JPH02162287A - Radiation image receiving apparatus - Google Patents

Radiation image receiving apparatus

Info

Publication number
JPH02162287A
JPH02162287A JP31750088A JP31750088A JPH02162287A JP H02162287 A JPH02162287 A JP H02162287A JP 31750088 A JP31750088 A JP 31750088A JP 31750088 A JP31750088 A JP 31750088A JP H02162287 A JPH02162287 A JP H02162287A
Authority
JP
Japan
Prior art keywords
circuit
sensor
cpu
power supply
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31750088A
Other languages
Japanese (ja)
Inventor
Hiromasa Funakoshi
裕正 船越
Toshiyuki Kawahara
俊之 河原
Yoshiyuki Yoshizumi
嘉之 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31750088A priority Critical patent/JPH02162287A/en
Publication of JPH02162287A publication Critical patent/JPH02162287A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To perform the self-diagnosis of the abnormality of a sensor and a circuit in a radiation non-emitting state by mounting a sensor means, an amplifying means, a peak discrimination and comparison means, a counting means, a bias means and a voltage control means. CONSTITUTION:A voltage control circuit 21 converts the data from a CPU 7 to analogue data by a D/A converter to supply the same to a bias power supply 20 and a sensor array 1 is composed of a semiconductor detector or a scintillator composed of Si or CdTe enchanced in impedance. When a change is generated in the bias power supply 20, the almost same signal is detected in an amplifier 2. The sensor array 1 acts as a condenser because of high impedance and, therefore, a signal is taken in the CPU 7 through a comparator 3, a counter 4 and a latch circuit 5. As a result, when abnormality is present in the sensor or the circuit system, this abnormality can be discovered by the CPU 7.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は医療分野及び工業分野における放射線診断装置
や非破壊検査用放射線検査装置等に利用する放射線受像
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a radiation image receiving apparatus used in radiological diagnostic equipment, non-destructive testing radiation testing equipment, etc. in the medical and industrial fields.

従来の技術 従来の放射線受像装置の一方式として、放射線に感応す
る素子をアレイ状に並べ、このアレイを走査することに
より2次元画像を得るものがあつた。この様な方式とし
て、例えば特開昭60−80746号公報に記載された
ものがある。これは複数のパルス・カウンタを持ち、パ
ルス波高を任意の複数グループに分類しカウントするも
のであった。
2. Description of the Related Art One type of conventional radiation image receiving apparatus is one in which elements sensitive to radiation are arranged in an array and a two-dimensional image is obtained by scanning the array. As such a system, there is one described, for example, in Japanese Patent Application Laid-open No. 80746/1983. This had multiple pulse counters and counted the pulse heights by classifying them into multiple arbitrary groups.

第5図は従来の放射線受像装置のブロック図である。第
5図において、1はセンサアレイ、2は増幅器、31〜
3nは比較器であり、この比較器はn個存在する。41
〜4nはカウンタ、51〜5nはラッチ回路、6はセレ
クト回路、7はCPU、8はデータ信号、9はセレクト
回路、10はバイアス電源、11は比較レベル設定回路
である。
FIG. 5 is a block diagram of a conventional radiation image receiving apparatus. In FIG. 5, 1 is a sensor array, 2 is an amplifier, 31 to
3n is a comparator, and there are n comparators. 41
4n is a counter, 51 to 5n are latch circuits, 6 is a select circuit, 7 is a CPU, 8 is a data signal, 9 is a select circuit, 10 is a bias power supply, and 11 is a comparison level setting circuit.

上記構成について以下にその動作を説明する。The operation of the above configuration will be explained below.

