JPH08128314A - Filter regeneration device - Google Patents

Filter regeneration device

Info

Publication number
JPH08128314A
JPH08128314A JP6271298A JP27129894A JPH08128314A JP H08128314 A JPH08128314 A JP H08128314A JP 6271298 A JP6271298 A JP 6271298A JP 27129894 A JP27129894 A JP 27129894A JP H08128314 A JPH08128314 A JP H08128314A
Authority
JP
Japan
Prior art keywords
filter
combustion
particulate
microwave
particulates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6271298A
Other languages
Japanese (ja)
Other versions
JP2827925B2 (en
Inventor
Nobuhiko Fujiwara
宣彦 藤原
Tomotaka Nobue
等隆 信江
Takahiro Matsumoto
孝広 松本
Masao Noguchi
正夫 野口
Tsuneo Akutsu
統雄 垰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6271298A priority Critical patent/JP2827925B2/en
Publication of JPH08128314A publication Critical patent/JPH08128314A/en
Application granted granted Critical
Publication of JP2827925B2 publication Critical patent/JP2827925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/028Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE: To obtain a filter regeneration device for an internal combustion engine for optimally operating a heating means and a combustion improving gas supplying means by detecting starting or completion of combustion of particulates in exhaust gas of a diesel engine or the like. CONSTITUTION: A particulate combustion judgment means 33 determines starting and completion of combustion of particulates during regeneration of a filter 4 based on detection values of a microwave electromagnetic field intensity sensing means 17 or a pressure detection sensing means 28.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はディーゼルエンジン等の
排出する排気ガス中に含まれるパティキュレート(粒子
状物質)をフィルタにて捕集するとともにフィルタに捕
集されたパティキュレートを加熱燃焼させて除去しフィ
ルタの捕集性能を再生するフィルタ再生装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention collects particulates (particulate matter) contained in exhaust gas discharged from a diesel engine by a filter and heats and burns the particulates collected by the filter. The present invention relates to a filter regeneration device that removes and regenerates the collection performance of a filter.

【0002】[0002]

【従来の技術】フィルタ再生状態つまりパティキュレー
トの燃焼状態は、再生開始前のフィルタ温度、パティキ
ュレート捕集重量、パティキュレートの質、パティキュ
レートの加熱エネルギ、パティキュレートの燃焼を促進
する助燃気体の供給流量および温度、前回のフィルタ再
生時の燃え残り状態(パティキュレート燃焼中に再生を
停止しその後再び再生する場合がある)などに深く依存
している。そのためフィルタ再生を単一の再生シーケン
スで行うとパティキュレートの燃焼不良や燃焼温度の過
度の高温化を招きフィルタの耐久性を損ねる。そのため
様々な状態をセンサで検出し、それに応じた再生制御を
行う必要がある。
2. Description of the Related Art A filter regeneration state, that is, a particulate combustion state, includes a filter temperature before starting regeneration, particulate collection weight, particulate quality, particulate heating energy, and a combustion gas for promoting combustion of particulates. It is deeply dependent on the supply flow rate and temperature, the unburned state during the previous filter regeneration (regeneration may be stopped during particulate combustion and then regenerated). Therefore, if the filter regeneration is performed by a single regeneration sequence, the particulates may not burn properly or the burning temperature may become excessively high, and the durability of the filter may be impaired. Therefore, it is necessary to detect various states with a sensor and perform reproduction control according to the detected states.

【0003】中でもパティキュレートの燃焼開始あるい
は終了を検出できることが望ましい。ここでパティキュ
レート燃焼用の助燃気体を供給してパティキュレートを
燃焼させるが、その助燃気体を供給するまでの加熱(予
熱)不足はパティキュレート燃焼不良に、そして予熱過
多は燃焼温度の過度の高温化、特にパティキュレート燃
焼初期時点での温度勾配の急峻化を招く。どれもフィル
タの耐久性能を大きく損ねることになる。一方車載電力
容量を考慮したフィルタ再生時の消費電力を抑制するこ
と、またシングルフィルタの場合フィルタ再生中に排気
ガスを再生フィルタを避けてバイパスする必要があり、
未浄化の排気ガスが排出されることなどを考慮し、再生
時間の短縮化を図る必要がある。そのためパティキュレ
ートの燃焼が終われば直ちに加熱手段の動作を停止し空
気を大量にフィルタに供給してフィルタを冷却しフィル
タ再生を終えることが望ましい。しかしパティキュレー
ト燃焼が終了していないにもかかわらずフィルタ冷却の
ため助燃気体量を増大することは急激な燃焼を生じさ
せ、燃焼温度の高温化を招く。
Above all, it is desirable to be able to detect the start or end of the combustion of particulates. Here, the auxiliary combustion gas for particulate combustion is supplied to burn the particulates, but insufficient heating (preheating) until the auxiliary combustion gas is supplied results in particulate combustion failure, and excessive preheating causes excessive combustion temperature. In particular, the temperature gradient becomes steeper at the initial stage of particulate combustion. Any of these will greatly impair the durability of the filter. On the other hand, it is necessary to suppress the power consumption during filter regeneration considering the on-vehicle power capacity, and in the case of a single filter, it is necessary to bypass the exhaust gas while avoiding the regeneration filter during filter regeneration.
It is necessary to shorten the regeneration time in consideration of the fact that unpurified exhaust gas is discharged. Therefore, it is desirable to stop the operation of the heating means immediately after the particulates are burned, supply a large amount of air to the filter to cool the filter, and finish the filter regeneration. However, even if the particulate combustion is not completed, increasing the amount of the auxiliary combustion gas for cooling the filter causes rapid combustion and raises the combustion temperature.

【0004】以上説明したような背景から様々なパティ
キュレートの燃焼開始、終了検出方式が提案されてい
る。
From the background described above, various combustion start / end detection systems have been proposed.

【0005】実開昭62−122110号公報はフィル
タの発光状態を光学センサで検出し、パティキュレート
の燃焼を識別するものである。
In Japanese Utility Model Laid-Open No. 62-122110, the light emission state of the filter is detected by an optical sensor to identify the particulate combustion.

【0006】また特開昭59−18220号公報は再生
時フィルタを出る排気ガスの温度を検出し、この温度の
上昇勾配が所定値以上のとき、加熱を停止する。また特
開昭59−20515号公報は同じくフィルタ再生中の
排気ガス温度が所定値以下になったとき再生を終了す
る。これらはフィルタ通流後の助燃気体温度を利用した
一種の燃焼開始あるいは燃焼終了検出方式である。
Further, Japanese Patent Laid-Open No. 59-18220 detects the temperature of the exhaust gas leaving the filter during regeneration, and stops heating when the rising gradient of this temperature is above a predetermined value. Further, in Japanese Patent Laid-Open No. 59-20515, the regeneration is similarly ended when the exhaust gas temperature during the regeneration of the filter becomes equal to or lower than a predetermined value. These are a kind of combustion start or combustion end detection method using the auxiliary combustion gas temperature after passing through the filter.

【0007】さらに特開平5−179931号公報は再
生開始直前のフィルタ温度が高くなるほど予熱時間を短
くしている。これはパティキュレート燃焼開始を検出す
る代わりに、フィルタ再生前のフィルタ温度からパティ
キュレート燃焼開始温度に達する時間を演算しているも
のである。
Further, in Japanese Unexamined Patent Publication (Kokai) No. 5-179931, the preheating time is shortened as the filter temperature becomes higher immediately before the start of regeneration. This is to calculate the time to reach the particulate combustion start temperature from the filter temperature before filter regeneration, instead of detecting the particulate combustion start.

【0008】[0008]

【発明が解決しようとする課題】上記したようなパティ
キュレート燃焼開始あるいは終了検出は以下のような課
題を有している。
The above-mentioned particulate combustion start or end detection has the following problems.

