JPH08127876A - Formation of film and film forming device - Google Patents

Formation of film and film forming device

Info

Publication number
JPH08127876A
JPH08127876A JP6268696A JP26869694A JPH08127876A JP H08127876 A JPH08127876 A JP H08127876A JP 6268696 A JP6268696 A JP 6268696A JP 26869694 A JP26869694 A JP 26869694A JP H08127876 A JPH08127876 A JP H08127876A
Authority
JP
Japan
Prior art keywords
film
raw material
plasma
fine powder
quartz tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6268696A
Other languages
Japanese (ja)
Inventor
Koichi Kodera
宏一 小寺
Hiroyoshi Tanaka
博由 田中
Akira Shiokawa
塩川  晃
Masao Uchida
正雄 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6268696A priority Critical patent/JPH08127876A/en
Publication of JPH08127876A publication Critical patent/JPH08127876A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE: To provide a method for forming a film in which the formation of a film of high quality free from the incorporation of impurities and free from the generation of voids is enabled at a high speed and to provide a film forming device therefor. CONSTITUTION: The method for forming a film in which raw material fine powder is introduced to the inside of a plasma generating part 3 made of a quartz tube 4 and in which coils 5 applied with high frequency voltage are arranged around the same via a carrier gas constituted of an inert gas. Based on the energy of plasma in the plasma generating part 3 confined by a gas for cooling flowed around the same, the state of the raw material fine powder is formed into a molten one, which is jetted onto a substrate 12 set in an atmosphere of an inert gas, and film deposition is executed to the substrate 12, and the film forming device therefor are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は太陽電池用のシリコン等
の膜形成を高速で行う膜形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming method for forming a film of silicon or the like for a solar cell at high speed.

【0002】[0002]

【従来の技術】近年、自然エネルギを有効に活用する太
陽電池の重要性が認識され、その開発が盛んに行われて
いる。太陽電池に基本的に要求されることは、大面積の
高品質シリコン薄板を安価に高速に造ることである。と
ころが現在、主流に行われている単結晶シリコンのイン
ゴットからの製造は、薄板いわゆるウエハを造るに当た
り、原料インゴットの半分をスライシング工程、ポリシ
ング工程において機械加工ロスとして捨てており、結果
として非常に高価なものとなっているのが実状である。
2. Description of the Related Art In recent years, the importance of solar cells that make effective use of natural energy has been recognized, and their development has been actively conducted. The basic requirement for solar cells is to produce large-area, high-quality silicon thin plates inexpensively and at high speed. However, in the current mainstream production of single crystal silicon from ingots, half of the raw material ingot is discarded as machining loss in the slicing process and polishing process when making thin plates, so-called wafers, resulting in very high cost. It is the actual situation.

【0003】そこで、これらの損失を省略する方法の模
索が盛んに行われている。これは融液等からシリコンシ
ートを直接製造する方法であり、高価な固体シリコンを
切断する等の機械的処理の必要がないこと、必要とされ
る厚さの薄板の直接製造が可能であること等の利点を有
するものである。
Therefore, a search for a method for eliminating these losses has been actively conducted. This is a method of directly producing a silicon sheet from a melt, etc., there is no need for mechanical processing such as cutting expensive solid silicon, and it is possible to directly produce a thin plate with a required thickness. And the like.

【0004】これまでEFG(F.V.Waid,Crystals:Grow
th,Properties,and Applications,Vol.5,edited by J.
G.Grabmaier,Springer Verlag,Berlin(1981)149)、S
−Web(R.Falckenberg,G.Hoyler,and G.Grabmaier,P
roc.19th IEEE Photovoltaic Specialists Conf.,New O
rleans, USA(1987)317)、SSP(A.Eyer,N.Schilling
er,J.Reis,and A.Rauber,J.Cryst.Growth,104(1990)11
9)、プラズマ溶射法(Int'l PVSEC-7(1992)238)など
が開発されている。特にプラズマ溶射法は高速形成が可
能であるとともに、大きな結晶粒のポリシリコン膜を形
成できる特徴を持ち、特に有望視されている。
Until now, EFG (FVWaid, Crystals: Grow
th, Properties, and Applications, Vol.5, edited by J.
G. Grabmaier, Springer Verlag, Berlin (1981) 149), S
-Web (R. Falckenberg, G. Hoyler, and G. Grabmaier, P
roc.19th IEEE Photovoltaic Specialists Conf., New O
rleans, USA (1987) 317), SSP (A.Eyer, N.Schilling
er, J.Reis, and A.Rauber, J.Cryst.Growth, 104 (1990) 11
9), plasma spraying method (Int'l PVSEC-7 (1992) 238), etc. have been developed. In particular, the plasma spraying method has characteristics that it can be formed at a high speed and that a polysilicon film having large crystal grains can be formed, and is particularly promising.

