplifier 2 is accordingly difficult to saturate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、被検体を透過
した放射線、特に被検体を透過したX線からX線像を撮
影するX線撮像装置に用いられる半導体放射線検出器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor radiation detector used in, for example, an X-ray imaging apparatus for taking an X-ray image from radiation that has passed through a subject, particularly X-rays that have passed through the subject.

【0002】[0002]

【従来技術】近年、胸部用のX線撮像装置として、直接
フィルムに透過X線を照射することでX線撮影像を得る
方式に代わり、多数の半導体X線検出素子を並べて配置
したラインセンサまたは2次元センサにより透過X線を
電気信号に変換することでX線撮影像を得る方式が開発
されている。
2. Description of the Related Art In recent years, as an X-ray image pickup device for a chest, a line sensor in which a large number of semiconductor X-ray detection elements are arranged side by side instead of a method of directly irradiating a film with a transmitted X-ray to obtain an X-ray image A method has been developed in which a two-dimensional sensor converts a transmitted X-ray into an electric signal to obtain an X-ray image.

【0003】この半導体X線検出器は、図6に示される
ように、X線を検出するセンサ素子11と、オペアンプ
等からなる増幅器12と、これに並列接続したキャパシ
タ13及び抵抗14からなる積分回路S’とで構成され
る。そして、X線がセンサ素子11に入射する度に、キ
ャパシタ13に所定量の電荷Qが貯えられ、図7に示さ
れるように、増幅器12の出力電圧がステップ状に上昇
する。増幅器12の出力電圧は、次段に接続される不図
示のシェーピングアンプ等により微分され、カウントパ
ルスとして出力され、このカウント値からX線入射量の
測定がなされる。一方、キャパシタ13に貯えられた電
荷Qは抵抗14を通じて徐々に放電され、キャパシタ1
3の蓄積電荷、すなわち増幅器12の出力電圧が飽和す
ることを防止している。
As shown in FIG. 6, this semiconductor X-ray detector has an integral circuit composed of a sensor element 11 for detecting X-rays, an amplifier 12 including an operational amplifier, a capacitor 13 and a resistor 14 connected in parallel with the sensor element 11. And a circuit S ′. Then, each time the X-ray enters the sensor element 11, a predetermined amount of charge Q is stored in the capacitor 13, and the output voltage of the amplifier 12 rises stepwise as shown in FIG. 7. The output voltage of the amplifier 12 is differentiated by a shaping amplifier or the like (not shown) connected to the next stage and output as a count pulse, and the X-ray incident amount is measured from this count value. On the other hand, the electric charge Q stored in the capacitor 13 is gradually discharged through the resistor 14,
The stored charge of No. 3, that is, the output voltage of the amplifier 12 is prevented from being saturated.

【0004】ここで、上記抵抗14の抵抗値が小さすぎ
ると、図8に示されるようにキャパシタ13に貯えられ
た電荷の放電が急激に生じるため、次段のシェーピング
アンプ等によって、増幅器12の電圧変化を検知できな
くなる。一方、上記抵抗14の抵抗値が大きすぎると、
増幅器12の電圧Vがすぐに飽和してしまい正確な入射
X線の検出が不可能になる。このため、増幅器12に接
続するための抵抗は、数百Kオウムから数十Mオウムが
望ましいとされている。
Here, if the resistance value of the resistor 14 is too small, the charge stored in the capacitor 13 is rapidly discharged as shown in FIG. The change in voltage cannot be detected. On the other hand, if the resistance value of the resistor 14 is too large,
The voltage V of the amplifier 12 is saturated immediately and it becomes impossible to detect the incident X-ray accurately. For this reason, it is said that the resistance for connecting to the amplifier 12 is preferably several hundred K parm to several tens M parm.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、集積回
路上に数百Kオウムから数十Mオウムの抵抗を形成する
には大きな面積が必要となるため、このような抵抗を形
成すると、半導体X線検出器の集積密度を高めることが
非常に困難となる。
However, a large area is required to form a resistance of several hundreds of K-Ohm to several tens of M-Oum on an integrated circuit. Therefore, when such a resistance is formed, a semiconductor X-ray is formed. It is very difficult to increase the integration density of detectors.