【0009】まずフィルタの発光状態を光学センサで識
別する方式はセンサまたは光学系が内燃機関の動作中の
排気ガス(最大500℃程度)、フィルタ再生中のフィ
ルタ通流後の排気ガス(最大500℃程度)、フィルタ
再生中のフィルタからの輻射熱などにさらされ、センサ
または光学系の耐久性に問題がある。
First, in the method of identifying the light emission state of the filter by an optical sensor, the sensor or the optical system uses exhaust gas during operation of the internal combustion engine (up to about 500 ° C.) and exhaust gas after passing through the filter during filter regeneration (up to 500). There is a problem in durability of the sensor or optical system due to exposure to radiant heat from the filter during filter regeneration.

【0010】また再生中の排気ガス温度を利用したもの
は助燃気体自体、温度検出手段、フィルタ、あるいは助
燃気体通流経路などの熱容量の影響で、フィルタに堆積
したパティキュレートの一部分の燃焼状態を高精度に検
出することが困難である。
In the case of utilizing the exhaust gas temperature during regeneration, the combustion state of a part of the particulates deposited on the filter is affected by the heat capacity of the auxiliary gas itself, the temperature detecting means, the filter, or the auxiliary gas flow path. It is difficult to detect with high accuracy.

【0011】さらに再生開始直前のフィルタ温度を基に
予熱時間を設定する方式はフィルタ温度を正確に知るこ
とが困難なことに加え、パティキュレートの加熱状態の
ばらつきに影響され、最適な予熱をフィルタに与えるこ
とが困難である。
Further, in the method of setting the preheating time based on the filter temperature immediately before the start of regeneration, it is difficult to know the filter temperature accurately, and the optimum preheating is affected by the variation in the heating state of the particulates. Difficult to give to.

【0012】本発明は上記課題を解決するもので、耐久
性を保証しつつ高精度のパティキュレート燃焼開始ある
いは終了検出能力を有するフィルタ再生装置を提供する
ことを目的としている。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a filter regenerator having a highly accurate particulate combustion start or end detection capability while ensuring durability.

【0013】[0013]

【課題を解決するための手段】本発明は上記目的を達成
するために、排気ガス中に含まれるパティキュレートを
捕集するフィルタと、フィルタが捕集したパティキュレ
ートを加熱する加熱手段と、加熱手段が加熱したパティ
キュレートの燃焼を促進する助燃気体を供給する助燃気
体供給手段と、フィルタを収納した空間にマイクロ波を
供給するマイクロ波供給手段と、フィルタの側面に配し
たフィルタ保持手段の内部あるいは外部に存在するマイ
クロ波電磁場の強度を検出するマイクロ波電磁場強度検
出手段と、マイクロ波電磁場強度検出手段の検出値を基
にフィルタが捕集したパティキュレートの燃焼開始と燃
焼終了のうち少なくとも一方を判別するパティキュレー
ト燃焼判別手段と、パティキュレート燃焼判別手段の判
別結果を基に加熱手段と助燃気体供給手段のうち少なく
とも一方の動作を制御するフィルタ再生制御手段とを備
えている。
In order to achieve the above object, the present invention provides a filter for collecting particulates contained in exhaust gas, a heating means for heating the particulates collected by the filter, and a heating means. Inside of the filter holding means arranged on the side surface of the filter, the auxiliary gas supply means for supplying the auxiliary gas for promoting the combustion of the particulates heated by the means, the microwave supply means for supplying the microwave to the space containing the filter. Alternatively, at least one of combustion start and combustion end of the particulates collected by the filter based on the microwave electromagnetic field intensity detection means for detecting the intensity of the microwave electromagnetic field existing outside and the detection value of the microwave electromagnetic field intensity detection means. Based on the determination result of the particulate combustion determination means and the particulate combustion determination means Of stage and co 燃気-supplying means and a filter regeneration control means for controlling at least one operation.

【0014】またフィルタが捕集したパティキュレート
を誘電加熱するマイクロ波を供給するマイクロ波供給手
段を備えている。
Further, there is provided a microwave supply means for supplying a microwave for dielectrically heating the particulates collected by the filter.

【0015】さらにフィルタに助燃気体を供給する助燃
気体供給手段と、助燃気体供給手段の供給する助燃気体
の通流方向においてフィルタよりも少なくとも上流側の
助燃気体の圧力を検出する圧力検出手段と、圧力検出手
段の検出信号を基にフィルタが捕集したパティキュレー
トの燃焼開始あるいは燃焼終了を判別するパティキュレ
ート燃焼判別手段とを備えている。
Further, auxiliary combustion gas supply means for supplying the auxiliary combustion gas to the filter, and pressure detection means for detecting the pressure of the auxiliary combustion gas at least on the upstream side of the filter in the flow direction of the auxiliary gas supplied by the auxiliary gas supply means. And a particulate combustion determination means for determining the start or end of combustion of the particulates collected by the filter based on the detection signal of the pressure detection means.

【0016】上記のパティキュレート燃焼判別手段は、
マイクロ波供給手段動作時のマイクロ波電磁場強度検出
手段の検出値が増加したときをパティキュレート燃焼開
始として判別する。
The above particulate combustion discriminating means is
When the detection value of the microwave electromagnetic field intensity detection means during the operation of the microwave supply means increases, it is determined that the particulate combustion has started.

【0017】またパティキュレート燃焼判別手段は、助
燃気体供給手段動作時の圧力検出手段の検出値が減少し
たときをパティキュレート燃焼開始として判別する。
The particulate combustion discriminating means discriminates when the detected value of the pressure detecting means during the operation of the auxiliary combustion gas supplying means decreases as the start of particulate combustion.

【0018】さらにパティキュレート燃焼判別手段は、
マイクロ波供給手段動作時のマイクロ波電磁場強度検出
手段の検出値が所定値以上になったときをパティキュレ
ート燃焼終了として判別する。
Further, the particulate combustion discriminating means is
When the detection value of the microwave electromagnetic field intensity detection means during the operation of the microwave supply means exceeds a predetermined value, it is determined that the particulate combustion has ended.

【0019】さらにまたパティキュレート燃焼判別手段
は、助燃気体供給手段動作時の圧力検出手段の検出値が
所定値以下になったときをパティキュレート燃焼終了と
して判別する。
Furthermore, the particulate combustion discriminating means discriminates that the particulate combustion has ended when the detection value of the pressure detecting means during the operation of the auxiliary combustion gas supplying means becomes equal to or less than a predetermined value.

【0020】[0020]

【作用】上記した構成において、マイクロ波電磁場強度
検出手段はマイクロ波供給手段の発生するマイクロ波に
よりフィルタ保持手段の内部あるいは外部に存在するマ
イクロ波電磁場強度を検出する。所定のパティキュレー
ト捕集量に達したときあるいは所定の時間サイクル毎に
加熱手段および助燃気体供給手段の動作を制御してフィ
ルタに堆積したパティキュレートを加熱燃焼除去(フィ
ルタ再生)する。この加熱初期のマイクロ波電磁場強度
検出値に対し加熱手段によるパティキュレートの加熱が
進むにつれ、パティキュレートおよびフィルタが高温に
なるためそれらの誘電損失が増加し、フィルタ保持手段
近傍のマイクロ波電磁場強度が弱まり、検出値が減少し
ていく。
In the above structure, the microwave electromagnetic field strength detecting means detects the microwave electromagnetic field strength existing inside or outside the filter holding means by the microwave generated by the microwave supplying means. When the predetermined amount of collected particulates is reached or every predetermined time cycle, the operations of the heating means and the auxiliary combustion gas supply means are controlled to heat and remove the particulates accumulated on the filter (filter regeneration). As the heating of the particulates by the heating means progresses with respect to the microwave electromagnetic field strength detection value at the beginning of heating, the dielectric loss of the particulates and the filter increases and the microwave electromagnetic field strength near the filter holding means increases. It weakens and the detected value decreases.

