JPH08128902A - Temperature detecting device - Google Patents

Temperature detecting device

Info

Publication number
JPH08128902A
JPH08128902A JP29235694A JP29235694A JPH08128902A JP H08128902 A JPH08128902 A JP H08128902A JP 29235694 A JP29235694 A JP 29235694A JP 29235694 A JP29235694 A JP 29235694A JP H08128902 A JPH08128902 A JP H08128902A
Authority
JP
Japan
Prior art keywords
voltage
temperature
resistance
reference voltage
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29235694A
Other languages
Japanese (ja)
Inventor
Masahiro Asakura
正博 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabe Industrial Co Ltd
Original Assignee
Kurabe Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabe Industrial Co Ltd filed Critical Kurabe Industrial Co Ltd
Priority to JP29235694A priority Critical patent/JPH08128902A/en
Publication of JPH08128902A publication Critical patent/JPH08128902A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a detecting device with its safety protection function by selecting reference voltages to be input to a pair of voltage comparators, respectively, related with the temperature-resistance characteristics of positive characteristic thermisters, respectively, and outputting the logical product of the comparator outputs. CONSTITUTION: The output from a positive characteristic thermister 1 and the reference voltage corresponding to that resistance value are produced by means of resistors R2 , R3 , and R4 , and the voltage between the resistors R3 and R4 is defined as a reference voltage V2 , and the voltage between the resistors R2 and R3 a reference voltage V3 . The voltage V2 and V3 are input to the respective inversion input and non-inversion input of voltage comparators 2 and 3, and the voltage V1 between the resistor R1 and the thermister 1 is input to the non-inversion input and inversion input of the comparators 2 and 3. Thus, the logical product of the comparators 2 and 3 outputs is output to a terminal V0 , which serves as a safety protection function. The voltage V2 selects a voltage which is a resistance value (approx. 300Ω) below the resistance minimum value on the temperature and resistance characteristics, and the voltage V3 is selected as a voltage which makes the resistance value (approx. 5kΩ) of a temperature below the maximum heating temperature of a heated body on the same characteristics. The voltages V2 and V3 are reference voltages for detecting short-circuit, preventing overheating, and detecting disconnection, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばガステーブルの
過熱防止等に用いられる安全保護機能を具備した温度検
知装置に関する。更に詳しくは、正特性サーミスタ(以
下PTCサーミスタと略す)を使用して、温度検知や温
度検知素子自身の断線や短絡検知の機能を具備した温度
検知装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature detecting device having a safety protection function used for preventing overheating of a gas table, for example. More specifically, the present invention relates to a temperature detecting device using a positive temperature coefficient thermistor (hereinafter abbreviated as PTC thermistor) and having a function of detecting temperature and detecting a disconnection or short circuit of the temperature detecting element itself.

【0002】[0002]

【従来の技術】近年、ガステーブルで行なわれる天ぷら
や揚げ物等の油調理において、天ぷら油の過熱による火
災が多発しており、その防止が急務となりつつある。こ
の対策として、金属ケースに収納された温度検知素子を
鍋底に押し当てて、天ぷら油の自然発火温度である30
0℃よりやや低い250〜270℃の温度範囲で天ぷら
油の過熱を検知し、ガスの供給を遮断することにより火
災を防いでいる。
2. Description of the Related Art In recent years, in cooking oil such as tempura and deep-fried food performed on a gas table, fires have frequently occurred due to overheating of the tempura oil, and prevention thereof has become an urgent task. As a countermeasure against this, a temperature detecting element housed in a metal case is pressed against the bottom of the pan, and the spontaneous ignition temperature of tempura oil is 30.
Fire is prevented by detecting overheating of the tempura oil in the temperature range of 250 to 270 ° C, which is slightly lower than 0 ° C, and cutting off the gas supply.