センサアレイ1に放射線が入射し、発生した電荷はバイ
アス電源10の電界により一方向に収集される。この結
果、入射放射線が微小パルスとして検出され、増幅器2
で増幅後、比較器31〜3nに入力される。比較器31
〜3nでは比較レベル設定回路11の出力と比較され、
入力条件を満足したときに、2値化されたパルスとして
出力されてカウンタ41〜4nでカウントされる。その
後一定期間カウントしてからラッチ回路51〜5nに一
時的に貯えられる。なお波高弁別を行うため、比較器3
1〜3nに供給される比較レベル設定回路11の出力は
、各々の比較器31〜3nで違っておりn個存在する。
Radiation is incident on the sensor array 1, and the generated charges are collected in one direction by the electric field of the bias power supply 10. As a result, the incident radiation is detected as a minute pulse, and the amplifier 2
After amplification, the signals are input to comparators 31 to 3n. Comparator 31
~3n, it is compared with the output of the comparison level setting circuit 11,
When the input conditions are satisfied, the pulses are output as binary pulses and counted by counters 41 to 4n. After that, it is counted for a certain period of time and then temporarily stored in the latch circuits 51 to 5n. In addition, in order to perform wave height discrimination, comparator 3
There are n outputs of the comparison level setting circuit 11 supplied to the comparators 1 to 3n, which are different for each of the comparators 31 to 3n.

このようにして得られた値は、CPU7によりセレクト
回路6で選択され、データ信号8として取り込まれる。
The value thus obtained is selected by the select circuit 6 by the CPU 7 and taken in as the data signal 8.

発明が解決しようとする課題 しかしながら2このような放射線受像装置ではセンサを
アレイ状に並べており、各センサ毎もしくは数個に1つ
ずつ増幅器や比較器が付随している。このためこれら多
数のセンサ及び回路の動作をチエツクする自己診断機能
が必要になってくる。
Problems to be Solved by the Invention However, in such a radiation image receiving apparatus, sensors are arranged in an array, and an amplifier or a comparator is attached to each or several sensors. Therefore, a self-diagnosis function is required to check the operation of these many sensors and circuits.

つまり、自己診断機能がなく画像撮影後に異常が発見さ
れたのでは、取り直しなどの無駄な時間や被爆が増加す
るという欠点がある。また実際に放射線照射を行ってチ
エツクしたのでは、放射線源の状態により多少データが
変動するため正確なチエツクを行うのが難しかった。一
方、エネルギー変動のない放射線同位元素等を用いる手
法もあるが、取扱・管理が難しい上、単位時間当りの出
力光子数も少なく、かつ全センサに均等に光子を入射さ
せるのは不可能に近い。
In other words, if there is no self-diagnosis function and an abnormality is discovered after image capture, there is a drawback that time is wasted in retaking images and exposure increases. Furthermore, when checking by actually performing radiation irradiation, it is difficult to perform an accurate check because the data fluctuates somewhat depending on the condition of the radiation source. On the other hand, there are methods that use radioactive isotopes that do not have energy fluctuations, but they are difficult to handle and manage, the number of output photons per unit time is small, and it is almost impossible to make photons evenly enter all sensors. .

本発明はかかる点に鑑みてなされたものであり、簡易な
構成で高精度な自己診断機能を有する放射線受像装置を
提供することを目的とする。
The present invention has been made in view of these points, and it is an object of the present invention to provide a radiation image receiving apparatus having a simple configuration and a highly accurate self-diagnosis function.

課題を解決するための手段 本発明は上記課題を解決するため、放射線に感応するセ
ンサ手段と、前記センサ手段の出力を増幅する増幅手段
と、前記増幅手段の出力を波高弁別する比較手段と、前
記比較手段出力をカウントする計数手段仁、前記センサ
手段に印加するバイアス手段と、前記バイアス手段の出
力電圧を制御する電圧制御手段を備えたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention includes a sensor means sensitive to radiation, an amplification means for amplifying the output of the sensor means, and a comparison means for discriminating the wave height of the output of the amplification means. The apparatus includes a counting means for counting the output of the comparing means, a bias means for applying voltage to the sensor means, and a voltage control means for controlling the output voltage of the bias means.

作用 本発明は上記した構成により、バイアス手段の出力電圧
を変動させると、センサから信号が出力されて増幅器に
おいて増幅される、放射線光子が入射したのとほぼ等価
な信号が得られ、後段の比較器・カウンタまで含めたデ
ータ異常を確認することができる。
Effects of the present invention With the above-described configuration, when the output voltage of the bias means is varied, a signal is output from the sensor and amplified in the amplifier. A signal almost equivalent to that of incident radiation photons is obtained, and a signal is obtained for comparison in the subsequent stage. You can check for data abnormalities, including devices and counters.