【0021】パティキュレートの温度が燃焼可能温度
(600℃程度)に達すると助燃気体の通流時にパティ
キュレートの燃焼が開始する。この燃焼によって生ずる
火炎はマイクロ波の進入を妨げるためマイクロ波はこの
燃焼領域を回避し分布する。この分布はフィルタ保持手
段近傍に存在するマイクロ波電磁場強度を強くする。よ
ってフィルタ内でパティキュレートの燃焼が開始すると
マイクロ波電磁場強度検出値が増加する。パティキュレ
ート燃焼判別手段はこのようにマイクロ波電磁場強度検
出値が増加に転じた時点をパティキュレート燃焼開始と
判断する。この判別結果に基づいて以降加熱手段と助燃
気体供給手段の動作を制御しパティキュレートの燃焼領
域を拡大させる。
When the temperature of the particulates reaches the combustible temperature (about 600 ° C.), the particulates start to burn when the auxiliary gas flows. The flame generated by this combustion prevents microwaves from entering, so that microwaves are distributed by avoiding this combustion region. This distribution strengthens the microwave electromagnetic field strength existing near the filter holding means. Therefore, when the burning of particulates in the filter starts, the microwave electromagnetic field strength detection value increases. The particulate combustion determination means determines that the particulate combustion has started when the detected value of the microwave electromagnetic field strength starts increasing. Based on this determination result, the operations of the heating means and the auxiliary combustion gas supply means are controlled thereafter to expand the particulate combustion region.

【0022】パティキュレートは燃焼によって気体とな
りフィルタから除去されていく。パティキュレートが除
去された領域は助燃気体の通流により冷却される。パテ
ィキュレート燃焼が終了に近づくにつれパティキュレー
トおよびフィルタの温度が低下するためそれらの誘電損
失が減少し、フィルタ保持手段近傍のマイクロ波電磁場
強度が強まり、検出値が増加していく。パティキュレー
ト燃焼が終了したときのマイクロ波電磁場強度検出値を
予め設定しておき、この所定値以上になったときをパテ
ィキュレート燃焼が終了したと判別する。この判別結果
を受け加熱手段の動作を停止させ助燃気体供給手段を所
定時間動作させフィルタを冷却して再生を終える。
The particulates become a gas by combustion and are removed from the filter. The area from which the particulates have been removed is cooled by the flow of the auxiliary combustion gas. As the particulate combustion approaches the end, the temperature of the particulate and the filter decreases, so that the dielectric loss of them decreases, the microwave electromagnetic field strength near the filter holding means increases, and the detected value increases. The microwave electromagnetic field intensity detection value at the time of completion of particulate combustion is set in advance, and when it exceeds this predetermined value, it is determined that the particulate combustion has ended. In response to this determination result, the operation of the heating means is stopped, the auxiliary gas supply means is operated for a predetermined time, the filter is cooled, and the regeneration is completed.

【0023】ここでマイクロ波電磁場強度検出手段はフ
ィルタ側面に配したフィルタ保持手段の内部あるいは外
部に存在するマイクロ波電磁場強度を検出する構成とし
たため、フィルタを通流する排気ガスあるいはフィルタ
再生中の高熱から隔離し検出の耐久性能を保証すること
ができる。
Since the microwave electromagnetic field intensity detecting means is configured to detect the intensity of the microwave electromagnetic field existing inside or outside the filter holding means arranged on the side surface of the filter, the exhaust gas flowing through the filter or the filter being regenerated. It can be isolated from high heat and guarantee the durability of detection.

【0024】ところでパティキュレート燃焼開始あるい
は終了をフィルタを通流する助燃気体の通流時の圧力損
失変化からも判別できる。ここで圧力検出手段は助燃気
体供給手段の供給する助燃気体の通流方向においてフィ
ルタよりも上流側に設けられる。下流側はパティキュレ
ート燃焼熱により高温の助燃気体が通流し圧力を検出す
るのに適さない。フィルタよりも下流側の通流経路によ
る圧力損失はほぼ一定で、フィルタの上流側の圧力とフ
ィルタによる圧力損失とは一次関数に近似できる。パテ
ィキュレートの加熱が進み助燃気体通流時にパティキュ
レート燃焼が開始すると燃焼によりパティキュレートが
除去され、フィルタの圧力損失つまり圧力検出手段の検
出値が著しく低下する。このように圧力検出手段の検出
値が減少に転じた時点においてパティキュレート燃焼が
開始したと判断する。
Incidentally, the start or end of particulate combustion can also be discriminated from the change in pressure loss when the auxiliary combustion gas flowing through the filter flows. Here, the pressure detection means is provided upstream of the filter in the flow direction of the auxiliary combustion gas supplied by the auxiliary combustion gas supply means. The downstream side is not suitable for detecting the pressure because a high temperature auxiliary combustion gas flows due to the heat of particulate combustion. The pressure loss due to the flow path on the downstream side of the filter is almost constant, and the pressure on the upstream side of the filter and the pressure loss due to the filter can be approximated to a linear function. If the particulate heating progresses and the particulate combustion starts when the auxiliary combustion gas is flowing, the particulate is removed by the combustion, and the pressure loss of the filter, that is, the detection value of the pressure detecting means is significantly reduced. Thus, it is determined that the particulate combustion has started at the time when the detection value of the pressure detecting means starts to decrease.

【0025】パティキュレート燃焼が進み燃焼が終了に
近づくにつれ、残りパティキュレートが少なくなりフィ
ルタの圧力損失つまり圧力検出値が減少していく。燃焼
が終了したときの圧力検出値を予め設定しておき、圧力
検出値がこの設定値以下になった時点をパティキュレー
ト燃焼終了と判断する。
As the particulate combustion progresses and approaches the end of the combustion, the remaining particulate decreases and the pressure loss of the filter, that is, the pressure detection value decreases. The pressure detection value at the end of combustion is set in advance, and it is determined that the particulate combustion has ended when the pressure detection value becomes equal to or less than this set value.

【0026】ここで圧力検出手段を排気ガス通流経路か
ら距離をおいて配し、圧力を検出してもよいため排気ガ
スの高熱から圧力検出手段を保護しその耐久性を保証で
きる。
Here, since the pressure detecting means may be arranged at a distance from the exhaust gas flow path to detect the pressure, the pressure detecting means can be protected from the high heat of the exhaust gas and its durability can be guaranteed.

【0027】上述した構成によりマイクロ波電磁場強度
検出手段あるいは圧力検出手段の耐久性を保ちつつ、マ
イクロ波電磁場強度検出値または圧力検出値を基に高精
度なパティキュレート燃焼開始あるいは終了判別能力を
有するフィルタ再生装置を提供できる。
With the above-mentioned configuration, while maintaining the durability of the microwave electromagnetic field intensity detecting means or the pressure detecting means, it has a highly accurate particulate combustion start or end discriminating ability based on the microwave electromagnetic field intensity detected value or the pressure detected value. A filter regeneration device can be provided.

【0028】これによりパティキュレートの燃焼開始を
高精度に判別できるため、予熱不足によるパティキュレ
ートの燃え残り、また予熱過多によるパティキュレート
燃焼温度の過度の高温化を防止できる。
With this, since the start of particulate combustion can be determined with high accuracy, it is possible to prevent the particulate from remaining unburned due to insufficient preheating, and to prevent the particulate combustion temperature from becoming excessively high due to excessive preheating.

【0029】さらにパティキュレートの燃焼終了を高精
度に判別できるため、加熱手段や助燃気体供給手段の無
駄な動作をなくし、電力の消費を最小限に抑えることが
できる。またパティキュレートの燃焼終了前にフィルタ
冷却のための助燃気体量増大を未然に防止し、燃焼温度
の過度の高温化を防止できる。
Furthermore, since the end of combustion of particulates can be determined with high accuracy, useless operation of the heating means and auxiliary gas supply means can be eliminated, and power consumption can be minimized. Further, it is possible to prevent an increase in the amount of the auxiliary combustion gas for cooling the filter before the end of the combustion of the particulates and prevent the combustion temperature from becoming excessively high.

【0030】以上のことからフィルタの長期にわたる耐
久性を保証することができる。
From the above, the long-term durability of the filter can be guaranteed.