【0003】一般に温度検知素子としては、負特性サー
ミスタ(以下NTCサーミスタと略す)が使用されてい
る。図4はNTCサーミスタThの特性を検出するため
の結線図であり、図5はその出力特性図である。ここで
NTCサーミスタThからの出力Vは、電圧比較器に
入力され、前記過熱防止温度に相当する基準電圧と比較
され、その出力によって電力スイッチを介してガスの供
給を遮断するよう構成されている。
Generally, a negative characteristic thermistor (hereinafter abbreviated as NTC thermistor) is used as the temperature detecting element. FIG. 4 is a connection diagram for detecting the characteristic of the NTC thermistor Th, and FIG. 5 is its output characteristic diagram. Here, the output V 4 from the NTC thermistor Th is input to a voltage comparator, compared with a reference voltage corresponding to the overheat prevention temperature, and the output thereof is configured to cut off the gas supply via a power switch. There is.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記従
来の構成によると次のような問題があった。まず、第一
にサーミスタ自身の断線検知レベル−10℃以下を考慮
するとその使用温度範囲は約300℃と非常に広いこと
である。第二に大部分のガステーブルは電池2本の動作
であり、その70%程度までは動作させなければならな
いから、電源電圧は1.5V×2本×0.7≒2Vとな
り、かなり小さい値である。
However, the above-mentioned conventional structure has the following problems. First, considering the disconnection detection level of the thermistor itself of -10 ° C or lower, the operating temperature range is about 300 ° C, which is very wide. Secondly, most gas tables operate with two batteries, and up to about 70% of them must be operated, so the power supply voltage is 1.5 V x 2 lines x 0.7 ≈ 2 V, which is a fairly small value. Is.

【0005】一方、この温度領域で適切なNTCサーミ
スタThの特性は、B定数(200/300℃)=51
33K,抵抗値R(200℃)=4kΩ程度のものであ
り、このような特性では、抵抗値はR(−10℃)≒1
0MΩと非常に大きくなる。前記条件ではおおむね両端
部のVの変化率は数mV/10deg程度であり、ま
たVと電源電位及びグランドとの差は20〜30mV
程度と非常に僅かである。これに対し、IC化された電
圧比較器ではオフセット電圧のばらつきが±5mV程度
あり、大きな誤差要因になっている。
On the other hand, an appropriate characteristic of the NTC thermistor Th in this temperature range is that the B constant (200/300 ° C.) = 51.
33K, resistance value R (200 ° C.) = About 4 kΩ, and with such characteristics, the resistance value is R (−10 ° C.) ≈1.
It becomes very large, 0 MΩ. Under the above conditions, the rate of change of V 4 at both ends is approximately several mV / 10 deg, and the difference between V 4 and the power supply potential or ground is 20 to 30 mV.
The degree is very small. On the other hand, in an IC voltage comparator, the variation in offset voltage is about ± 5 mV, which is a large error factor.

【0006】このような特性の下、高温側の端部は過熱
防止やNTCサーミスタ自身の短絡検知に、低温側の端
部は断線保護に使われる安全機能上最も重要な温度領域
であり、特にその領域では電圧変化が大変少ない。この
ため、使用部品の誤差により被加熱体の実際温度と検知
温度との差が大きくなってしまい、過熱防止装置の誤動
作につながる。そこで、使用部品のばらつきを押さえる
ために電圧比較器への基準電圧を1台づつ精密な調節を
しなければならない。実際には基準電圧を生成する抵抗
を薄膜抵抗とし、その精密トリミングという高度な製造
技術を使ってしか実現されておらず、温度検知装置全体
としては高価なものとなっている。
Under these characteristics, the end on the high temperature side is the most important temperature region for safety function used for overheat prevention and short circuit detection of the NTC thermistor itself, and the end on the low temperature side is the most important temperature region for safety protection. There is very little voltage change in that region. Therefore, the difference between the actual temperature of the object to be heated and the detected temperature becomes large due to an error in the parts used, which leads to malfunction of the overheat prevention device. Therefore, it is necessary to precisely adjust the reference voltages to the voltage comparators one by one in order to suppress variations in the parts used. In practice, the resistance for generating the reference voltage is a thin film resistance, and it is realized only by using an advanced manufacturing technique called precision trimming, and the temperature detection device as a whole is expensive.