【0006】一方、増幅器12に並列接続する抵抗は、
上述したように信号検知という観点からは抵抗値が大き
いものが好ましく、また、増幅器12の電圧を飽和させ
ないためには、抵抗値が小さいものが好ましいのである
が、従来のように固定抵抗を用いた場合には、両者の要
求を満足する中間的な抵抗値とせざるを得なかった。そ
こで、本発明はかかる課題を解消するため、集積密度を
高めることができると共に、信号検知特性がよく、しか
も出力電圧が飽和しにくい半導体放射線検出器を提供す
ることを目的とする。
On the other hand, the resistance connected in parallel to the amplifier 12 is
As described above, from the viewpoint of signal detection, one having a large resistance value is preferable, and one having a small resistance value is preferable in order to prevent the voltage of the amplifier 12 from being saturated. In that case, the resistance value must be an intermediate value that satisfies the requirements of both parties. Therefore, in order to solve such a problem, it is an object of the present invention to provide a semiconductor radiation detector capable of increasing the integration density, having good signal detection characteristics, and being less likely to saturate the output voltage.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、放射線を検出するセンサ素子と、このセ
ンサ素子の信号を積分する積分回路とからなる半導体放
射線検出器において、前記積分回路は、前記センサ素子
の信号を増幅する増幅器と、この増幅器に並列接続され
るキャパシタと、このキャパシタに並列接続され可変抵
抗として動作するトランジスタと、からなることを特徴
とする。
In order to achieve the above object, the present invention provides a semiconductor radiation detector comprising a sensor element for detecting radiation and an integrating circuit for integrating a signal of the sensor element. The circuit is characterized by comprising an amplifier for amplifying the signal of the sensor element, a capacitor connected in parallel with the amplifier, and a transistor connected in parallel with the capacitor and operating as a variable resistor.

【0008】[0008]

【作用】本発明の作用を図1に基づいて説明すると、セ
ンサ素子1に入射したX線のフォトンのエネルギーに応
じた電荷Qが積分回路Sのキャパシタ3に貯えられ、そ
の電荷Qに応じた電圧が出力される。この際、トランジ
スタであるMOSFET41には、センサ素子1のリー
ク電流I1 とX線フォトンの入射レートに応じた直流電
流I2 を合わせた直流電流Iが流れるが、この電流Iは
図2に示すように、MOSFET41の弱反転領域内の
大きさとなるため、MOSFET41のドレインD及び
ソースS間の抵抗Rmは、 Rm=n・UT /I UT =kT/q k:ボルツマン定数、T:絶対温
度、q:電気素量 n =1〜2(デバイスに応じて定まる定数) で規定され、室温T=300k、センサ素子1のリーク
電流I1 =10nA、n=1.7とすると、X線がセン
サ素子1に入射しない状態では、MOSFET41の抵
抗Rmは約4.4Mオウムとなり、X線がセンサ素子1
に入射し、X線フォトンの入射レートに応じて定まる直
流電流I2 が20nAになると、MOSFET41の抵
抗Rmは約1.5Mオウムとなる。
The operation of the present invention will be described with reference to FIG. 1. The charge Q corresponding to the energy of the photons of the X-rays incident on the sensor element 1 is stored in the capacitor 3 of the integrating circuit S and depends on the charge Q. The voltage is output. At this time, a direct current I, which is a combination of the leak current I1 of the sensor element 1 and the direct current I2 corresponding to the incident rate of the X-ray photons, flows through the MOSFET 41, which is a transistor, as shown in FIG. , The resistance Rm between the drain D and the source S of the MOSFET 41 is Rm = n.UT / IUT = kT / q k: Boltzmann constant, T: absolute temperature, q: When the electric charge n is defined by n = 1 to 2 (constant determined depending on the device), room temperature T = 300 k, leak current I1 of the sensor element 1 = 10 nA, and n = 1.7, X-rays are transmitted to the sensor element 1. In the non-incident state, the resistance Rm of the MOSFET 41 is about 4.4M parm, and the X-ray is the sensor element 1.
Then, when the DC current I2 determined according to the incident rate of X-ray photons becomes 20 nA, the resistance Rm of the MOSFET 41 becomes approximately 1.5 M parm.