【0031】[0031]

【実施例】以下本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0032】図1においてディーゼルエンジン1より排
出された排気ガスは排気管2を通して加熱空間3内に収
納されたフィルタ4に導かれる。フィルタ4はハニカム
構造からなり排気ガスが通過する際に排気ガス中に含ま
れるパティキュレートを捕集する。加熱空間3はパンチ
ング穴構成あるいはハニカム構成などからなるマイクロ
波遮蔽手段5、6でもってマイクロ波を実質的に閉じこ
める空間を限定している。7はフィルタ4の外周と加熱
空間3を形成する管壁8との間に設けたフィルタ保持手
段でありフィルタ4を保持するとともにフィルタ4の側
面からの伝熱を抑制する。このフィルタ保持手段7が配
設された空間は排気ガスの通流が遮断されている。なお
フィルタ4は一つのみ図示しているが排気管2を複数に
分岐させそれぞれにフィルタを設けてもよい。
In FIG. 1, the exhaust gas discharged from the diesel engine 1 is guided through the exhaust pipe 2 to the filter 4 housed in the heating space 3. The filter 4 has a honeycomb structure and collects particulates contained in the exhaust gas when the exhaust gas passes through. The heating space 3 limits the space for substantially confining the microwaves by the microwave shielding means 5 and 6 having a punching hole structure or a honeycomb structure. Reference numeral 7 denotes a filter holding means provided between the outer periphery of the filter 4 and the tube wall 8 forming the heating space 3, which holds the filter 4 and suppresses heat transfer from the side surface of the filter 4. Exhaust gas is blocked from flowing through the space in which the filter holding means 7 is arranged. Although only one filter 4 is shown in the figure, the exhaust pipe 2 may be divided into a plurality of parts and a filter may be provided for each.

【0033】マイクロ波供給手段9(加熱手段)の発生
するマイクロ波は同軸伝送路10、同軸導波管変換用ア
ンテナ11、環状の矩形導波管12および給電孔13、
14を通して加熱空間3に給電され、フィルタ4が捕集
したパティキュレートが誘電加熱される。なお本実施例
では加熱手段をマイクロ波供給手段9としているが電気
ヒータやバーナなどの加熱源を用いてもよい。15はマ
イクロ波供給手段9の駆動電源であり、環状の矩形導波
管12は排気ガス排出管16の管壁面に略対面して設け
られた給電孔13、14を終端に配する構成からなる。
この二つの給電孔13、14から180゜の位相差を持
ってマイクロ波を加熱空間3内に放射するように同軸導
波管変換用アンテナ11は環状矩形導波管12の所望位
置に配設している。
Microwaves generated by the microwave supply means 9 (heating means) are coaxial transmission line 10, coaxial waveguide conversion antenna 11, annular rectangular waveguide 12 and feed hole 13.
Power is supplied to the heating space 3 through 14, and the particulates collected by the filter 4 are dielectrically heated. Although the heating means is the microwave supply means 9 in this embodiment, a heating source such as an electric heater or a burner may be used. Reference numeral 15 is a drive power source for the microwave supply means 9, and the annular rectangular waveguide 12 has a structure in which power feeding holes 13 and 14 provided substantially facing the wall surface of the exhaust gas discharge pipe 16 are arranged at the ends. .
The coaxial waveguide conversion antenna 11 is arranged at a desired position of the annular rectangular waveguide 12 so that the microwave is radiated into the heating space 3 with a phase difference of 180 ° from the two feeding holes 13 and 14. are doing.

【0034】17はマイクロ波供給手段9の動作によっ
てフィルタ保持手段7の内部あるいは外部に存在するマ
イクロ波電磁場強度を検出するマイクロ波電磁場強度検
出手段であり、同軸線路構造を有する。また同軸線路の
中心導体18はフィルタ保持手段7の内部あるいは外部
に配される。マイクロ波電磁場強度検出手段17あるい
は中心導体18はフィルタ保持手段7によりディーゼル
エンジン1の排気ガスあるいはフィルタ4再生中の高熱
から隔離されることにより、それらの耐久性を保証でき
る。フィルタ4およびパティキュレートの誘電特性、パ
ティキュレート燃焼により生ずる火炎の状態によりマイ
クロ波の電磁場状態が変化し、マイクロ波電磁場強度検
出手段17の検出値に基づいてパティキュレートの燃焼
開始あるいは終了判別が行われる。マイクロ波電磁場強
度検出手段17は所望するパティキュレート捕集重量に
おいてパティキュレート捕集重量の増加にともないマイ
クロ波電磁場強度検出値が単調に低下するような位置に
設けるのが望ましい。またマイクロ波電磁場強度検出手
段17の検出信号を基にフィルタ4が捕集したパティキ
ュレート捕集重量を演算する。なおマイクロ波検出手段
17は1つのみ図示しているが複数個設けても良い。
Reference numeral 17 denotes a microwave electromagnetic field strength detecting means for detecting the microwave electromagnetic field strength existing inside or outside the filter holding means 7 by the operation of the microwave supplying means 9, and has a coaxial line structure. The center conductor 18 of the coaxial line is arranged inside or outside the filter holding means 7. The microwave electromagnetic field intensity detecting means 17 or the center conductor 18 is isolated from the exhaust gas of the diesel engine 1 or the high heat during regeneration of the filter 4 by the filter holding means 7, so that their durability can be guaranteed. The electromagnetic field state of the microwave changes depending on the dielectric properties of the filter 4 and the particulates and the state of the flame generated by the particulate combustion. Based on the detection value of the microwave electromagnetic field intensity detection means 17, the start or end of the particulate combustion is determined. Be seen. It is desirable that the microwave electromagnetic field intensity detection means 17 is provided at a position where the microwave electromagnetic field intensity detection value monotonously decreases with an increase in the particulate trap weight in a desired particulate trap weight. Further, the weight of particulates collected by the filter 4 is calculated based on the detection signal of the microwave electromagnetic field intensity detecting means 17. Although only one microwave detecting means 17 is shown in the figure, a plurality of microwave detecting means 17 may be provided.

【0035】バルブ19は通常はディーゼルエンジン1
より排出された排気ガスをフィルタ4に通流させるが、
フィルタ4を再生するときはバルブ位置を切り替えて排
気ガスを排気分岐管20に通流させ、マフラー21を通
して排気ガスを排出させる。助燃気体供給手段22は気
体搬送パイプ23を通して加熱空間3内に酸素を含む気
体(本発明では自然の空気としている)を供給する。こ
の助燃気体供給手段22は助燃気体供給対象の圧力損失
の変化に対し一定の助燃気体量を供給する特性を有する
ことが望ましい。また本発明ではパティキュレート燃焼
温度の過度の高温化を抑制するため助燃気体供給量を4
0NL/分程度の空気としている。バルブ24、25が
この助燃気体のフィルタ4への通流を制御する。バルブ
24はフィルタ4再生時にフィルタ4に通流させた助燃
気体の排気経路である分岐管26に配設し、バルブ25
は加熱空間3と大気に通じる排気管27との間に配設
し、これら二つのバルブを制御してフィルタ再生時にフ
ィルタ4に加熱されたパティキュレートの燃焼を促進さ
せる助燃気体を通流させる。なお助燃気体にディーゼル
エンジン1の排気ガスを用いてもよい。
The valve 19 is normally a diesel engine 1
The exhaust gas discharged more is made to flow through the filter 4,
When the filter 4 is regenerated, the valve position is switched to allow the exhaust gas to flow through the exhaust branch pipe 20, and the exhaust gas is discharged through the muffler 21. The auxiliary combustion gas supply unit 22 supplies a gas containing oxygen (natural air in the present invention) into the heating space 3 through the gas transfer pipe 23. It is desirable that the auxiliary combustion gas supply unit 22 has a characteristic of supplying a constant amount of auxiliary combustion gas with respect to a change in the pressure loss of the object of auxiliary combustion gas supply. Further, in the present invention, in order to prevent the particulate combustion temperature from becoming excessively high, the auxiliary combustion gas supply amount is set to 4
The air is set to about 0 NL / min. The valves 24 and 25 control the flow of this auxiliary combustion gas to the filter 4. The valve 24 is arranged in a branch pipe 26 which is an exhaust path of the auxiliary combustion gas that has flowed through the filter 4 when the filter 4 is regenerated.
Is disposed between the heating space 3 and the exhaust pipe 27 that communicates with the atmosphere, and controls these two valves to allow an auxiliary combustion gas for promoting combustion of the particulates heated by the filter 4 during filter regeneration. The exhaust gas of the diesel engine 1 may be used as the auxiliary combustion gas.