【0007】尚、NTCサーミスタの抵抗値誤差につい
て言及すると、前記誤差が±2.5%あると高温側の出
力電圧Vに換算して±0.5mV程度に相当し、前記
電圧比較器のオフセット電圧よりもずっと小さいから、
NTCサーミスタの誤差は単独に考慮すればよい。以上
説明したような現象はNTCサーミスタのB定数が大き
いことに起因している。前記B定数を温度係数αに換算
するとα(0〜270℃)=−1.34〜−1.75%
/degであり、かなり大きな値である。
Incidentally, referring to the resistance value error of the NTC thermistor, if the error is ± 2.5%, it corresponds to an output voltage V 4 on the high temperature side of about ± 0.5 mV, which corresponds to that of the voltage comparator. Much smaller than the offset voltage,
The error of the NTC thermistor may be considered individually. The phenomenon described above is due to the large B constant of the NTC thermistor. Converting the B constant into a temperature coefficient α, α (0 to 270 ° C.) = − 1.34 to −1.75%
/ Deg, which is a considerably large value.

【0008】そこで、温度検知素子をNTCサーミスタ
に代えて、温度係数の小さな白金薄膜抵抗体(温度係数
α≒0.4%/deg)を使用することが考えられる
が、この白金薄膜抵抗体は単価がNTCサーミスタの数
倍以上と非常に高いため、実用性に極めて乏しいもので
ある。
Therefore, it is conceivable to use a platinum thin film resistor having a small temperature coefficient (temperature coefficient α≈0.4% / deg) in place of the NTC thermistor as the temperature detecting element. The unit price is very high, which is several times higher than that of the NTC thermistor, and it is extremely poor in practicality.

【0009】また、NTCサーミスタと似た特性をもつ
CTRサーミスタがあるが、この特性は安定性に欠ける
のでほとんど使用されていないのが実状である。
Further, there is a CTR thermistor having a characteristic similar to that of the NTC thermistor, but since this characteristic lacks stability, it is the fact that it is rarely used.

【0010】本発明はこのような従来の欠点を解決する
ためになされたものであり、その目的とするところは、
高度な製造技術を利用することなく、温度検知素子自身
の断線や短絡を検知する安全保護機能を具備した、安価
な温度検知装置を提供することにある。
The present invention has been made to solve the above-mentioned conventional drawbacks, and its purpose is to:
An object of the present invention is to provide an inexpensive temperature detection device having a safety protection function of detecting a disconnection or a short circuit of the temperature detection element itself without using an advanced manufacturing technique.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するべく
本発明による温度検知装置は、電源に直列に接続された
抵抗と正特性サーミスタとの接続点から得られる電圧
が、第一の電圧比較器には非反転入力端子に、第二の電
圧比較器には反転入力端子にそれぞれ入力され、前記第
一の電圧比較器の反転入力端子には第一の基準電圧が、
前記第二の電圧比較器の非反転入力端子には第二の基準
電圧が、入力されて比較されることにより出力が得られ
る温度検知装置であって、前記第一の基準電圧は、正特
性サーミスタの温度−抵抗特性上で最も小さい抵抗値以
下に相当する電圧とし、前記第二の基準電圧は、該特性
上で正抵抗特性を示す領域に相当し且つ負抵抗特性を示
す領域に相当するより大きな電圧として、比較された前
記2つの電圧比較器の各出力の論理積が装置出力となる
よう接続されたことを特徴とするものである。
In order to solve the above-mentioned problems, in the temperature detecting device according to the present invention, the voltage obtained from the connection point between the resistor connected in series to the power source and the positive temperature coefficient thermistor is the first voltage comparison. Is input to the non-inverting input terminal of the voltage comparator and the inverting input terminal of the second voltage comparator, and the first reference voltage is input to the inverting input terminal of the first voltage comparator.
A second reference voltage is input to a non-inverting input terminal of the second voltage comparator, which is a temperature detecting device that obtains an output by being input and compared, wherein the first reference voltage has a positive characteristic. A voltage corresponding to the minimum resistance value or less on the temperature-resistance characteristic of the thermistor is set, and the second reference voltage corresponds to a region showing a positive resistance characteristic and a region showing a negative resistance characteristic on the characteristic. As a larger voltage, the logical product of the outputs of the two voltage comparators that have been compared is connected so as to be the device output.