【0005】[0005]

【発明が解決しようとする課題】図2はプラズマ溶射法
を説明する装置の断面構成図である。キャリアガス供給
部21からArガスがDCプラズマ発生部22に導入される。
DCプラズマ発生部22は負の電圧が印加された電極部23
と正の電圧が印加されたノズル部24の間で放電を発生さ
せ、高温のプラズマ部25を形成する。高純度(6N)の
シリコンパウダー(パウダーサイズ 50-150μm)を格
納したパウダーフィーダ26よりパウダーがDCプラズマ
発生部22から発生したプラズマ部25に導入され、加熱軟
化される。そしてガラス状カーボンより成り、ヒータ−
部27によって約600℃の高温に加熱されている基板26に
堆積される。
FIG. 2 is a sectional view of the structure of an apparatus for explaining the plasma spraying method. Ar gas is introduced from the carrier gas supply unit 21 into the DC plasma generation unit 22.
The DC plasma generating unit 22 has an electrode unit 23 to which a negative voltage is applied.
A discharge is generated between the nozzle portion 24 to which a positive voltage is applied and a high temperature plasma portion 25 is formed. Powder is introduced from a powder feeder 26 containing high-purity (6N) silicon powder (powder size 50-150 μm) into the plasma part 25 generated from the DC plasma generation part 22, and is heated and softened. And made of glassy carbon, heater
It is deposited on the substrate 26 which has been heated by the section 27 to a high temperature of about 600 ° C.

【0006】基板26に高速にポリシリコン膜を形成する
ことができる利点があることは前述の通りであるが、膜
質に問題点を有する。このプラズマ溶射法で作成したポ
リシリコン膜を用いて太陽電池を形成したときの電池効
率は約5%程度といわれ、従来のシリコンウェハを用い
たものに比べて効率はかなり低い。これはプラズマ溶射
の電極部を形成する電極23、ノズル部24を構成する金属
材料(FeやCrなど)が膜形成においてシリコンの中
に混入され、それが不純物となって膜質を悪化させてい
るためである。また、膜構造を微視的に観察すると、密
着し合ったパウダー間には空隙が多く見られ、またパウ
ダーが変形して積み重なっている様子も観察され、連続
的な膜構成とはなっていない。これは溶融の不完全性に
基づくものであり、膜品質の劣化の一因である。
As described above, there is an advantage that the polysilicon film can be formed on the substrate 26 at a high speed, but there is a problem in film quality. It is said that the cell efficiency when a solar cell is formed by using a polysilicon film formed by this plasma spraying method is about 5%, which is considerably lower than that using a conventional silicon wafer. This is because the metal material (Fe, Cr, etc.) that composes the electrode 23 and the nozzle portion 24 that form the plasma spraying electrode portion is mixed into silicon during film formation, which becomes an impurity and deteriorates the film quality. This is because. In addition, when microscopically observing the film structure, many voids were seen between the powders that were in close contact with each other, and it was observed that the powders were deformed and piled up, and the film structure was not continuous. . This is due to incomplete melting and is a cause of deterioration of film quality.

【0007】本発明は上記問題点を解決するものであ
り、不純物の含有がなく、空隙の発生のない高品質な膜
形成を高速に可能にする膜形成方法および膜形成装置を
提供することを目的とするものである。
The present invention solves the above-mentioned problems, and provides a film forming method and a film forming apparatus capable of forming a high-quality film at a high speed without containing impurities and without generating voids. It is intended.