【0036】28は助燃気体供給手段22の動作時の助
燃気体の圧力を検出する圧力検出手段であり、助燃気体
供給手段22の供給する助燃気体の通流方向においてフ
ィルタ4よりも上流側に設けられる。その位置での圧力
検出値とフィルタ4による圧力損失とは一次関数に近似
できる。フィルタ4から燃焼によってパティキュレート
除去されるにしたがいフィルタ4による圧力損失が減少
する。圧力検出手段28の検出値に基づいてパティキュ
レート燃焼開始あるいは燃焼終了を判別する。
Reference numeral 28 is a pressure detecting means for detecting the pressure of the auxiliary combustion gas during the operation of the auxiliary combustion gas supply means 22, and is provided on the upstream side of the filter 4 in the flowing direction of the auxiliary combustion gas supplied by the auxiliary combustion gas supply means 22. To be The pressure detection value at that position and the pressure loss due to the filter 4 can be approximated to a linear function. As the particulates are removed from the filter 4 by combustion, the pressure loss due to the filter 4 is reduced. Based on the detection value of the pressure detection means 28, the start or end of particulate combustion is determined.

【0037】ところで上述したように本発明ではパティ
キュレート燃焼温度の過度の高温化を抑制するため助燃
気体供給量を40NL/分程度の空気としているとして
おり、圧力検出手段28の検出する圧力は高々20mm
Aqである。一方ディーゼルエンジン1が動作しパティ
キュレート捕集中は、配管の状態もよるが圧力検出手段
28の位置では圧力2000mmAq程度、排気ガス温
度は最大500℃に達するため圧力検出手段28を保護
するバルブ29が設けられ、圧力検出手段28の耐久性
を保証できる。
By the way, as described above, in the present invention, in order to prevent the particulate combustion temperature from becoming excessively high, the auxiliary gas supply amount is set to 40 NL / min of air, and the pressure detected by the pressure detection means 28 is at most. 20 mm
It is Aq. On the other hand, when the diesel engine 1 operates and particulate collection concentration depends on the condition of the pipe, the pressure at the position of the pressure detecting means 28 is about 2000 mmAq, and the exhaust gas temperature reaches a maximum of 500 ° C., so the valve 29 protecting the pressure detecting means 28 is It is provided, and the durability of the pressure detecting means 28 can be guaranteed.

【0038】30は排気ガス温度検出手段であり、加熱
空間3と分岐管26との間の排気管2のフィルタ4近傍
に設けてある。ディーゼルエンジン1が動作中は排気ガ
ス温度およびフィルタ再生処理時にはフィルタ4を通流
した助燃気体の温度を検出する。31はマイクロ波供給
手段9と助燃気体供給手段22の動作を制御するフィル
タ再生制御手段であり、マイクロ波電磁場強度検出手段
17が検出する信号は同軸線路32を介してパティキュ
レート燃焼判別手段33に入力させる。さらに圧力検出
手段28の検出信号も同じくパティキュレート燃焼判別
手段33に入力させている。パティキュレート燃焼判別
手段33はマイクロ波電磁場強度検出手段17あるいは
圧力検出手段28の検出値を基にフィルタ4が捕集した
パティキュレートの燃焼開始、燃焼終了を判別する。パ
ティキュレート燃焼判別手段33は再生制御手段31に
内蔵されている。
An exhaust gas temperature detecting means 30 is provided between the heating space 3 and the branch pipe 26 in the vicinity of the filter 4 of the exhaust pipe 2. The exhaust gas temperature is detected while the diesel engine 1 is operating, and the temperature of the auxiliary combustion gas flowing through the filter 4 is detected during the filter regeneration process. Reference numeral 31 is a filter regeneration control means for controlling the operations of the microwave supply means 9 and the auxiliary combustion gas supply means 22, and the signal detected by the microwave electromagnetic field intensity detection means 17 is sent to the particulate combustion determination means 33 via the coaxial line 32. Input. Further, the detection signal of the pressure detection means 28 is also input to the particulate combustion determination means 33. The particulate combustion discriminating means 33 discriminates the combustion start and the combustion end of the particulates collected by the filter 4 based on the detection value of the microwave electromagnetic field intensity detecting means 17 or the pressure detecting means 28. The particulate combustion discriminating means 33 is built in the regeneration control means 31.

【0039】マイクロ波電磁場強度検出手段17を用い
た燃焼判定の特徴はフィルタ4を通流する助燃気体の流
量とは独立に判別可能であることである。一方圧力検出
手段28を用いた燃焼判別はパティキュレートの質(S
OOTおよびSOFの含有比率の違い)の影響を受ける
ことがないのが特徴である。両者を併用するとさらに高
精度の燃焼判別が行える。
A feature of the combustion determination using the microwave electromagnetic field intensity detecting means 17 is that it can be determined independently of the flow rate of the auxiliary combustion gas flowing through the filter 4. On the other hand, the combustion discrimination using the pressure detection means 28 is performed by the quality of the particulate (S
The feature is that it is not affected by the difference in the content ratio of OOT and SOF. If both are used together, more accurate combustion determination can be performed.

【0040】以下に上記構成の動作を図1、2および3
を用いて説明する。まずパティキュレート捕集時はバル
ブ19、バルブ24、バルブ25を所定位置に切り換
え、ディーゼルエンジン1より排出される排気ガスをフ
ィルタ4に通すことにより、排気ガス中に含まれるパテ
ィキュレートを捕集し排気ガスを浄化する。フィルタ4
に捕集されたパティキュレートの量が増加すると、フィ
ルタ4での圧損が増大しディーゼルエンジン1の負荷が
増大するとともに最悪の場合は停止に至る。したがって
適切なパティキュレート捕集重量の下でフィルタ4に捕
集されたパティキュレートを除去(フィルタ再生)する
必要がある。上記パティキュレート捕集重量になったこ
とをマイクロ波電磁場強度検出手段17の検出信号を基
にフィルタ再生制御手段32が判断しフィルタ4の再生
が開始される。次にフィルタ再生時はバルブ19、バル
ブ24、バルブ25を切り換え、ディーゼルエンジン1
が動作中は排気ガスを排気分岐管20を通してバイパス
させる。またバルブ29を開とし圧力検出手段28によ
る圧力検出を可能にする。
The operation of the above configuration will be described below with reference to FIGS.
Will be explained. First, at the time of collecting particulates, the valve 19, the valve 24, and the valve 25 are switched to predetermined positions, and the exhaust gas discharged from the diesel engine 1 is passed through the filter 4 to collect the particulates contained in the exhaust gas. Purify exhaust gas. Filter 4
When the amount of the particulates collected in is increased, the pressure loss in the filter 4 is increased, the load of the diesel engine 1 is increased, and in the worst case, it is stopped. Therefore, it is necessary to remove (filter regeneration) the particulates collected by the filter 4 under an appropriate particulate collection weight. Based on the detection signal of the microwave electromagnetic field intensity detection means 17, the filter regeneration control means 32 determines that the particulate collection weight has been reached, and the regeneration of the filter 4 is started. Next, at the time of filter regeneration, the valve 19, valve 24, and valve 25 are switched, and
During operation, the exhaust gas is bypassed through the exhaust branch pipe 20. Further, the valve 29 is opened to enable the pressure detection by the pressure detection means 28.