【0012】PTCサーミスタとしては、使用温度に適
応した構造や材質のものを用いれば何でもよい。特にガ
ラス封止型のものが、あらゆる雰囲気中でも特性が非常
に安定しているので好ましい。
As the PTC thermistor, any structure and material suitable for the operating temperature may be used. In particular, the glass-sealed type is preferable because the characteristics are very stable in any atmosphere.

【0013】第一の基準電圧としては、短絡検知を行な
うための基準電圧であるので、温度−抵抗特性(以下T
−R特性と略す)上で最も小さい抵抗値より少し小さな
抵抗値、となるような電圧とするのが好ましい。
Since the first reference voltage is a reference voltage for detecting a short circuit, the temperature-resistance characteristic (hereinafter referred to as T
It is preferable to set the voltage such that the resistance value is a little smaller than the smallest resistance value in the (-R characteristic).

【0014】第二の基準電圧としては、過熱防止または
断線検知を行なうための基準電圧であるので、T−R特
性上で被加熱体の最大加熱温度よりも少し低めの温度の
ときの抵抗値、となるような電圧とするのが好ましい。
Since the second reference voltage is a reference voltage for preventing overheat or detecting disconnection, the resistance value at a temperature slightly lower than the maximum heating temperature of the object to be heated on the TR characteristic. The voltage is preferably such that

【0015】[0015]

【作用】上記構成による本発明の温度検知装置は、図3
に示すようなPTCサーミスタのT−R特性において、
負抵抗特性と正抵抗特性の各部分からなり、負抵抗領域
ではB定数が1000K程度(温度係数α=−0.4〜
−1.3%/deg程度)なので−10〜270℃のよ
うな広い温度範囲であっても出力電圧の変化幅は比較的
小さく、電池電源のような低電圧駆動であっても出力電
圧を電源電圧からもグランドレベルからも離すことがで
きるので、電圧比較器のオフセット電圧のばらつきにも
影響され難くすることができる。
The temperature detecting device of the present invention having the above-described structure is shown in FIG.
In the TR characteristic of the PTC thermistor as shown in
It consists of negative resistance characteristics and positive resistance characteristics. In the negative resistance region, the B constant is about 1000 K (temperature coefficient α = −0.4 to
Since it is about -1.3% / deg), the change width of the output voltage is relatively small even in a wide temperature range such as -10 to 270 ° C, and the output voltage can be changed even when driven by a low voltage such as a battery power source. Since it can be separated from the power supply voltage and the ground level, it can be made less susceptible to variations in the offset voltage of the voltage comparator.

【0016】温度検知装置の出力は、2つの電圧比較器
の出力の論理積となるように接続されているので、過熱
や断線等異常が起きたときのみ安全保護機能として作用
する。
Since the output of the temperature detecting device is connected so as to be the logical product of the outputs of the two voltage comparators, it functions as a safety protection function only when an abnormality such as overheating or disconnection occurs.

【0017】ここで、PTCサーミスタのT−R特性
は、図3に示すように谷間特性を示す。一般に山谷特性
を有する種々の検知素子は、ある検知量に対応する物理
量がその頂点を境にして2つの値となって観測されるの
で、いかなる検知素子として動作させたときでも物理量
の特定が本質的に不可能である。しかしながら、図3に
示すようにPTCサーミスタのT−R特性は著しく非対
称であり、頂点を境にして低温側の負抵抗特性と重複す
る領域全部を温度測定用として使わなければ、その領域
をブラックボックスとした連続的な温度検知装置とみな
すことができる。
Here, the TR characteristic of the PTC thermistor shows a valley characteristic as shown in FIG. Generally, in various sensing elements having a mountain-valley characteristic, the physical quantity corresponding to a certain sensing quantity is observed as two values with the apex as a boundary, so it is essential to specify the physical quantity when operating as any sensing element. Is impossible. However, as shown in FIG. 3, the T-R characteristic of the PTC thermistor is remarkably asymmetric, and if the entire region overlapping the negative resistance characteristic on the low temperature side is not used for temperature measurement, the region is black. It can be regarded as a box-shaped continuous temperature detecting device.