実施例 第1図は本発明の放射線受像装置の一実施例のブロック
図、第2図はバイアス電源の出力電圧の変化を示す図で
ある。第1図において、第5図と同一の構成要素につい
ては同一参照符号°を付して説明を省略する。20はバ
イアス電源で、21は電圧制御回路である。電圧制御回
路20は、CPU7からのデータをD/A変換してバイ
アス電源20に供給している。バイアス電源20はリモ
ートコントロール可能なものが市販されており、D/A
コンバータ等の信号を接続することにより所望の電圧を
実現している。センサアレイ1は高インピーダンス化さ
れた、SL、CdTe等の半導体検出器、シンチレータ
等で構成されている。
Embodiment FIG. 1 is a block diagram of an embodiment of the radiation image receiving apparatus of the present invention, and FIG. 2 is a diagram showing changes in the output voltage of the bias power supply. In FIG. 1, components that are the same as those in FIG. 5 are given the same reference numerals °, and explanations thereof will be omitted. 20 is a bias power supply, and 21 is a voltage control circuit. The voltage control circuit 20 performs D/A conversion on data from the CPU 7 and supplies the data to the bias power supply 20 . The bias power supply 20 is commercially available and can be controlled remotely.
The desired voltage is achieved by connecting signals from converters, etc. The sensor array 1 is composed of high impedance semiconductor detectors such as SL and CdTe, scintillators, and the like.

第2図(a)で41、電圧はvlとv1+ΔV間を変動
する信号であり、同図(b)では0からVlまでをΔ■
ずつ上昇していく信号である。第2図(a)、(b)に
示すようなバイアス電源20の変化が存在すれば、第1
図における増幅器2には殆ど同じ信号が検出される。つ
まり、センサアレイ1は高インピーダンスのため、コン
デンサと考えることが出来るのである。したがって、こ
れらの信号は比較器3、カウンタ4、ラッチ回路5を通
してCPU7に取り込まれる。この結果、以上に示した
センサないし回路系に異常が存在すればCPU7で発見
することが出来る。
41 in Fig. 2 (a), the voltage is a signal that fluctuates between vl and v1 + ΔV, and in Fig. 2 (b), the voltage from 0 to Vl is Δ■
This is a signal that gradually increases. If there are changes in the bias power supply 20 as shown in FIGS. 2(a) and 2(b), the first
Almost the same signal is detected in amplifier 2 in the figure. In other words, since the sensor array 1 has a high impedance, it can be considered as a capacitor. Therefore, these signals are taken into the CPU 7 through the comparator 3, counter 4, and latch circuit 5. As a result, if there is an abnormality in the sensor or circuit system described above, the CPU 7 can discover it.

第3図(a)、(b)はバイアス電源20の実施例を示
す、同図(a)において、高圧電源22は抵抗Rを通し
てセンサアレイ1に供給されている。CPU7からの指
令により、リレー23がON状態になるとコンデンサC
が充電される。OFF状態ならば、電圧制御回路21出
力に比例した信号がコンデンサCに影響されないでセン
サアレイ1に印加される。つまりリレー23=OFFに
おいて、第2図に示した信号がセンサアレイ1に印加さ
れる。ΔVについては増幅器2が飽和しない範囲で、第
5図の比較レベル設定回路11の出力Ll、L2によっ
て決定しチエツクを行う、また、第3図のR,Cの時定
数やチエツク用信号の周波数(第2図)によっては、リ
レー23はなくても良い、なお、リレー23はトランジ
スタ、サイリスタ等のスイッチング素子と代替可能であ
る。
3(a) and 3(b) show an embodiment of the bias power supply 20. In FIG. 3(a), a high voltage power supply 22 is supplied to the sensor array 1 through a resistor R. When the relay 23 is turned on by a command from the CPU 7, the capacitor C
is charged. In the OFF state, a signal proportional to the output of the voltage control circuit 21 is applied to the sensor array 1 without being influenced by the capacitor C. That is, when the relay 23 is OFF, the signal shown in FIG. 2 is applied to the sensor array 1. ΔV is determined and checked by the outputs L1 and L2 of the comparison level setting circuit 11 shown in FIG. 5 within the range where the amplifier 2 is not saturated. Also, the time constants of R and C and the frequency of the check signal shown in FIG. (FIG. 2), the relay 23 may be omitted; however, the relay 23 can be replaced with a switching element such as a transistor or a thyristor.