【0041】本発明はフィルタ再生中においてマイクロ
波供給手段9が動作中のマイクロ波電磁場強度検出手段
17または助燃気体供給手段22が動作中の圧力検出手
段28の検出値を基にパティキュレート燃焼判別手段3
3がパティキュレートの燃焼開始と燃焼終了を判別する
ことを特徴としている。フィルタ4の再生が開始される
とマイクロ波供給手段9を連続動作させ、それが発生す
るマイクロ波によりフィルタ4に捕集されたパティキュ
レートを誘電加熱する。一方助燃気体供給手段22を間
欠駆動(例えば15秒駆動、45秒停止)してフィルタ
4に助燃気体を供給する。助燃気体供給手段22を連続
駆動するとフィルタ4が冷却されパティキュレートの燃
焼開始が遅れるため、間欠駆動としている。助燃気体供
給手段22の間欠駆動が終わるごとにパティキュレート
燃焼判別手段33が燃焼開始を判別する。
According to the present invention, the particulate combustion determination is made based on the detection value of the microwave electromagnetic field intensity detecting means 17 in which the microwave supplying means 9 is operating during the filter regeneration or the pressure detecting means 28 in which the supporting gas supplying means 22 is operating. Means 3
3 is characterized by discriminating the start and end of combustion of particulates. When the regeneration of the filter 4 is started, the microwave supply means 9 is continuously operated, and the microwaves generated thereby dielectrically heat the particulates collected in the filter 4. On the other hand, the auxiliary combustion gas supply means 22 is intermittently driven (for example, driven for 15 seconds and stopped for 45 seconds) to supply the auxiliary combustion gas to the filter 4. When the auxiliary combustion gas supply means 22 is continuously driven, the filter 4 is cooled and the start of particulate combustion is delayed, so intermittent driving is performed. Every time the intermittent driving of the auxiliary combustion gas supply means 22 is completed, the particulate combustion determination means 33 determines the start of combustion.

【0042】パティキュレートの加熱が進みフィルタ4
の温度が上昇するにつれマイクロ波電磁場強度検出値が
低下し、一方圧力検出値は増加する。ここで圧力検出値
が増加するのは助燃気体がフィルタにより熱せられて膨
張し気体流量が増えたことと等価となるからである。パ
ティキュレートが加熱されてフィルタ温度が上昇しパテ
ィキュレートが燃焼可能温度に達したところで、助燃気
体供給手段22が動作するとパティキュレートの燃焼が
開始し、マイクロ波電磁場強度検出値が増加、圧力検出
値は減少に転じ、パティキュレート燃焼判別手段33は
図2および3に示す時刻tSにおいてパティキュレート
燃焼が開始したと判断する。時刻tS以降、フィルタ再
生制御手段32はマイクロ波供給手段9を引き続き連続
駆動、助燃気体供給手段22を30秒駆動、30秒停止
を繰り返す間欠駆動としパティキュレートの燃焼を拡大
させる。
The heating of the particulates progresses and the filter 4
As the temperature rises, the microwave field strength detection value decreases, while the pressure detection value increases. Here, the pressure detection value increases because it is equivalent to that the auxiliary combustion gas is heated by the filter and expanded to increase the gas flow rate. When the particulates are heated and the filter temperature rises to reach the combustible temperature of the particulates, the combustion of the particulates starts when the auxiliary gas supply unit 22 operates, the microwave electromagnetic field intensity detection value increases, and the pressure detection value increases. Turns to decrease, and the particulate combustion determination means 33 determines that particulate combustion has started at time t S shown in FIGS. After time t s , the filter regeneration control means 32 continuously drives the microwave supply means 9, continuously drives the auxiliary gas supply means 22 for 30 seconds, and intermittently drives the auxiliary gas supply means 22 for 30 seconds to increase combustion of particulates.

【0043】燃焼開始検出と同じく助燃気体供給手段2
2の間欠駆動が終わるごとにパティキュレート燃焼判別
手段33が燃焼終了を判別する。パティキュレートの燃
焼がさらに進み燃焼が終了に近づくにつれ、堆積パティ
キュレートが残り少なくなり、フィルタ4のパティキュ
レートが除去された部分は助燃気体により冷却され、マ
イクロ波電磁場強度検出値が増加および圧力検出値は減
少する。マイクロ波電磁場強度検出値が所定値(図2に
示すV0)以上になったとき、または圧力検出値が所定
値(図3に示すP0)以下になったとき、パティキュレ
ート燃焼判別手段33が図2および3に示す時刻tE
おいてパティキュレート燃焼が終了したと判断する。時
刻tE以降、フィルタ再生制御手段31がマイクロ波供
給手段9の動作を停止させ、助燃気体供給手段22を所
定時間連続動作させてフィルタ4を冷却し、フィルタ4
の再生が終了する。
Similar to the detection of combustion start, the auxiliary gas supply means 2
Every time the intermittent driving of 2 ends, the particulate combustion determination means 33 determines the end of combustion. As the combustion of the particulates further progresses and approaches the end of the combustion, the amount of accumulated particulates is reduced, the part of the filter 4 from which the particulates have been removed is cooled by the supporting gas, and the microwave electromagnetic field intensity detection value increases and the pressure detection value increases. Decreases. When the microwave electromagnetic field intensity detection value becomes equal to or higher than a predetermined value (V 0 shown in FIG. 2) or the pressure detection value becomes equal to or lower than a predetermined value (P 0 shown in FIG. 3), the particulate combustion determination means 33. Judges that the particulate combustion has ended at time t E shown in FIGS. 2 and 3. After the time t E , the filter regeneration control means 31 stops the operation of the microwave supply means 9 and continuously operates the auxiliary gas supply means 22 for a predetermined time to cool the filter 4 and
Playback ends.

【0044】以上でフィルタ4の再生は完了しバルブ1
9、バルブ24、バルブ25、バルブ29を再び切り換
え、今再生したフィルタ4に排気ガスを通流できる状態
にする。
With the above, the regeneration of the filter 4 is completed and the valve 1
9, the valve 24, the valve 25, and the valve 29 are switched again so that the exhaust gas can flow through the filter 4 just regenerated.

【0045】なおマイクロ波供給手段9および助燃気体
供給手段22の動作は本実施例で説明したものに限るも
のではない。例えばマイクロ波供給手段9のマイクロ波
出力を可変すること、間欠駆動を行うこともできる。ま
た助燃気体供給手段22の供給流量を可変すること、連
続駆動を行うこと、間欠駆動の動作および停止時間を可
変することもできる。
The operations of the microwave supply means 9 and the auxiliary combustion gas supply means 22 are not limited to those described in this embodiment. For example, the microwave output of the microwave supply means 9 can be varied and intermittent driving can be performed. Further, the supply flow rate of the auxiliary combustion gas supply means 22 can be changed, continuous drive can be performed, and the intermittent drive operation and stop time can be changed.

【0046】以上説明したように本発明の実施例のフィ
ルタ再生装置によれば、マイクロ波電磁場強度検出手段
17あるいは圧力検出手段28の耐久性を保ちつつ、パ
ティキュレート燃焼状態に直結したマイクロ波電磁場強
度検出値または圧力検出値を基にパティキュレート燃焼
判別手段33が燃焼判別を行うことにより、耐久性を保
証しつつ高精度なパティキュレート燃焼開始あるいは終
了判別能力を有するフィルタ再生装置を提供できる。
As described above, according to the filter regenerating apparatus of the embodiment of the present invention, while maintaining the durability of the microwave electromagnetic field intensity detecting means 17 or the pressure detecting means 28, the microwave electromagnetic field directly connected to the particulate combustion state. Since the particulate combustion determination means 33 performs the combustion determination based on the intensity detection value or the pressure detection value, it is possible to provide a filter regeneration device having a highly accurate particulate combustion start or end determination capability while ensuring durability.

【0047】またパティキュレートの燃焼開始を高精度
に判別できるため、予熱不足によるパティキュレートの
燃え残り、また予熱過多によるパティキュレート燃焼温
度の過度の高温化を防止できる。
Further, since the start of combustion of particulates can be determined with high accuracy, it is possible to prevent unburned particulates from remaining unburned due to insufficient preheating, and to prevent excessive heating of particulates due to excessive preheating.

【0048】さらにパティキュレートの燃焼終了を高精
度に判別できるため、マイクロ波供給手段9や助燃気体
供給手段22の無駄な動作をなくし、電力の消費を最小
限に抑えることができる。またパティキュレートの燃焼
終了前にフィルタ冷却のための助燃気体量増大を未然に
防止し、燃焼温度の過度の高温化を防止できる。
Furthermore, since the end of the particulate combustion can be determined with high accuracy, it is possible to eliminate unnecessary operation of the microwave supply means 9 and the auxiliary combustion gas supply means 22 and to minimize power consumption. Further, it is possible to prevent an increase in the amount of the auxiliary combustion gas for cooling the filter before the end of the combustion of the particulates and prevent the combustion temperature from becoming excessively high.