【0008】[0008]

【課題を解決するための手段】本発明では、石英チュー
ブで造られ、その周囲に高周波電圧を印加したコイルが
配置されたプラズマ発生部の内側に、不活性ガスより成
るキャリアガスを介して原料微粉末が導入され、原料微
粉末がプラズマ発生部内のプラズマエネルギに基づいて
溶融状態になって、不活性ガス雰囲気中に設置した基板
に噴出されて、基板に膜堆積を行うものである。特に石
英チューブのうち、プラズマ発生部に至る原料微粉末の
導入部側は少なくとも2層のチューブより構成され、内
側チューブ内にはキャリアガスを介して原料微粉末が導
入され、外側チューブと内側チューブの間には冷却用の
不活性ガスが導入されて膜形成を行うものである。
According to the present invention, a raw material is introduced through a carrier gas made of an inert gas inside a plasma generating portion made of a quartz tube and around which a coil to which a high frequency voltage is applied is arranged. The fine powder is introduced, the fine powder of the raw material is melted based on the plasma energy in the plasma generating part, and is jetted onto the substrate placed in an inert gas atmosphere to deposit a film on the substrate. In particular, in the quartz tube, the introduction part side of the raw material fine powder reaching the plasma generation part is composed of at least two layers of tubes, and the raw material fine powder is introduced into the inner tube through the carrier gas, and the outer tube and the inner tube An inert gas for cooling is introduced between them to form a film.

【0009】また、石英チューブおよびその周囲に設置
し高周波電圧を印加したコイルより構成されるプラズマ
発生部と、石英チューブをその中に有する、あるいは気
密性を有して外から接続されたチャンバ内に基板を配置
した構成を有し、石英チューブのうち、プラズマ発生部
に至る原料微粉末の導入部側は少なくとも2層のチュー
ブより構成され、内側チューブ内にはキャリアガスを介
して原料微粉末が導入され、外側チューブと内側チュー
ブの間には冷却用ガス供給部からの不活性ガスが導入さ
れる構成を有することによって膜形成装置を形成するも
のである。
In addition, a plasma generating portion composed of a quartz tube and a coil installed around the quartz tube to which a high frequency voltage is applied, and a quartz tube inside or inside a chamber which is hermetically connected from the outside. The quartz tube has a structure in which the substrate is placed in the inside of the quartz tube, and the introduction side of the raw material fine powder reaching the plasma generation portion is composed of at least two layers of tubes. Is introduced, and the inert gas from the cooling gas supply unit is introduced between the outer tube and the inner tube to form the film forming apparatus.

【0010】[0010]

【作用】原料微粉末を不活性ガスより成るキャリアガス
を介してプラズマ発生部に導入する。プラズマ発生部で
は、石英チューブの周囲に配置され、高周波電圧が印加
された誘導コイルによって高周波磁界が形成され、その
磁界の時間変化に比例して形成された電界によって電子
やイオンが加速される。これによって高密度のプラズマ
が石英チューブ内に生成され、プラズマ発生部を構成す
る。
The raw material fine powder is introduced into the plasma generating part through the carrier gas composed of the inert gas. In the plasma generation unit, a high frequency magnetic field is formed by an induction coil to which a high frequency voltage is applied, which is arranged around a quartz tube, and electrons and ions are accelerated by an electric field formed in proportion to the time change of the magnetic field. As a result, high-density plasma is generated in the quartz tube, which constitutes a plasma generating part.