第3図(b)において、電圧制御回路30からの信号は
リレー31を介してA点に接続されている。リレー23
=OFFの状態で、リレー31=ONとなった時、電圧
制御回路30からのチエツク用信号がセンサアレイ1に
入力される。以後は。
In FIG. 3(b), a signal from the voltage control circuit 30 is connected to point A via a relay 31. relay 23
When the relay 31 is turned ON in the OFF state, a check signal from the voltage control circuit 30 is input to the sensor array 1. From then on.

前記したようにしてチエツクされる。またリレー23は
、抵抗R,コンデンサCを接続した後、A点との間に挿
入しても良い。
It is checked as described above. Further, the relay 23 may be inserted between the point A and the resistor R and the capacitor C after being connected.

第4図は電圧制御回路21の一実施例のブロック図であ
る。第4図(a)はCPU7からのデータを、D/Aコ
ンバータ24で変換してバイアス電源20に供給してい
る。したがって、CPU7の命令速度によって周波数が
決定される。同図(b)では、発振回路26の出力信号
がセレクト回路27に入力され、加算回路25に加えら
れる。
FIG. 4 is a block diagram of one embodiment of the voltage control circuit 21. In FIG. 4(a), data from the CPU 7 is converted by the D/A converter 24 and supplied to the bias power supply 20. Therefore, the frequency is determined by the command speed of the CPU 7. In FIG. 2B, the output signal of the oscillation circuit 26 is input to the select circuit 27 and added to the adder circuit 25.

加算回路25ではD/Aコンバータ24の出力と加算さ
れてバイアス電源20に供給される。したがって、信号
周波数は発振回路26で決定される。
The adder circuit 25 adds the output of the D/A converter 24 and supplies the resultant signal to the bias power supply 20 . Therefore, the signal frequency is determined by the oscillation circuit 26.

またチエツクを行わない時には、セレクト回路27はG
ND (OV)を選択し、加算回路25には影響を与え
ない、加算回路25はOPアンプ等で構成され、セレク
ト回路27はアナログスイッチ等で構成される。
Also, when no check is performed, the select circuit 27 is
The adder circuit 25 selects ND (OV) and does not affect the adder circuit 25. The adder circuit 25 is composed of an OP amplifier or the like, and the select circuit 27 is composed of an analog switch or the like.

なお1本発明は上記し、かつ図面に示す実施例に限定す
ることなく、その要旨を変形しない範囲内で適宜変形し
て実施し得るものである。
Note that the present invention is not limited to the embodiments described above and shown in the drawings, but can be implemented with appropriate modifications within the scope of the gist thereof.

発明の効果 以上述べてきたように本発明によれば、極めて簡易な構
成でかつ放射線未照射状態でセンサ及び回路の異常を判
断する自己診断機能が得られるため、経済的効果が大き
いばかりでなく、放射線受像装置におけるメンテナンス
信頼性を向上でき、実用上極めて有用である。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a self-diagnosis function that determines abnormalities in sensors and circuits with an extremely simple configuration and in a state where no radiation has been irradiated. , the maintenance reliability of the radiation image receiving apparatus can be improved, and it is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における放射線受像装置の 
ブロック図、第2図(a)、(b)はバイアス電源の出
力電圧の変化を示す図、第3図II図 1・・・・・・センサアレイ、2・・・・・・増幅器、
7・・・・・・CPU、21・・・・・・バイアス電源
、21・・・・・・電圧制御回路、24・・・・・・D
/Aコンバータ、25・・・・・・加算回路、26・・
・・・・発振回路、27・・・・・・セレクト回路、3
0・・・・・・電圧制御回路。 代理人の氏名 弁理士 粟野 電車 はか1名第2図 (aン (b) 時間 時間 第 図 c〜 2乙 第 図
FIG. 1 shows a radiation image receiving device according to an embodiment of the present invention.
Block diagram, Figures 2 (a) and (b) are diagrams showing changes in the output voltage of the bias power supply, Figure 3 II Figure 1...Sensor array, 2...Amplifier,
7...CPU, 21...Bias power supply, 21...Voltage control circuit, 24...D
/A converter, 25...Addition circuit, 26...
...Oscillation circuit, 27...Select circuit, 3
0... Voltage control circuit. Name of agent: Patent attorney Awano Train: 1 person Figure 2 (a) (b) Time Time diagram c~ 2 Otsu diagram