【0009】このため、このMOSFET41を含む半
導体X線検出器はキャパシタ3に電荷が貯えられていな
い状態では、抵抗Rmの抵抗値は非常に大きい値となる
ため信号検出特性がよく、しかも、入射フォトン数が増
加しキャパシタ3の蓄積電荷が増加するにつれて抵抗R
mの抵抗値は小さい値となり、蓄積電荷の放電が促進さ
れるため、増幅器2の出力電圧Vは飽和しにくいものと
なる。また、固定抵抗に換えてMOSFET41を用い
るため大抵抗にも拘わらず集積密度を非常に高めること
ができる。
For this reason, in the semiconductor X-ray detector including the MOSFET 41, the resistance value of the resistor Rm is very large in a state where no electric charge is stored in the capacitor 3, so that the signal detection characteristic is good, and the incident light is incident. The resistance R increases as the number of photons increases and the accumulated charge of the capacitor 3 increases.
Since the resistance value of m is small and the discharge of the accumulated charge is promoted, the output voltage V of the amplifier 2 is less likely to be saturated. Further, since the MOSFET 41 is used instead of the fixed resistance, the integration density can be greatly increased despite the large resistance.

【0010】[0010]

【実施例】以下、本発明の一実施例を図1〜図5に基づ
いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0011】図1は本発明にかかる半導体X線検出器の
一実施例を示す概略図である。同図において、1はX線
を検出するとセンサ素子である。Sは積分回路で、オペ
アンプ等からなる増幅器2と、これに並列接続されたキ
ャパシタ3と、このキャパシタ3に並列接続されたトラ
ンジスタであるMOSFET41から構成される。MO
SFET41のゲートGはドレインDに短絡され、ドレ
インDは増幅器2の出力に、また、ソースSは増幅器2
の反転入力にぞれぞれ接続されている。
FIG. 1 is a schematic view showing an embodiment of a semiconductor X-ray detector according to the present invention. In the figure, 1 is a sensor element when detecting an X-ray. Reference numeral S denotes an integrating circuit, which includes an amplifier 2 including an operational amplifier, a capacitor 3 connected in parallel to the amplifier 2, and a MOSFET 41 which is a transistor connected in parallel to the capacitor 3. MO
The gate G of the SFET 41 is short-circuited to the drain D, the drain D is the output of the amplifier 2, and the source S is the amplifier 2.
Are connected to the inverting input of each.

【0012】そして、X線がセンサ素子1に入射する
と、入射したX線のフォトンエネルギーに応じてキャパ
シタ3に所定量の電荷Qが貯えられ、従来例で示した図
7と同様に、増幅器2の出力電圧がステップ状に上昇
し、この出力電圧は次段に接続された不図示のシェーピ
ングアンプ等により微分され、そのカウントパルス数か
らX線入射量が測定される。
When X-rays are incident on the sensor element 1, a predetermined amount of electric charge Q is stored in the capacitor 3 according to the photon energy of the incident X-rays, and the amplifier 2 is used as in FIG. 7 shown in the conventional example. Output voltage is increased stepwise, this output voltage is differentiated by a shaping amplifier (not shown) connected to the next stage, and the X-ray incident amount is measured from the count pulse number.

【0013】ここで、トランジスタであるMOSFET
41には、センサ素子1のリーク電流I1 とX線フォト
ンの入射レートに応じた直流電流I2 を合わせた電流I
が流れるが、この電流Iはセンサ素子1の特性上微小な
電流となるため、図2に示すように、MOSFET41
は弱反転領域内で動作することとなる。かかる弱反転領
域内では、MOSFET41のドレインD及びソースS
間の抵抗Rmは、次式 Rm=n・UT /I と規定されることが知られている。ここで、 UT =kT/q(k:ボルツマン定数、T:絶対温度、
q:電気素量(q=1.6×10-9クーロン) nは、デバイスに応じて定まる定数で1〜2の値を示
す。
Here, a MOSFET which is a transistor
Reference numeral 41 denotes a current I which is a combination of the leak current I1 of the sensor element 1 and the direct current I2 corresponding to the incident rate of X-ray photons.
However, since the current I becomes a minute current due to the characteristics of the sensor element 1, as shown in FIG.
Will operate in the weak inversion region. In the weak inversion region, the drain D and the source S of the MOSFET 41 are
It is known that the resistance Rm between them is defined by the following equation: Rm = n · UT / I. Where UT = kT / q (k: Boltzmann constant, T: absolute temperature,
q: elementary charge (q = 1.6 × 10 −9 coulomb) n is a constant determined according to the device and represents a value of 1 to 2.

【0014】例えば、キャパシタ3が完全に放電した状
態を考え、室温T=300k、センサ素子1のリーク電
流I1 が10nA、n=1.7とすると、MOSFET
41の抵抗Rmは約4.4Mオウムとなり、従来例でも
説明したように、半導体X線検出器において信号検知特
性がよく及び出力電圧Vが飽和しにくい、という観点か
ら、増幅器2に並列接続する抵抗として好ましいものと
なる。一方、X線がセンサ素子1に入射し、キャパシタ
に電荷が貯えられ、増幅器2の出力電圧Vが上昇し、増
幅器2から電流Iがリーク電流I1 と合わせて30nA
になったとすると、MOSFET41の抵抗Rmは約
1.5Mオウムとなる。
For example, assuming that the capacitor 3 is completely discharged and the room temperature T = 300 k, the leak current I1 of the sensor element 1 is 10 nA, and n = 1.7, the MOSFET is
The resistance Rm of 41 is about 4.4M parm, which is connected in parallel to the amplifier 2 from the viewpoint that the semiconductor X-ray detector has a good signal detection characteristic and the output voltage V is less likely to be saturated, as described in the conventional example. It becomes a preferable resistance. On the other hand, X-rays are incident on the sensor element 1, charges are stored in the capacitor, the output voltage V of the amplifier 2 rises, and the current I from the amplifier 2 together with the leak current I1 is 30 nA.
Then, the resistance Rm of the MOSFET 41 is about 1.5M parm.

【0015】このように、MOSFET41は、弱反転
領域においてはドレインD、ソースS間に流れる電流I
に反比例して抵抗が変化するため、キャパシタ3に電荷
が貯えられていない状態では、抵抗値が高く検出特性が
よくなる。一方、キャパシタ3に電荷が貯えられてくる
と、抵抗値が下がりキャパシタ3に貯えられた電荷の放
電量が増し、増幅器2の出力電圧は飽和しにくくなる。
また、抵抗に換えてトランジスタを用いたため、小面積
で非常に高い抵抗の形成が可能となり、半導体検出器の
集積密度を高めることができる。
As described above, the MOSFET 41 has a current I flowing between the drain D and the source S in the weak inversion region.
Since the resistance changes in inverse proportion to, the resistance value is high and the detection characteristic is improved in the state where the electric charge is not stored in the capacitor 3. On the other hand, when the electric charge is stored in the capacitor 3, the resistance value is decreased and the amount of electric charge stored in the capacitor 3 is increased, so that the output voltage of the amplifier 2 is less likely to be saturated.
Further, since a transistor is used instead of the resistor, a very high resistance can be formed in a small area, and the integration density of semiconductor detectors can be increased.

【0016】なお、図3に示すように、増幅器2に並列
接続するトランジスタとして図1のMOSFETに換え
てバイポーラトランジスタ42を用いても良く、また図
4に示されるように、ダイオード43を用いてもよい。
As shown in FIG. 3, a bipolar transistor 42 may be used in place of the MOSFET of FIG. 1 as a transistor connected in parallel to the amplifier 2, and a diode 43 may be used as shown in FIG. Good.

【0017】図5は図1の実施例において、増幅器2の
MOSFET41への出力端2bをキャパシタ3への出
力端2cとは別個にバッファ2aを介して取り出した例
であり、MOSFET41及びキャパシタ3は、必ずし
も同一の増幅器出力に接続させなくてもよい。かかる構
成は、回路を作動ではなく片側のみで構成する場合に必
要不可欠となりうることがあるもので、直流のフィード
バックでは、入出力がある程度同電位にする必要がある
ことに対応させたものである。
FIG. 5 shows an example in which the output terminal 2b of the amplifier 2 to the MOSFET 41 is taken out via the buffer 2a separately from the output terminal 2c to the capacitor 3 in the embodiment of FIG. , It is not always necessary to connect them to the same amplifier output. Such a configuration may be indispensable when the circuit is configured only on one side, not in operation, and corresponds to the fact that the input and output need to have the same potential to some extent in DC feedback. .