【0018】[0018]

【実施例】以下、図を参照して本発明を更に詳しく説明
する。図2は、PTCサーミスタ1の断面図であり、P
TCサーミスタチップ素子11がスラグリード線13,
13とガラス管14とで熱圧着状態で封止されているも
のである。これは一般的に小信号ダイオードでDO−3
5というパッケージ名で呼ばれている形状と同様のもの
である。前記PTCサーミスタチップ素子11は、チタ
ン酸バリウム系磁器半導体をウエハー状に焼成して、両
面に銀系ペースト電極12,12を形成した後、0.3
5mm×0.35mm×0.2mmにダイシングしてチ
ップ化されたものである。尚、本実施例では、キュリー
温度Tc(常温(25℃)での抵抗値の2倍の抵抗値を
示す温度)がTc≒272℃であるPTCサーミスタを
使用した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail below with reference to the drawings. FIG. 2 is a sectional view of the PTC thermistor 1, P
TC thermistor chip element 11 is a slag lead wire 13,
13 and the glass tube 14 are sealed in a thermocompression bonded state. This is typically a small signal diode DO-3
It is similar to the shape called by the package name of 5. In the PTC thermistor chip element 11, after barium titanate-based porcelain semiconductor is fired into a wafer to form silver-based paste electrodes 12 and 12 on both sides, 0.3
It is made into chips by dicing into 5 mm × 0.35 mm × 0.2 mm. In this example, a PTC thermistor having a Curie temperature Tc (temperature at which the resistance value is twice the resistance value at room temperature (25 ° C.)) is Tc≈272 ° C. is used.

【0019】図3に本実施例で使用したPTCサーミス
タ1のT−R特性を示す。この図からもわかるように、
低温側では温度に対して負抵抗特性を示し、高温側では
正抵抗特性を示す。最も小さい抵抗値を示すA点は約2
50℃であり、また負抵抗領域と重複しないB点は実用
上−10℃の抵抗値に相当させた。ここでPTCサーミ
スタ1の主なるT−R特性値を表1に示す。
FIG. 3 shows the TR characteristics of the PTC thermistor 1 used in this embodiment. As you can see from this figure,
The low temperature side shows negative resistance characteristics with respect to temperature, and the high temperature side shows positive resistance characteristics. Point A showing the smallest resistance value is about 2
Point B, which is 50 ° C. and does not overlap with the negative resistance region, is practically equivalent to a resistance value of −10 ° C. Table 1 shows main TR characteristic values of the PTC thermistor 1.

【0020】[0020]

【表1】 [Table 1]

【0021】ここで安全保護機能としての基準温度と抵
抗値を設定する。図3においてB点以上の抵抗値であれ
ば、過熱防止または断線検知が可能となるので、余裕を
みてこの抵抗値を5kΩとする。また、A点の抵抗値が
最も低いので、余裕をみてPTCサーミスタの抵抗値が
300Ωのとき短絡検知レベルとして設定する。
Here, a reference temperature and a resistance value as a safety protection function are set. In FIG. 3, if the resistance value is at the point B or higher, overheating can be prevented or disconnection can be detected, so this resistance value is set to 5 kΩ with a margin. Moreover, since the resistance value at the point A is the lowest, the margin is set as the short circuit detection level when the resistance value of the PTC thermistor is 300Ω.

【0022】このようにして設計された図1に示す回路
図が、本発明のPTCサーミスタを用いた温度検知装置
である。この温度検知装置は、図1に示すようにPTC
サーミスタ1からの出力と前記PTCサーミスタの抵抗
値(5kΩ,300Ω)に相当する基準電圧を抵抗
,R,Rで作成し、抵抗R,R間の電圧を
第一の基準電圧V,抵抗R,R間の電圧を第二の
基準電圧Vとする。第一の基準電圧Vは第一の電圧
比較器2の反転入力端子に、第二の基準電圧Vは第二
の電圧比較器3の非反転入力端子に入力される。抵抗R
とPTCサーミスタ1間の測定電圧Vは第一の電圧
比較器2の非反転入力端子,第二の電圧比較器3の反転
入力端子にそれぞれ入力される。該電圧比較器2,3は
オープンコレクタ出力であり、図のように負荷抵抗R
とともに接続すれば論理積出力Voが得られるのは明ら
かである。図1の回路はウィンド・コンパレータであ
り、PTCサーミスタの抵抗値が300Ω〜5kΩの間
はすべて正常で出力VoはONであり、連続的ではある
がブラックボックス的な動作領域としている。
The circuit diagram shown in FIG. 1 designed in this manner is a temperature detecting device using the PTC thermistor of the present invention. This temperature detecting device has a PTC as shown in FIG.
A reference voltage corresponding to the output from the thermistor 1 and the resistance value (5 kΩ, 300 Ω) of the PTC thermistor is created by the resistors R 2 , R 3 and R 4 , and the voltage between the resistors R 3 and R 4 is the first reference. The voltage between the voltage V 2 and the resistors R 2 and R 3 is the second reference voltage V 3 . The first reference voltage V 2 is input to the inverting input terminal of the first voltage comparator 2, and the second reference voltage V 3 is input to the non-inverting input terminal of the second voltage comparator 3. Resistance R
1 and the PTC measured voltages V 1 between the thermistor 1 non-inverting input terminal of the first voltage comparator 2, are input to the second inverting input terminal of the voltage comparator 3. The voltage comparators 2 and 3 are open collector outputs, and as shown in the figure, load resistance R 5
It is obvious that the logical product output Vo can be obtained by connecting together. The circuit of FIG. 1 is a window comparator, and when the resistance value of the PTC thermistor is in the range of 300Ω to 5 kΩ, all are normal and the output Vo is ON, which is a continuous but black box-like operating region.

【0023】ここで電源電圧Eを2V,抵抗R=1k
Ω,として、前記安全保護の抵抗値300Ω,5kΩが
どれ程の弁別余裕をもっているかを測定電圧Vで計算
した値を表2に示す。
Here, the power supply voltage E is 2 V and the resistance R 1 = 1 k
As Ω, Table 2 shows the values calculated by the measured voltage V 1 regarding the discrimination margins of the resistance values of 300 Ω and 5 kΩ for the safety protection.

【0024】[0024]

【表2】 [Table 2]

【0025】この表から、A,B間のブラックボックス
幅は0.917Vに押さえられており、他の状態レベル
とは十分な弁別差を有していることがわかる。また、V
は電源電位とグランドレベルから十分に離れた値にな
っており、電圧比較器のオフセット電圧のばらつきが±
5mVでも問題にはならない値である。また、PTCサ
ーミスタの抵抗値誤差も±10%程度でも大きな検知誤
差にはならない。
From this table, it can be seen that the black box width between A and B is suppressed to 0.917 V, which has a sufficient discriminative difference from other state levels. Also, V
1 is a value that is sufficiently distant from the power supply potential and the ground level, and the variation in the offset voltage of the voltage comparator is ±
It is a value that does not matter even at 5 mV. Further, even if the resistance value error of the PTC thermistor is about ± 10%, it does not cause a large detection error.

【0026】次にR=620Ω+39Ω,R=2.
4kΩ,R=910Ωとし、接続されたPTCサーミ
スタを絶縁性液体恒温槽に投入し、温度をスイープさせ
て検知装置出力Voを見ながらV出力を測定し、等価
PTCサーミスタ抵抗を逆算して、基準抵抗値300
Ω,5kΩと比較したところ、加熱・冷却の2往復の平
均で誤差は±1.5%以内であった。
Next, R 2 = 620Ω + 39Ω, R 3 = 2.
4kΩ, R 4 = 910Ω, put the connected PTC thermistor into the insulating liquid thermostatic chamber, sweep the temperature, measure V 1 output while watching the output Vo of the detector, and calculate the equivalent PTC thermistor resistance backwards. , Standard resistance value 300
When compared with Ω and 5 kΩ, the error was within ± 1.5% in the average of two reciprocations of heating and cooling.