Claims (1)

【特許請求の範囲】[Claims] 放射線に感応するセンサ手段と、前記センサ手段の出力
を増幅する増幅手段と、前記増幅手段の出力を波高弁別
する比較手段と、前記比較手段出力をカウントする計数
手段と、前記センサ手段に印加するバイアス手段と、前
記バイアス手段の出力電圧を制御する電圧制御手段を有
することを特徴とする放射線受像装置。
a sensor means sensitive to radiation; an amplification means for amplifying the output of the sensor means; a comparison means for discriminating the wave height of the output of the amplification means; a counting means for counting the output of the comparison means; A radiation image receiving apparatus comprising a bias means and a voltage control means for controlling an output voltage of the bias means.
JP31750088A 1988-12-15 1988-12-15 Radiation image receiving apparatus Pending JPH02162287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31750088A JPH02162287A (en) 1988-12-15 1988-12-15 Radiation image receiving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31750088A JPH02162287A (en) 1988-12-15 1988-12-15 Radiation image receiving apparatus

Publications (1)

Publication Number Publication Date
JPH02162287A true JPH02162287A (en) 1990-06-21

Family

ID=18088924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31750088A Pending JPH02162287A (en) 1988-12-15 1988-12-15 Radiation image receiving apparatus

Country Status (1)

Country Link
JP (1) JPH02162287A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135096A (en) * 2010-12-20 2012-07-12 High Energy Accelerator Research Organization Voltage adjustment device, voltage adjustment method and voltage adjustment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135096A (en) * 2010-12-20 2012-07-12 High Energy Accelerator Research Organization Voltage adjustment device, voltage adjustment method and voltage adjustment system

Similar Documents

Publication Publication Date Title
US7411198B1 (en) Integrator circuitry for single channel radiation detector
US7521682B1 (en) Processing circuitry for single channel radiation detector
US7388534B2 (en) Adaptive data acquisition for an imaging system
US4301367A (en) Radiation dosimeter
US6586743B1 (en) X-ray detector having sensors and evaluation units
WO2016163853A1 (en) Device and method for processing radiation signal using bipolar time-over-threshold method
AU2007277066B2 (en) Apparatus and method for reducing microphonic susceptibility in a radiation detector
US4788443A (en) Apparatus for measuring particles in a fluid
CN110456404B (en) Radiation detection device and imaging system
JPS63236988A (en) Choke detecting circuit for radiation measuring instrument using semiconductor detector
JPH02162287A (en) Radiation image receiving apparatus
JP3740315B2 (en) X-ray sensor signal processing circuit, X-ray CT apparatus using the same, and X-ray sensor signal processing method
JPH01274095A (en) Low level environmental radiation measuring apparatus
GB2135451A (en) Radiation measuring device comprising a scintillator and a photodetector
JP3008621B2 (en) Radiation measurement device
JP3127930B2 (en) Semiconductor radiation position detector
US4007373A (en) Radiographic apparatus
JPH0619455B2 (en) Radiation measuring device
JPH03197893A (en) Radiation measuring instrument
JPH0580156A (en) Radiation measuring device
JP3873912B2 (en) X-ray sensor signal processing circuit and X-ray sensor signal processing method
JPH06180367A (en) Radiation measuring equipment
US4081685A (en) Arrangement for the preparation of a body cross-section image
JP3533774B2 (en) X-ray imaging device
JPH0572554B2 (en)