【0018】なお、上述の実施例では、放射線として最
も代表的なX線について説明したが、本発明はこれに限
定されることはなく、α線やγ線等の放射線であっても
よい。
Although the most typical X-rays have been described in the above embodiments, the present invention is not limited to this, and radiations such as α-rays and γ-rays may be used.

【0019】[0019]

【発明の効果】本発明によれば、積分回路に用いる放電
用の抵抗としてのトランジスタが弱反転領域において動
作するため、ドレインD、ソースS間に流れる電流Iに
反比例して抵抗が変化する。このため、キャパシタに電
荷が貯えられていない状態では、抵抗値が高くなって信
号検出特性が向上し、キャパシタに電荷が貯えられてく
ると、抵抗値が下がりキャパシタに貯えられた電荷の放
電量が増し、積分回路の出力電圧は飽和しにくくなる。
したがって、本発明によれば、信号検知特性がよく、し
かも出力電圧が飽和しにくい半導体放射線検出器が得ら
れる。
According to the present invention, since the transistor as a discharge resistor used in the integrating circuit operates in the weak inversion region, the resistance changes in inverse proportion to the current I flowing between the drain D and the source S. Therefore, in the state where the electric charge is not stored in the capacitor, the resistance value is increased and the signal detection characteristic is improved, and when the electric charge is stored in the capacitor, the resistance value is decreased and the discharge amount of the electric charge stored in the capacitor is decreased. And the output voltage of the integrating circuit is less likely to be saturated.
Therefore, according to the present invention, it is possible to obtain a semiconductor radiation detector which has a good signal detection characteristic and whose output voltage is less likely to be saturated.

【0020】また、抵抗に換えてトランジスタを用いた
ため、小面積で非常に高い抵抗が形成でき、半導体放射
線検出器の集積密度を非常に高めることができる。
Since a transistor is used instead of the resistor, a very high resistance can be formed in a small area, and the integration density of semiconductor radiation detectors can be greatly increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる半導体X線検出器の一実施例で
ある。
FIG. 1 is an embodiment of a semiconductor X-ray detector according to the present invention.

【図2】トランジスタの入力電圧と出力電流との関係を
示す図である。
FIG. 2 is a diagram showing a relationship between an input voltage and an output current of a transistor.

【図3】本発明にかかる半導体X線検出器の他の実施例
である。
FIG. 3 is another embodiment of the semiconductor X-ray detector according to the present invention.

【図4】本発明にかかる半導体X線検出器の他の実施例
である。
FIG. 4 is another embodiment of the semiconductor X-ray detector according to the present invention.

【図5】本発明にかかる半導体X線検出器の他の実施例
である。
FIG. 5 is another embodiment of the semiconductor X-ray detector according to the present invention.

【図6】従来の半導体X線検出器を示す図である。FIG. 6 is a diagram showing a conventional semiconductor X-ray detector.

【図7】X線がセンサ素子に入射した場合の積分回路の
出力電圧と時間との関係を示す図である。
FIG. 7 is a diagram showing the relationship between the output voltage of the integrating circuit and time when X-rays enter the sensor element.

【図8】X線がセンサ素子に入射した場合の積分回路の
出力電圧と時間との関係を示す図である。
FIG. 8 is a diagram showing the relationship between the output voltage of the integrating circuit and time when X-rays enter the sensor element.

【符号の説明】[Explanation of symbols]

1・・・・・・センサ素子 2・・・・・・増幅器 3・・・・・・キャパシタ 41・・・・・MOSFET 1-Sensor element 2-Amplifier 3-Capacitor 41-MOSFET

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 放射線を検出するセンサ素子と、このセ
ンサ素子の信号を積分して出力する積分回路とからなる
半導体放射線検出器において、 前記積分回路は、前記センサ素子の信号を増幅する増幅
器と、この増幅器に並列接続されるキャパシタと、この
キャパシタに並列接続され可変抵抗として動作するトラ
ンジスタと、からなることを特徴とする半導体放射線検
出器。
1. A semiconductor radiation detector comprising a sensor element for detecting radiation and an integrating circuit for integrating and outputting a signal of the sensor element, wherein the integrating circuit comprises an amplifier for amplifying the signal of the sensor element. A semiconductor radiation detector comprising: a capacitor connected in parallel with the amplifier; and a transistor connected in parallel with the capacitor and operating as a variable resistance.
JP6265759A 1994-10-28 1994-10-28 Semiconductor radiation detector Pending JPH08129070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6265759A JPH08129070A (en) 1994-10-28 1994-10-28 Semiconductor radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6265759A JPH08129070A (en) 1994-10-28 1994-10-28 Semiconductor radiation detector

Publications (1)

Publication Number Publication Date
JPH08129070A true JPH08129070A (en) 1996-05-21

Family

ID=17421626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6265759A Pending JPH08129070A (en) 1994-10-28 1994-10-28 Semiconductor radiation detector

Country Status (1)

Country Link
JP (1) JPH08129070A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277593A (en) * 2001-03-21 2002-09-25 Konica Corp Logarithmic transformation circuit and radiographic image reader
JP2006140289A (en) * 2004-11-11 2006-06-01 Olympus Corp Photo detector
JP6310171B1 (en) * 2016-11-25 2018-04-11 浜松ホトニクス株式会社 Photon detector
WO2018097025A1 (en) 2016-11-25 2018-05-31 浜松ホトニクス株式会社 Photon detector
WO2021016796A1 (en) 2019-07-29 2021-02-04 Shenzhen Xpectvision Technology Co., Ltd. Amplifier for dark noise compensation
WO2022122378A1 (en) * 2020-12-09 2022-06-16 Ams International Ag Front-end electronic circuitry for a photon counting application

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277593A (en) * 2001-03-21 2002-09-25 Konica Corp Logarithmic transformation circuit and radiographic image reader
JP2006140289A (en) * 2004-11-11 2006-06-01 Olympus Corp Photo detector
JP6310171B1 (en) * 2016-11-25 2018-04-11 浜松ホトニクス株式会社 Photon detector
WO2018097025A1 (en) 2016-11-25 2018-05-31 浜松ホトニクス株式会社 Photon detector
KR20190088468A (en) 2016-11-25 2019-07-26 하마마츠 포토닉스 가부시키가이샤 Photon detector
US11139293B2 (en) 2016-11-25 2021-10-05 Hamamatsu Photonics K.K. Photon detector
WO2021016796A1 (en) 2019-07-29 2021-02-04 Shenzhen Xpectvision Technology Co., Ltd. Amplifier for dark noise compensation
EP4004604A4 (en) * 2019-07-29 2023-04-19 Shenzhen Xpectvision Technology Co., Ltd. Amplifier for dark noise compensation
WO2022122378A1 (en) * 2020-12-09 2022-06-16 Ams International Ag Front-end electronic circuitry for a photon counting application

Similar Documents

Publication Publication Date Title
US7388534B2 (en) Adaptive data acquisition for an imaging system
US9360562B2 (en) Radiation imaging apparatus and radiation imaging system
US6760405B2 (en) Exposure control in an x-ray image detector
JP4448484B2 (en) Circuit, detection device and method for correcting rate dependent changes in conversion coefficient of detection device
US20080224054A1 (en) Photon detection device
JPH08129070A (en) Semiconductor radiation detector
KR101809542B1 (en) Switching circuit, charge sense amplifier and photon detecting device using the same
KR20220078564A (en) Circuit arrangement and method for charge integration
JPH063413B2 (en) Particle measuring device in fluid
JP3080472B2 (en) Preamplifier for radiation detection
JP3008621B2 (en) Radiation measurement device
US3713031A (en) Bootstrapped charge-sensitive low noise amplifier
JPS59122987A (en) Radiation pulse measuring circuit
JP2000165748A (en) Infrared image pickup device
JPH08152478A (en) Radiation detector
KR102445626B1 (en) photon detector
JPH049706A (en) Radiation image photographing apparatus
JPH0580156A (en) Radiation measuring device
JP2005148183A (en) Radiation image reading method and apparatus
JPS6351590B2 (en)
JPH0619455B2 (en) Radiation measuring device
JPH0572554B2 (en)
JPH0691633B2 (en) Radiation image pickup device
JPS5835481A (en) Measuring device for radiation
JPH02162287A (en) Radiation image receiving apparatus