【0011】微粉末状態の原料材料(原料微粉末)は非
常に大きな表面積性に基づく活性な性質を有するため、
この原料微粒子がこの高密度プラズマに導入されるとほ
とんど完全に励起溶融された状態になって基板に噴出さ
れ、基板上に膜を形成する。励起された微粒子のエネル
ギと加熱された基板の熱エネルギを受け、基板に形成さ
れる膜は空隙のない高品質な多結晶状態となる。特に原
料微粉末の粒径を50μm以下にすることにより表面積の
大きさに基づく効果的な溶融分解状態が得られ、膜品質
の一層の向上が認められる。
Since the raw material material in the form of fine powder (raw material fine powder) has an active property based on a very large surface area,
When the raw material fine particles are introduced into the high density plasma, they are almost completely excited and melted and ejected onto the substrate to form a film on the substrate. Receiving the energy of the excited particles and the heat energy of the heated substrate, the film formed on the substrate becomes a high-quality polycrystalline state without voids. Particularly, by setting the particle size of the raw material fine powder to 50 μm or less, an effective melted and decomposed state based on the size of the surface area is obtained, and further improvement of the film quality is recognized.

【0012】さらに、石英チューブのうち、原料微粒子
の導入部側、すなわち高密度のプラズマ形成部に至る側
は2層のチューブより構成され、内側チューブ内にはキ
ャリアガスを介して原料微粒子が導入され、外側チュー
ブと内側チューブの間には冷却用の不活性ガスを導入さ
れるようにしてある。外側チューブと内側チューブの間
からの不活性ガスは発生したコイルによって励起された
高密度プラズマの外側を覆い、プラズマをその内部に閉
じこめる。これによって高密度プラズマは直接、石英チ
ューブに触れることはなくなり、石英チューブ加熱に伴
う汚染物質のプラズマへの混入はなくなる。
Further, of the quartz tube, a raw material fine particle introduction portion side, that is, a side reaching the high density plasma forming portion is composed of a two-layer tube, and the raw material fine particle is introduced into the inner tube through a carrier gas. An inert gas for cooling is introduced between the outer tube and the inner tube. The inert gas from between the outer tube and the inner tube covers the outside of the high density plasma excited by the generated coil, trapping the plasma inside it. As a result, the high-density plasma does not come into direct contact with the quartz tube, and the contamination of the plasma with the heating of the quartz tube is eliminated.

【0013】これにより、従来のプラズマ溶射法で、プ
ラズマ溶射の電極を構成する材料が膜形成において混入
され、それが不純物となって膜質を悪化させていたとい
う課題、そして溶融の不完全性に基づき空隙が発生する
という課題を本発明は解決している。
As a result, in the conventional plasma spraying method, the material composing the electrode of plasma spraying is mixed in during film formation, which becomes impurities and deteriorates the film quality, and incomplete melting is caused. The present invention solves the problem that voids are generated based on the above.

【0014】[0014]

【実施例】以下に本発明の実施例を図面を基に説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は、本発明に基づく膜形成方法をポリ
シリコン膜の形成を一例として説明するものであり、そ
のための膜形成装置の構成概略図を示している。
FIG. 1 illustrates a method of forming a film according to the present invention by taking an example of forming a polysilicon film, and shows a schematic view of the structure of a film forming apparatus therefor.

【0016】原料供給部1から粒径が10μmのシリコン
微粒子を、キャリアガス導入部2からのArガスととも
にプラズマ発生部3に供給する。プラズマ発生部3は石
英チューブ4とコイル部5より構成され、コイル部5は
数回の巻数で平面的に配置し、それをRF電源6に接続
させて高周波電圧を印加できるようにしている。石英チ
ューブ4のうち、原料微粒子導入部側7、すなわち高密
度のプラズマ形成部8に至る側は2層のチューブより構
成され、内側チューブ10内にはArより成るキャリアガ
スを介してシリコン微粒子が導入され、外側チューブ9
と内側チューブ10の間には冷却用ガス供給部11から冷却
用の不活性ガスとしてArガスを導入する。外側チュー
ブ9と内側チューブ10の間からの不活性ガスはプラズマ
形成部8において発生した高密度プラズマの外側を覆
い、プラズマをその内部に閉じこめる。これによって高
密度プラズマは直接、石英チューブ9,10に触れること
はなくなり、石英チューブ加熱に伴う汚染物質のプラズ
マへの混入はなくなる。
Silicon fine particles having a particle size of 10 μm are supplied from the raw material supply section 1 to the plasma generation section 3 together with the Ar gas from the carrier gas introduction section 2. The plasma generating part 3 is composed of a quartz tube 4 and a coil part 5. The coil part 5 is arranged in a plane with several turns and is connected to an RF power source 6 so that a high frequency voltage can be applied. Of the quartz tube 4, the raw material fine particle introduction portion side 7, that is, the side reaching the high-density plasma forming portion 8 is composed of a two-layer tube, and silicon fine particles are contained in the inner tube 10 via a carrier gas made of Ar. Introduced the outer tube 9
Ar gas is introduced as a cooling inert gas from the cooling gas supply unit 11 between the inner tube 10 and the inner tube 10. The inert gas from between the outer tube 9 and the inner tube 10 covers the outside of the high density plasma generated in the plasma forming part 8 and confine the plasma inside thereof. As a result, the high-density plasma does not directly contact the quartz tubes 9 and 10, and contaminants due to heating of the quartz tubes are not mixed into the plasma.

【0017】キャリアガスを介してプラズマ発生部8に
供給されたシリコン微粉末は、RF電源6から500Wの
印加を受けたコイル部5からの高周波磁界の時間変化で
形成された電界によって生成された高密度プラズマによ
って加熱溶解されつつ、高速度に加速されて基板12に吹
き付けられる。基板12は不活性ガスで満たされたチャン
バ13内に設置され、基板12上に形成されたポリシリコン
膜に石英チューブ4を構成する酸素O2の含有がないよう
にしている。なお、チャンバ13内の圧力は大気圧として
いる。また、基板12はその下のヒーター部14によって30
0℃に加熱され、膜形成への熱エネルギを供給してい
る。本方法でのポリシリコンの成膜速度は10μm/minで
あり、高速形成であることが示されている。
The silicon fine powder supplied to the plasma generating portion 8 via the carrier gas was generated by the electric field formed by the time change of the high frequency magnetic field from the coil portion 5 which was applied with 500 W from the RF power source 6. While being heated and melted by the high-density plasma, it is accelerated at a high speed and sprayed onto the substrate 12. The substrate 12 is placed in a chamber 13 filled with an inert gas so that the polysilicon film formed on the substrate 12 does not contain oxygen O 2 forming the quartz tube 4. The pressure inside the chamber 13 is atmospheric pressure. In addition, the substrate 12 is heated to 30
It is heated to 0 ° C and supplies heat energy for film formation. The deposition rate of polysilicon by this method is 10 μm / min, which indicates that high-speed deposition is possible.

【0018】上記の本発明の方法で形成されたポリシリ
コン膜を微視的に観察すると、結晶粒界が形成されてお
り、従来のプラズマ溶射法で観察された空隙はほとんど
無く、密度の高い状態が得られている。また、外側チュ
ーブ9と内側チューブ10の間からの不活性ガスによるプ
ラズマの閉じ込めにより、石英チューブ4(9、10)か
らの汚染は観察されない。この膜形成方法で作成したポ
リシリコン膜を用いて太陽電池を形成し、電池効率の効
率を測定した結果、14%が得られ、従来の5%程度を
大きく凌ぐ特性が得られた。
Microscopically observing the polysilicon film formed by the above method of the present invention, crystal grain boundaries are formed, and there are almost no voids observed by the conventional plasma spraying method, and the density is high. The state is obtained. Further, due to the confinement of plasma by the inert gas between the outer tube 9 and the inner tube 10, no contamination from the quartz tube 4 (9, 10) is observed. A solar cell was formed using the polysilicon film formed by this film forming method, and the efficiency of the cell was measured. As a result, 14% was obtained, which was a characteristic far exceeding the conventional 5%.

【0019】本発明の実施例において、原料をシリコン
微粉末としてポリシリコン膜を形成する場合について記
述したが、それに限定されるものでなく、SiO2やAl2O3
の微粉末を用いても高密度で高品質なSiO2やAl2O3の膜
形成を実現し、有効である。
In the embodiments of the present invention, the case where the raw material is silicon fine powder to form the polysilicon film is described, but the present invention is not limited to this, and SiO 2 or Al 2 O 3 is used.
Even if the fine powder of is used, high density and high quality SiO 2 and Al 2 O 3 film formation can be realized and effective.

【0020】なお、実施例においてシリコン微粒子の粒
径を10μmとしているが、50μm以下であれば、十分な溶
融状態が得られ、高品質な膜形成が可能となる。
In the examples, the particle size of the silicon fine particles is 10 μm, but if it is 50 μm or less, a sufficient molten state can be obtained and a high quality film can be formed.

【0021】[0021]

【発明の効果】以上のように本発明によれば、原料微粉
末の良好な溶融状態のため膜内に空隙の発生がなく、ま
た冷却ガスによるプラズマの閉じ込めにより、膜内への
不純物の含有がなく、高品質な膜形成を高速に可能にす
る膜形成方法およびそのための膜形成装置を提供するも
ので、工業的価値は極めて高い。
As described above, according to the present invention, voids are not generated in the film due to the good melting state of the raw material fine powder, and the inclusion of impurities in the film by confining the plasma by the cooling gas. The present invention provides a film forming method and a film forming apparatus therefor that enables high quality film formation at high speed, and has an extremely high industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく実施例を説明する膜形成装置の
構成概略図
FIG. 1 is a schematic configuration diagram of a film forming apparatus for explaining an embodiment based on the present invention.

【図2】従来のプラズマ溶射方法を説明するプラズマ溶
射装置の構成概略図
FIG. 2 is a schematic configuration diagram of a plasma spray apparatus for explaining a conventional plasma spray method.

【符号の説明】 1 原料供給部 2 キャリアガス導入部 3 プラズマ発生部 4 石英チューブ 5 コイル部 6 RF電源 7 原料微粒子導入部側 8 プラズマ形成部 9 内側チューブ 10 外側チューブ 11 冷却用ガス供給部 12 基板 13 チャンバ 14 ヒーター部[Explanation of reference numerals] 1 raw material supply section 2 carrier gas introduction section 3 plasma generation section 4 quartz tube 5 coil section 6 RF power supply 7 raw material fine particle introduction section side 8 plasma formation section 9 inner tube 10 outer tube 11 cooling gas supply section 12 Substrate 13 Chamber 14 Heater part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 正雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masao Uchida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】石英チューブで造られ、その周囲に高周波
電圧を印加したコイルが配置されたプラズマ発生部の内
側に、不活性ガスより成るキャリアガスを介して原料微
粉末が導入され、原料微粉末がプラズマ発生部内のプラ
ズマエネルギに基づいて溶融状態になって、不活性ガス
雰囲気中に設置した基板に噴出されて、基板に膜堆積を
行う膜形成方法。
1. A raw material fine powder is introduced through a carrier gas made of an inert gas into a plasma generating portion, which is made of a quartz tube and around which a coil to which a high frequency voltage is applied is arranged, is introduced. A film forming method in which powder is melted based on plasma energy in a plasma generation unit and is ejected onto a substrate placed in an inert gas atmosphere to deposit a film on the substrate.
【請求項2】石英チューブのうち、プラズマ発生部に至
る原料微粉末の導入部側は少なくとも2層のチューブよ
り構成され、内側チューブ内にはキャリアガスを介して
原料微粉末が導入され、外側チューブと内側チューブの
間には冷却用の不活性ガスが導入された請求項1記載の
膜形成方法。
2. A quartz tube is provided with at least two layers of raw material fine powder on the side where the raw material fine powder is introduced to the plasma generation portion, and the raw material fine powder is introduced into the inner tube through a carrier gas, and the outer side The film forming method according to claim 1, wherein an inert gas for cooling is introduced between the tube and the inner tube.
【請求項3】原料微粉末はその粒径が50μm以下である
請求項1記載の膜形成方法。
3. The film forming method according to claim 1, wherein the raw material fine powder has a particle size of 50 μm or less.
【請求項4】石英チューブおよびその周囲に設置し高周
波電圧を印加したコイルより構成されるプラズマ発生部
と、石英チューブをその中に有する、あるいは気密性を
有して外から接続されたチャンバ内に基板を配置した構
成を有し、石英チューブのうち、プラズマ発生部に至る
原料微粉末の導入部側は少なくとも2層のチューブより
構成され、内側チューブ内にはキャリアガスを介して原
料微粉末が導入され、外側チューブと内側チューブの間
には冷却用ガス供給部からの不活性ガスが導入される構
成を有する膜形成装置。
4. A plasma generating part comprising a quartz tube and a coil installed around the quartz tube and to which a high frequency voltage is applied, and a quartz tube inside or inside a chamber which is hermetically connected from the outside. The quartz tube has a structure in which the substrate is placed in the inside of the quartz tube, and the introduction side of the raw material fine powder reaching the plasma generation portion is composed of at least two layers of tubes. Is introduced, and an inert gas from the cooling gas supply unit is introduced between the outer tube and the inner tube.
JP6268696A 1994-11-01 1994-11-01 Formation of film and film forming device Pending JPH08127876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6268696A JPH08127876A (en) 1994-11-01 1994-11-01 Formation of film and film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6268696A JPH08127876A (en) 1994-11-01 1994-11-01 Formation of film and film forming device

Publications (1)

Publication Number Publication Date
JPH08127876A true JPH08127876A (en) 1996-05-21

Family

ID=17462112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6268696A Pending JPH08127876A (en) 1994-11-01 1994-11-01 Formation of film and film forming device

Country Status (1)

Country Link
JP (1) JPH08127876A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259530A (en) * 2008-04-15 2009-11-05 Shibaura Mechatronics Corp Plasma generating device, plasma treatment device, and method for manufacturing electronic device
KR20190008126A (en) * 2017-07-13 2019-01-23 도쿄엘렉트론가부시키가이샤 Method for spraying parts for plasma processing apparatus and parts for plasma processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259530A (en) * 2008-04-15 2009-11-05 Shibaura Mechatronics Corp Plasma generating device, plasma treatment device, and method for manufacturing electronic device
KR20190008126A (en) * 2017-07-13 2019-01-23 도쿄엘렉트론가부시키가이샤 Method for spraying parts for plasma processing apparatus and parts for plasma processing apparatus

Similar Documents

Publication Publication Date Title
EP0302506B1 (en) Method and apparatus for fabricating superconductive thin films
US8053338B2 (en) Plasma CVD apparatus
EP0477784B1 (en) Production of high-purity silicon ingot
JP2010520644A (en) Plasma spraying of semiconductor grade silicon
US4960753A (en) Magnetron deposition of ceramic oxide-superconductor thin films
JPH11260721A (en) Forming method for polycrystal thin film silicon layer and photovoltaic power generating
JPH07263732A (en) Polycrystalline silicon device
JP5008779B2 (en) Polycrystalline solar cell panel and manufacturing method thereof
JP2000031059A (en) METHOD FOR SYNTHESIZING LOW RESISTANCE N-TYPE AND LOW RESISTANCE P-TYPE SINGLE CRYSTAL AlN THIN FILMS
JPS61272922A (en) Semiconductor device wafer substrate and manufacture thereof
JPH08127876A (en) Formation of film and film forming device
JPH06268242A (en) Manufacture of silicon substrate and crystalline silicon solar cell
JP3486590B2 (en) Deposition film forming equipment
JP2002004055A (en) Cathode electrode for plasma source of vacuum deposition system for depositing coating film on optical substrate in particular
JP2849852B2 (en) Method of forming semiconductor thin film
JPH0487325A (en) Manufacture of polycrystalline film
JP2000216090A (en) Manufacture of polycrystalline semiconductor device
JP4025608B2 (en) Method for producing granular silicon crystal
JPH06179968A (en) High frequency sputtering device
JPH031377B2 (en)
JPH116052A (en) Production of cubic nitrided boron coating film
JP3247838B2 (en) Pyrolytic boron nitride crucible and method for producing the same
JPH0948606A (en) Purification of silicon
TW591130B (en) Method and apparatus for directly forming polycrystal silicon film
JPH05315259A (en) Manufacture of polycrystalline silicon film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051018