【0049】以上のことからフィルタ4の長期にわたる
耐久性を保証することができる。
From the above, the long-term durability of the filter 4 can be guaranteed.

【0050】[0050]

【発明の効果】以上説明したように本発明のフィルタ再
生装置によれば、以下の効果が得られる。
As described above, according to the filter regenerating apparatus of the present invention, the following effects can be obtained.

【0051】(1)フィルタの側面に配したフィルタ保
持手段の内部あるいは外部に存在するマイクロ波電磁場
の強度を検出するマイクロ波電磁場強度検出手段の検出
値を利用することにより、フィルタを通流する助燃気体
流量とは独立に、耐久性を保証しつつ高精度なパティキ
ュレートの燃焼開始あるいは終了判別能力を有するフィ
ルタ再生装置を提供できる。
(1) Flow through the filter by utilizing the detection value of the microwave electromagnetic field intensity detecting means for detecting the intensity of the microwave electromagnetic field existing inside or outside the filter holding means arranged on the side surface of the filter. It is possible to provide a filter regenerator having a highly accurate particulate combustion start or end determination capability that guarantees durability independently of the flow rate of auxiliary gas.

【0052】(2)マイクロ波供給手段がパティキュレ
ートの誘電加熱を行うため、パティキュレート加熱用の
加熱手段を設ける必要がなく、装置の構成を簡略化でき
る。
(2) Since the microwave supply means performs dielectric heating of the particulates, it is not necessary to provide heating means for heating the particulates, and the structure of the device can be simplified.

【0053】(3)助燃気体供給手段の供給する助燃気
体の通流方向においてフィルタより少なくとも上流側の
助燃気体の圧力を検出する圧力検出手段の検出値を利用
することにより、圧力検出手段を高温の排気ガスから遠
ざけて配して検出してもよいため、耐久性を保証できし
かもパティキュレートの質の影響を受けることがない高
精度なパティキュレートの燃焼開始あるいは終了判別能
力を有するフィルタ再生装置を提供できる。
(3) By using the detection value of the pressure detecting means for detecting the pressure of the auxiliary combustion gas at least upstream of the filter in the flow direction of the auxiliary combustion gas supplied by the auxiliary combustion gas supply means, the pressure detection means is heated to a high temperature. Since it may be placed away from the exhaust gas of the exhaust gas and detected, durability can be guaranteed and the filter regeneration device has a highly accurate particulate start or end determination capability that is not affected by the quality of the particulate. Can be provided.

【0054】(4)マイクロ波電磁場強度検出手段また
は圧力検出手段の検出値を基にパティキュレート燃焼判
別手段がパティキュレートの燃焼開始を判別でき、フィ
ルタに対しパティキュレートの着火までに最適の予熱を
与えることができる。その結果パティキュレートの予熱
不足によるパティキュレートの燃え残りの防止、あるい
は予熱過多によるパティキュレートの燃焼温度の過度の
高温化を防止でき、長期にわたりフィルタ性能を維持す
ることができる。
(4) Based on the detection value of the microwave electromagnetic field intensity detecting means or the pressure detecting means, the particulate combustion discriminating means can discriminate the start of the particulate combustion, and the optimum preheating of the filter until the particulate is ignited. Can be given. As a result, it is possible to prevent unburned particulates from remaining unburned due to insufficient preheating of the particulates, or to prevent excessive combustion temperature of the particulates due to excessive preheating, and to maintain the filter performance for a long period of time.

【0055】(5)マイクロ波電磁場強度検出手段また
は圧力検出手段の検出値を基にパティキュレート燃焼判
別手段がパティキュレートの燃焼終了を判別でき、最適
の時間で再生することができる。その結果加熱手段や助
燃気体供給手段の無駄な動作をなくし、電力の消費を最
小限に抑えることができる。またパティキュレートの燃
焼終了前にフィルタ冷却のための助燃気体量増大を未然
に防止し、パティキュレート燃焼温度の過度の高温化を
防止できる。
(5) Based on the detection value of the microwave electromagnetic field intensity detecting means or the pressure detecting means, the particulate combustion discriminating means can discriminate the end of the particulate combustion, and the particulate combustion can be regenerated at the optimum time. As a result, useless operation of the heating means and the auxiliary combustion gas supply means can be eliminated, and power consumption can be minimized. Further, it is possible to prevent an increase in the amount of the auxiliary combustion gas for cooling the filter before the end of the combustion of the particulates, and to prevent the particulates combustion temperature from becoming excessively high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明一実施例を示すフィルタ再生装置の構成
FIG. 1 is a block diagram of a filter regeneration device showing an embodiment of the present invention.

【図2】本発明一実施例を示すフィルタ再生中のマイク
ロ波供給手段および助燃気体供給手段の動作とマイクロ
波電磁場強度検出値の変化例を示す図
FIG. 2 is a diagram showing an operation example of a microwave supply unit and an auxiliary combustion gas supply unit during filter regeneration according to an embodiment of the present invention, and a variation example of a microwave electromagnetic field intensity detection value.

【図3】本発明一実施例を示すフィルタ再生中のマイク
ロ波供給手段および助燃気体供給手段の動作と圧力検出
値の変化例を示す図
FIG. 3 is a diagram showing an operation example of a microwave supply means and an auxiliary combustion gas supply means and a change example of a pressure detection value during filter regeneration according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