【0027】比較のため、図4で示した結線図でNTC
サーミスタを用いた場合の簡単な試算をしてみると、抵
抗値はR(−10℃)≒10MΩ,R(270℃)=
0.99346kΩであり、R=100kΩ,電源電
圧E=2Vとすれば、図5に示すように出力VはV
(−10℃)=19.8mV,V(270℃)=1.
9803Vとなる。電圧比較器のオフセット電圧を含む
回路部のばらつきを考えると基準電圧を発生させる抵抗
は非常に精密でなければならないことがわかる。
For comparison, the connection diagram shown in FIG.
A simple trial calculation using a thermistor shows that the resistance value is R (−10 ° C.) ≈10 MΩ, R (270 ° C.) =
0.99346 kΩ, R 2 = 100 kΩ, and power supply voltage E = 2 V, the output V 4 is V 4 as shown in FIG.
(−10 ° C.) = 19.8 mV, V 4 (270 ° C.) = 1.
It becomes 9803V. Considering the variation of the circuit part including the offset voltage of the voltage comparator, it can be seen that the resistance for generating the reference voltage must be very precise.

【0028】尚、本実施例ではPTCサーミスタを剥き
出しで使用したが、実際は金属ケース等に組み込まれて
使用されることはいうまでもない。上述によれば、安全
保護を目的とする温度検知装置ではNTCサーミスタを
使用した場合の問題点をPTCサーミスタを使用するこ
とによって、十分に解決できたことは明白である。
In the present embodiment, the PTC thermistor is exposed and used, but it goes without saying that the PTC thermistor is actually incorporated in a metal case or the like for use. Based on the above, it is clear that the problem when the NTC thermistor is used in the temperature detecting device for safety protection can be sufficiently solved by using the PTC thermistor.

【0029】[0029]

【発明の効果】以上詳述したように本発明によれば、温
度検知素子としてPTCサーミスタを使用することによ
って、NTCサーミスタでは困難であった過熱検知ある
いは断線検知及び短絡検知という安全保護機能を、高度
な製造技術を必要とする薄膜抵抗体を用いずに同等な性
能を備え、経済性に優れたPTCサーミスタの温度検知
装置を提供できる。
As described above in detail, according to the present invention, by using the PTC thermistor as the temperature detecting element, the safety protection function such as overheat detection, disconnection detection and short circuit detection, which has been difficult with the NTC thermistor, is provided. It is possible to provide a temperature detecting device for a PTC thermistor, which has the same performance without using a thin-film resistor that requires advanced manufacturing technology and is highly economical.

【図面の簡単な説明】[Brief description of drawings]

【図1】PTCサーミスタを使用した本発明の温度検知
装置の回路図である。
FIG. 1 is a circuit diagram of a temperature detecting device of the present invention using a PTC thermistor.

【図2】本発明の実施例で使用したPTCサーミスタの
断面図である。
FIG. 2 is a sectional view of a PTC thermistor used in an example of the present invention.

【図3】本発明の実施例で使用したPTCサーミスタの
温度−抵抗特性図である。
FIG. 3 is a temperature-resistance characteristic diagram of a PTC thermistor used in an example of the present invention.

【図4】NTCサーミスタの特性を得るための結線図で
ある。
FIG. 4 is a connection diagram for obtaining characteristics of an NTC thermistor.

【図5】従来の温度検知装置に使用されているNTCサ
ーミスタの出力特性図である。
FIG. 5 is an output characteristic diagram of an NTC thermistor used in a conventional temperature detecting device.

【符号の説明】[Explanation of symbols]

1…PTCサーミスタ 2…第一の電圧比較器 3…第二の電圧比較器 V…測定電圧 V…第一の基準電圧 V…第二の基準電圧 E…電源電圧 R〜R…抵抗 11…PTCサーミスタチップ素子 12…銀系ペースト電極 13…スラグリード線 14…ガラス管1 ... PTC thermistor 2 ... first voltage comparator 3 ... second voltage comparator V 1 ... measured voltage V 2 ... first reference voltage V 3 ... second reference voltage E ... supply voltage R 1 to R 5 ... resistor 11 ... PTC thermistor chip element 12 ... silver-based paste electrode 13 ... slag lead wire 14 ... glass tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電源に直列に接続された抵抗と正特性サ
ーミスタとの接続点から得られる電圧が、第一の電圧比
較器には非反転入力端子に、第二の電圧比較器には反転
入力端子にそれぞれ入力され、前記第一の電圧比較器の
反転入力端子には第一の基準電圧が、前記第二の電圧比
較器の非反転入力端子には第二の基準電圧が、入力され
て比較されることにより出力が得られる温度検知装置で
あって、前記第一の基準電圧は、正特性サーミスタの温
度−抵抗特性上で最も小さい抵抗値以下に相当する電圧
とし、前記第二の基準電圧は、該特性上で正抵抗特性を
示す領域に相当し且つ負抵抗特性を示す領域に相当する
より大きな電圧として、比較された前記2つの電圧比較
器の各出力の論理積が装置出力となるよう接続されたこ
とを特徴とする温度検知装置。
1. A voltage obtained from a connection point between a resistor connected in series to a power source and a positive temperature coefficient thermistor is inverted at a non-inverting input terminal of the first voltage comparator and at a second voltage comparator. The first reference voltage is input to the inverting input terminal of the first voltage comparator, and the second reference voltage is input to the non-inverting input terminal of the second voltage comparator. In the temperature detecting device, the output of which is obtained by comparison with the first reference voltage is the voltage corresponding to the minimum resistance value or less on the temperature-resistance characteristic of the positive temperature coefficient thermistor, and the second reference voltage. The reference voltage is a larger voltage corresponding to a region showing a positive resistance characteristic and a region showing a negative resistance characteristic on the characteristic, and the logical product of the respective outputs of the two voltage comparators compared is the device output. Temperature characterized by being connected so that Detection device.
JP29235694A 1994-11-01 1994-11-01 Temperature detecting device Pending JPH08128902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29235694A JPH08128902A (en) 1994-11-01 1994-11-01 Temperature detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29235694A JPH08128902A (en) 1994-11-01 1994-11-01 Temperature detecting device

Publications (1)

Publication Number Publication Date
JPH08128902A true JPH08128902A (en) 1996-05-21

Family

ID=17780748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29235694A Pending JPH08128902A (en) 1994-11-01 1994-11-01 Temperature detecting device

Country Status (1)

Country Link
JP (1) JPH08128902A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001844A1 (en) * 2007-06-25 2008-12-31 Mitsumi Electric Co., Ltd. Battery pack
CN108923781A (en) * 2018-08-24 2018-11-30 西安爱科赛博电气股份有限公司 A kind of symmetrical comparison circuit of positive and negative two directions' inputing based on single supply power supply

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001844A1 (en) * 2007-06-25 2008-12-31 Mitsumi Electric Co., Ltd. Battery pack
US8193774B2 (en) 2007-06-25 2012-06-05 Mitsumi Electric Co., Ltd. Battery pack
CN108923781A (en) * 2018-08-24 2018-11-30 西安爱科赛博电气股份有限公司 A kind of symmetrical comparison circuit of positive and negative two directions' inputing based on single supply power supply

Similar Documents

Publication Publication Date Title
JPS5823570B2 (en) Liquid level detection device
US4326414A (en) Humidity detecting apparatus
US20050099163A1 (en) Temperature manager
US4370546A (en) Kiln temperature controller
JPH0473086B2 (en)
JPH08128902A (en) Temperature detecting device
JP2001332313A (en) Temperature detection device of secondary battery pack and secondary battery pack
JPS59104515A (en) Detector for liquid level
US4800292A (en) Temperature sensing circuit
JP3184941B2 (en) Temperature detector
CN219039204U (en) Heating film detection circuit
JPH03209705A (en) Temperature sensor
JPH0251129B2 (en)
JPH03209703A (en) Liquid-level detecting element
JP2000277305A (en) Overcurrent protecting part and circuit
JP2000292389A (en) Sensor circuit
JPH0486524A (en) Liquid level detector
JPS585220Y2 (en) Ekimen Kenchiki
JPS583094A (en) Composite type heat sensor
JPS5919363Y2 (en) Positive characteristic thermistor for temperature range display
RU1795307C (en) Electronic thermometer
JP2003014830A (en) Battery voltage reduction detector
JPS6216685Y2 (en)
JPH0580990B2 (en)
JPH09220165A (en) Liquid container with temperature indication function