4 フィルタ 9 マイクロ波供給手段(加熱手段) 17 マイクロ波電磁場強度検出手段 22 助燃気体供給手段 28 圧力検出手段 31 フィルタ再生制御手段 33 パティキュレート燃焼判別手段 4 Filter 9 Microwave Supply Means (Heating Means) 17 Microwave Electromagnetic Field Strength Detection Means 22 Supporting Gas Supply Means 28 Pressure Detection Means 31 Filter Regeneration Control Means 33 Particulate Combustion Discrimination Means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02B 77/08 ZAB M (72)発明者 野口 正夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 垰 統雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location F02B 77/08 ZAB M (72) Inventor Masao Noguchi 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. In-house (72) Inventor Norio Bada 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】排気ガス中に含まれるパティキュレートを
捕集するフィルタと、前記フィルタが捕集したパティキ
ュレートを加熱する加熱手段と、前記加熱手段が加熱し
たパティキュレートの燃焼を促進する助燃気体を供給す
る助燃気体供給手段と、前記フィルタを収納した空間に
マイクロ波を供給するマイクロ波供給手段と、前記フィ
ルタの側面に配したフィルタ保持手段の内部あるいは外
部に存在するマイクロ波電磁場の強度を検出するマイク
ロ波電磁場強度検出手段と、前記マイクロ波電磁場強度
検出手段の検出値を基に前記フィルタが捕集したパティ
キュレートの燃焼開始と燃焼終了のうち少なくとも一方
を判別するパティキュレート燃焼判別手段と、前記パテ
ィキュレート燃焼判別手段の判別結果を基に前記加熱手
段と前記助燃気体供給手段のうち少なくとも一方の動作
を制御するフィルタ再生制御手段とを備えたフィルタ再
生装置。
1. A filter for collecting particulates contained in exhaust gas, a heating means for heating the particulates collected by the filter, and an auxiliary combustion gas for promoting combustion of the particulates heated by the heating means. For supplying the supplementary gas, microwave supplying means for supplying microwaves to the space containing the filter, and the strength of the microwave electromagnetic field existing inside or outside the filter holding means arranged on the side surface of the filter. Microwave electromagnetic field intensity detection means for detecting, and particulate combustion determination means for determining at least one of combustion start and combustion end of the particulates collected by the filter based on the detection value of the microwave electromagnetic field intensity detection means The heating means and the auxiliary combustion gas based on the determination result of the particulate combustion determination means. Filter regeneration apparatus provided with the filter regeneration control means for controlling at least one operation of the supply means.
【請求項2】排気ガス中に含まれるパティキュレートを
捕集するフィルタと、前記フィルタが捕集したパティキ
ュレートを誘電加熱するマイクロ波を供給するマイクロ
波供給手段と、前記マイクロ波供給手段が加熱したパテ
ィキュレートの燃焼を促進する助燃気体を供給する助燃
気体供給手段と、前記フィルタの側面に配したフィルタ
保持手段の内部あるいは外部に存在するマイクロ波電磁
場の強度を検出するマイクロ波電磁場強度検出手段と、
前記マイクロ波電磁場強度検出手段の検出値を基に前記
フィルタが捕集したパティキュレートの燃焼開始と燃焼
終了のうち少なくとも一方を判別するパティキュレート
燃焼判別手段と、前記パティキュレート燃焼判別手段の
判別結果を基に前記マイクロ波供給手段と前記助燃気体
供給手段のうち少なくとも一方の動作を制御するフィル
タ再生制御手段とを備えたフィルタ再生装置。
2. A filter for collecting particulates contained in exhaust gas, a microwave supply means for supplying microwaves for dielectrically heating the particulates collected by the filter, and the microwave supply means for heating. Supporting gas supply means for supplying a supporting gas for promoting the combustion of the particulates, and microwave electromagnetic field strength detecting means for detecting the strength of the microwave electromagnetic field existing inside or outside the filter holding means arranged on the side surface of the filter. When,
A particulate combustion determination means for determining at least one of the combustion start and the combustion end of the particulates collected by the filter based on the detection value of the microwave electromagnetic field intensity detection means, and the determination result of the particulate combustion determination means A filter regeneration device comprising: a microwave regeneration means and a filter regeneration control means for controlling the operation of at least one of the auxiliary gas supply means.
【請求項3】排気ガス中に含まれるパティキュレートを
捕集するフィルタと、前記フィルタが捕集したパティキ
ュレートを加熱する加熱手段と、前記マイクロ波供給手
段が加熱したパティキュレートの燃焼を促進する助燃気
体を供給する助燃気体供給手段と、前記助燃気体供給手
段の供給する助燃気体の通流方向において前記フィルタ
の少なくとも上流側の助燃気体の圧力を検出する圧力検
出手段と、前記圧力検出手段の検出信号を基に前記フィ
ルタが捕集したパティキュレートの燃焼開始と燃焼終了
のうち少なくとも一方を判別するパティキュレート燃焼
判別手段と、前記パティキュレート燃焼判別手段の判別
結果を基に前記加熱手段と前記助燃気体供給手段のうち
少なくとも一方の動作を制御するフィルタ再生制御手段
とを備えたフィルタ再生装置。
3. A filter for collecting particulates contained in exhaust gas, heating means for heating the particulates collected by the filter, and promotion of combustion of particulates heated by the microwave supply means. Of the auxiliary combustion gas supply means for supplying the auxiliary combustion gas, the pressure detection means for detecting the pressure of the auxiliary combustion gas at least on the upstream side of the filter in the flow direction of the auxiliary combustion gas supplied by the auxiliary combustion gas supply means, and the pressure detection means. The particulate combustion determination means for determining at least one of the combustion start and the combustion end of the particulates collected by the filter based on the detection signal, and the heating means and the above based on the determination result of the particulate combustion determination means. A filter provided with a filter regeneration control means for controlling the operation of at least one of the auxiliary gas supply means. Reproducing apparatus.
【請求項4】パティキュレート燃焼判別手段はマイクロ
波供給手段動作時のマイクロ波電磁場強度検出手段の検
出値が増加したときをパティキュレート燃焼開始として
判別する請求項1または2記載のフィルタ再生装置。
4. The filter regeneration device according to claim 1, wherein the particulate combustion determination means determines when the detection value of the microwave electromagnetic field intensity detection means during the operation of the microwave supply means increases as the particulate combustion start.
【請求項5】パティキュレート燃焼判別手段は、助燃気
体供給手段動作時の圧力検出手段の検出値が減少したと
きをパティキュレート燃焼開始として判別する請求項3
記載のフィルタ再生装置。
5. The particulate combustion discrimination means discriminates as the particulate combustion start when the detection value of the pressure detection means during the operation of the auxiliary gas supply means decreases.
The filter regeneration device described.
【請求項6】パティキュレート燃焼判別手段は、マイク
ロ波供給手段動作時のマイクロ波電磁場強度検出手段の
検出値が所定値以上になったときをパティキュレート燃
焼終了として判別する請求項1または2記載のフィルタ
再生装置。
6. The particulate combustion discriminating means discriminates when the detected value of the microwave electromagnetic field intensity detecting means during the operation of the microwave supplying means exceeds a predetermined value as the particulate combustion end. Filter regenerator.
【請求項7】パティキュレート燃焼判別手段は、助燃気
体供給手段動作時の圧力検出手段の検出値が所定値以下
になったときをパティキュレート燃焼終了として判別す
る請求項3記載のフィルタ再生装置。
7. The filter regeneration device according to claim 3, wherein the particulate combustion determination means determines that the particulate combustion has ended when the detection value of the pressure detection means during the operation of the auxiliary combustion gas supply means becomes equal to or less than a predetermined value.
JP6271298A 1994-11-04 1994-11-04 Filter regeneration device Expired - Fee Related JP2827925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6271298A JP2827925B2 (en) 1994-11-04 1994-11-04 Filter regeneration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6271298A JP2827925B2 (en) 1994-11-04 1994-11-04 Filter regeneration device

Publications (2)

Publication Number Publication Date
JPH08128314A true JPH08128314A (en) 1996-05-21
JP2827925B2 JP2827925B2 (en) 1998-11-25

Family

ID=17498098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6271298A Expired - Fee Related JP2827925B2 (en) 1994-11-04 1994-11-04 Filter regeneration device

Country Status (1)

Country Link
JP (1) JP2827925B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301118A (en) * 1991-03-29 1992-10-23 Matsushita Electric Ind Co Ltd Filter renovator for internal combustion engine
JPH06101445A (en) * 1992-09-21 1994-04-12 Matsushita Electric Ind Co Ltd Filter regenerating device for internal combustion engine and control method therefor
JPH06212946A (en) * 1993-01-20 1994-08-02 Matsushita Electric Ind Co Ltd Filter reprocessing apparatus for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04301118A (en) * 1991-03-29 1992-10-23 Matsushita Electric Ind Co Ltd Filter renovator for internal combustion engine
JPH06101445A (en) * 1992-09-21 1994-04-12 Matsushita Electric Ind Co Ltd Filter regenerating device for internal combustion engine and control method therefor
JPH06212946A (en) * 1993-01-20 1994-08-02 Matsushita Electric Ind Co Ltd Filter reprocessing apparatus for internal combustion engine

Also Published As

Publication number Publication date
JP2827925B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
JP2738251B2 (en) Filter regeneration device for internal combustion engine
KR20020077533A (en) Method and device for reforming exhaust filter
JP3187183B2 (en) Exhaust gas purification device
JPH10212928A (en) Filter recovering device
JPH08128314A (en) Filter regeneration device
JP3109092B2 (en) Filter regeneration device for internal combustion engine
JP4147649B2 (en) Diesel engine exhaust gas purification system
JPH0763039A (en) Exhaust emission control device
JP2861752B2 (en) Filter regeneration device for internal combustion engine
JPH08218847A (en) Exhaust gas purifying method for diesel engine
JPH10238335A (en) Filter regenerator
JPH05231127A (en) Regeneration of filter for internal combustion engine and device therefor
JP2827780B2 (en) Filter regeneration device for internal combustion engine
JP2910430B2 (en) Filter regeneration device for internal combustion engine
JP2856016B2 (en) Filter regeneration device for internal combustion engine
JP3073375B2 (en) Exhaust gas purification device
JP3211510B2 (en) Exhaust gas purification device
JPH07102940A (en) Filter regeneration device for internal combustion engine
JPH07332066A (en) Exhaust emission control device of diesel engine
JP3580563B2 (en) Exhaust gas particulate purification system for internal combustion engine
JPH04183914A (en) Filter regenerator for internal combustion engine
JPH0783031A (en) Exhaust emission control device
JPH09287433A (en) Exhaust gas filter cleaning method and exhaust gas filter cleaning device
JPH08296426A (en) Exhaust particulates purifying device
JPH0783022A (en) Filter regenerating device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees