JPH08125487A - Piezoelectric vibrator - Google Patents
Piezoelectric vibratorInfo
- Publication number
- JPH08125487A JPH08125487A JP16287094A JP16287094A JPH08125487A JP H08125487 A JPH08125487 A JP H08125487A JP 16287094 A JP16287094 A JP 16287094A JP 16287094 A JP16287094 A JP 16287094A JP H08125487 A JPH08125487 A JP H08125487A
- Authority
- JP
- Japan
- Prior art keywords
- conductive liquid
- piezoelectric
- piezoelectric vibrator
- metal electrode
- immersed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】導電液の比重測定に適した圧電振
動子に関する。TECHNICAL FIELD The present invention relates to a piezoelectric vibrator suitable for measuring the specific gravity of a conductive liquid.
【0002】[0002]
【従来の技術】従来から比重の測定は、ガラス製の比重
計等を液中に浮かべて液面に接する個所の目盛りを読ん
でいた。2. Description of the Related Art Conventionally, in measuring specific gravity, a specific gravity meter made of glass or the like is floated in a liquid and the scale of a portion contacting the liquid surface is read.
【発明が解決しようとする課題】ガラス製の比重計で
は、自動車等においては常時鉛電池等の充電量の測定が
出来ない。液に浸した圧電振動子を圧電発振器に接続し
発振周波数を測定することにより、常時充電量の測定が
できる。しかし、圧電片を鉛電池の液に浸すと圧電振動
子の電極膜が損傷を受ける不具合が有った。However, the specific gravity meter made of glass cannot always measure the charge amount of a lead battery or the like in an automobile or the like. The amount of charge can be constantly measured by connecting the piezoelectric vibrator immersed in the liquid to the piezoelectric oscillator and measuring the oscillation frequency. However, there is a problem that the electrode film of the piezoelectric vibrator is damaged when the piezoelectric piece is immersed in the liquid of the lead battery.
【0003】[0003]
【課題を解決する手段】課題を解決するために、圧電振
動子を液に浸す面に電極膜を形成しないで、導電性液体
を介して金属電極を利用して引き出し端子とする。導電
性液体の中の金属電極にはAu、Pt等導電性液体で腐
食されない金属を使用する。また、圧電振動子の導電性
液体に浸さない面に一対の電極を設け、逆の面を導電性
液体に浸すことで導電性液体の中に電極を浸すことが全
く不必要になるので、電極膜及び金属電極に関する配慮
が全然必要なくなり、これらの手段を講ずることにより
課題が解決された。In order to solve the problems, an electrode film is not formed on the surface of the piezoelectric vibrator that is immersed in the liquid, and a metal electrode is used as a lead terminal through the conductive liquid. For the metal electrode in the conductive liquid, a metal such as Au or Pt that is not corroded by the conductive liquid is used. In addition, it is completely unnecessary to immerse the electrodes in the conductive liquid by providing a pair of electrodes on the surface of the piezoelectric vibrator that is not immersed in the conductive liquid and immersing the opposite surfaces in the conductive liquid. No consideration was given to the membrane and the metal electrode, and the problem was solved by taking these measures.
【0004】[0004]
【作用】鉛電池の場合、電池の充電量は電池の導電性液
体の比重との相関関係の有ることが知られている。一方
前述の圧電片の少なくとも片面を導電性の導電性液体に
接触させた圧電振動子において、この導電性液体の比重
と発振周波数の間にも相関関係がある。このことを示す
一例を図4に示す。鉛電池の場合導電性液体は希硫酸で
ある。満充電の場合の比重は約1.28であり、放電末
期の比重は約1.08で、その比重差は約0.2であ
る。前述の圧電振動子を使用した場合の発振周波数の変
化率は、200×10-6から300×10-6程度であ
る。図4に実施例の導電性液体の比重と発振周波数の関
係を表すグラフを示す。In the case of a lead battery, it is known that the charge amount of the battery has a correlation with the specific gravity of the conductive liquid of the battery. On the other hand, in the piezoelectric vibrator in which at least one surface of the above-mentioned piezoelectric piece is brought into contact with a conductive liquid, there is a correlation between the specific gravity of the conductive liquid and the oscillation frequency. An example showing this is shown in FIG. In the case of lead batteries, the conductive liquid is dilute sulfuric acid. The specific gravity when fully charged is about 1.28, the specific gravity at the end of discharge is about 1.08, and the specific gravity difference is about 0.2. The rate of change of the oscillation frequency when the above-mentioned piezoelectric vibrator is used is about 200 × 10 −6 to 300 × 10 −6 . FIG. 4 is a graph showing the relationship between the specific gravity of the conductive liquid and the oscillation frequency of the example.
【0005】[0005]
【実施例】図1に実施例の基本型の断面図を示す。導電
性液体4を満たした容器5に、金属電極3を導電性液体
4に浸し、片面電極膜の圧電片1の電極膜の無い面を導
電性液体4に触れる様に浮かべている。しかし、この形
では圧電片1の固定が困難で、電極膜2を導電性液体4
で濡らさない様にするのが困難である。EXAMPLE FIG. 1 shows a sectional view of a basic mold of an example. The metal electrode 3 is immersed in the conductive liquid 4 in a container 5 filled with the conductive liquid 4, and the surface of the piezoelectric piece 1 of the single-sided electrode film on which the electrode film is not present is floated so as to touch the conductive liquid 4. However, in this form, it is difficult to fix the piezoelectric piece 1, and the electrode film 2 is attached to the conductive liquid 4.
It is difficult to prevent it from getting wet with.
【0006】図2に実用的に改良された実施例を示す。
図1の欠点を補う為に、圧電片1を囲い6に液体が漏ら
ない様に固定した。また導電性液体中の金属電極3も囲
い6に組み込み固定すると共に、導電性液体中の金属電
極3を圧電片1の保護を兼用させた。この様に一体化で
丈夫にすることで、取扱いが便利になりセンサとして使
用できる。FIG. 2 shows a practically improved embodiment.
In order to make up for the drawback of FIG. 1, the piezoelectric piece 1 was fixed to the enclosure 6 so that liquid would not leak. Further, the metal electrode 3 in the conductive liquid was also incorporated and fixed in the enclosure 6, and the metal electrode 3 in the conductive liquid also served as protection of the piezoelectric piece 1. By integrating and making it strong like this, handling becomes convenient and it can be used as a sensor.
【0007】図3に更に実用的に改良された実施例を示
す。図2の電極膜2を2分割して、それぞれより独立し
た電極の引き出し線を出したものである。この様にする
と、二つのそれぞれの電極膜2と導電性液体中の金属電
極3との間に二対の電極が出来るのみならず、二つの電
極膜一対として使用出来て、Sモードの発振をさせるこ
とにより導電性液体中の金属電極3が不要になり、一層
取扱いが便利になる。FIG. 3 shows a practically improved embodiment. The electrode film 2 shown in FIG. 2 is divided into two parts, and independent lead lines of the electrodes are formed. By doing so, not only two pairs of electrodes can be formed between the two respective electrode films 2 and the metal electrode 3 in the conductive liquid, but also two pairs of electrode films can be used and the S mode oscillation can be achieved. By doing so, the metal electrode 3 in the conductive liquid becomes unnecessary, and the handling becomes more convenient.
【0008】金属電極3の材料は、Au、Pt等腐食に
強い金属ならば使用出来る。また、圧電片の材料は、水
晶、タンタル酸リチウム、ニオブ等が使用出来る。実施
例では示さなかったが、圧電片が導電性液体面から離れ
ると発振周波数は、急激に変化する。このことを利用し
て、液面の監視も出来る。The metal electrode 3 can be made of any material that is resistant to corrosion, such as Au and Pt. Further, as the material of the piezoelectric piece, crystal, lithium tantalate, niobium or the like can be used. Although not shown in the examples, the oscillation frequency changes abruptly when the piezoelectric piece separates from the conductive liquid surface. By utilizing this, the liquid level can also be monitored.
【0009】[0009]
【発明の効果】本発明により、圧電片の電極膜を導電性
液体中に浸すことなく、導電性液体の比重を連続的に容
易に測定するための、電極の腐食の無い圧電振動子が容
易にしかも安価に製作出来る様になった。EFFECTS OF THE INVENTION According to the present invention, it is possible to provide a piezoelectric vibrator without electrode corrosion for continuously and easily measuring the specific gravity of the conductive liquid without immersing the electrode film of the piezoelectric piece in the conductive liquid. Moreover, it can be manufactured at low cost.
【図1】図1は、本発明の基本型を示す断面図である。FIG. 1 is a sectional view showing a basic mold of the present invention.
【図2】図2は、本発明の実用的に改良された実施例を
示す断面図である。FIG. 2 is a cross-sectional view showing a practically improved embodiment of the present invention.
【図3】図3は、図2の実施例を更に実用的に改良され
た実施例を示す断面図である。FIG. 3 is a cross-sectional view showing a practically improved embodiment of the embodiment of FIG.
【図4】図4は、実施例の導電性液体の比重と発振周波
数の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the specific gravity of the conductive liquid of the example and the oscillation frequency.
1 圧電片 2 電極膜 3 金属電極 4 導電性液体 5 容器 6 囲い 1 Piezoelectric piece 2 Electrode film 3 Metal electrode 4 Conductive liquid 5 Container 6 Enclosure
Claims (6)
の面が導電性液と該導電性液体を介して該圧電片と直接
接し、該他方の面と該導電性液体に浸された金属電極と
が設けられ、該金属電極と該電極膜との間を端子とした
ことを特徴とする圧電振動子。1. An electrode film is provided on one surface of a piezoelectric piece, the other surface is in direct contact with the piezoelectric piece through a conductive liquid and the conductive liquid, and the other surface is immersed in the conductive liquid. And a metal electrode formed thereon, and a terminal is provided between the metal electrode and the electrode film.
離したことを特徴とする特許請求の範囲第1項記載の圧
電振動子。2. The piezoelectric vibrator according to claim 1, wherein the electrode film of the piezoelectric piece is isolated from the conductive liquid.
の部分に、該金属電極を取り付け一体化し、且つ該圧電
片を覆うように近傍に取付たことを特徴とする特許請求
の範囲第1項及び第2項記載の圧電振動子。3. The piezoelectric element according to claim 1, wherein the metal electrode is integrally attached to a portion of the enclosure around the piezoelectric piece in the conductive liquid, and is attached in the vicinity so as to cover the piezoelectric piece. The piezoelectric vibrator according to the first and second ranges.
とする特許請求の範囲第1項、第2項、第3項記載の圧
電振動子。4. The piezoelectric vibrator according to claim 1, wherein there are two independent electrode films.
の形状が棒状、線状、網状、板状のいずれかであること
を特徴とする特許請求の範囲第1項、第2項、第3項、
第4項記載の圧電振動子。5. The shape of the metal electrode provided in the conductive liquid is any one of a rod shape, a linear shape, a net shape, and a plate shape. , Item 3,
The piezoelectric vibrator according to item 4.
電性液体の比重の変化を測定することを特徴とする特許
請求の範囲第1項、第2項、第3項、第4項、第5項記
載の圧電振動子。6. The frequency of the piezoelectric vibrator is measured to measure the change in the specific gravity of the conductive liquid, as claimed in claim 1, claim 2, claim 3, claim 4, and claim 4. The piezoelectric vibrator according to the item 5 above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16287094A JPH08125487A (en) | 1994-06-21 | 1994-06-21 | Piezoelectric vibrator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16287094A JPH08125487A (en) | 1994-06-21 | 1994-06-21 | Piezoelectric vibrator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08125487A true JPH08125487A (en) | 1996-05-17 |
Family
ID=15762834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16287094A Pending JPH08125487A (en) | 1994-06-21 | 1994-06-21 | Piezoelectric vibrator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08125487A (en) |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6512322B1 (en) * | 2001-10-31 | 2003-01-28 | Agilent Technologies, Inc. | Longitudinal piezoelectric latching relay |
US6730866B1 (en) | 2003-04-14 | 2004-05-04 | Agilent Technologies, Inc. | High-frequency, liquid metal, latching relay array |
US6741767B2 (en) | 2002-03-28 | 2004-05-25 | Agilent Technologies, Inc. | Piezoelectric optical relay |
US6740829B1 (en) | 2003-04-14 | 2004-05-25 | Agilent Technologies, Inc. | Insertion-type liquid metal latching relay |
US6743990B1 (en) | 2002-12-12 | 2004-06-01 | Agilent Technologies, Inc. | Volume adjustment apparatus and method for use |
US6750413B1 (en) | 2003-04-25 | 2004-06-15 | Agilent Technologies, Inc. | Liquid metal micro switches using patterned thick film dielectric as channels and a thin ceramic or glass cover plate |
US6750594B2 (en) | 2002-05-02 | 2004-06-15 | Agilent Technologies, Inc. | Piezoelectrically actuated liquid metal switch |
US6756551B2 (en) | 2002-05-09 | 2004-06-29 | Agilent Technologies, Inc. | Piezoelectrically actuated liquid metal switch |
US6759610B1 (en) | 2003-06-05 | 2004-07-06 | Agilent Technologies, Inc. | Multi-layer assembly of stacked LIMMS devices with liquid metal vias |
US6759611B1 (en) | 2003-06-16 | 2004-07-06 | Agilent Technologies, Inc. | Fluid-based switches and methods for producing the same |
US6765161B1 (en) | 2003-04-14 | 2004-07-20 | Agilent Technologies, Inc. | Method and structure for a slug caterpillar piezoelectric latching reflective optical relay |
US6768068B1 (en) | 2003-04-14 | 2004-07-27 | Agilent Technologies, Inc. | Method and structure for a slug pusher-mode piezoelectrically actuated liquid metal switch |
US6770827B1 (en) | 2003-04-14 | 2004-08-03 | Agilent Technologies, Inc. | Electrical isolation of fluid-based switches |
US6774324B2 (en) | 2002-12-12 | 2004-08-10 | Agilent Technologies, Inc. | Switch and production thereof |
US6774325B1 (en) | 2003-04-14 | 2004-08-10 | Agilent Technologies, Inc. | Reducing oxides on a switching fluid in a fluid-based switch |
US6777630B1 (en) | 2003-04-30 | 2004-08-17 | Agilent Technologies, Inc. | Liquid metal micro switches using as channels and heater cavities matching patterned thick film dielectric layers on opposing thin ceramic plates |
US6781074B1 (en) | 2003-07-30 | 2004-08-24 | Agilent Technologies, Inc. | Preventing corrosion degradation in a fluid-based switch |
US6787720B1 (en) | 2003-07-31 | 2004-09-07 | Agilent Technologies, Inc. | Gettering agent and method to prevent corrosion in a fluid switch |
US6794591B1 (en) | 2003-04-14 | 2004-09-21 | Agilent Technologies, Inc. | Fluid-based switches |
US6798937B1 (en) | 2003-04-14 | 2004-09-28 | Agilent Technologies, Inc. | Pressure actuated solid slug optical latching relay |
US6803842B1 (en) | 2003-04-14 | 2004-10-12 | Agilent Technologies, Inc. | Longitudinal mode solid slug optical latching relay |
US6809277B2 (en) | 2003-01-22 | 2004-10-26 | Agilent Technologies, Inc. | Method for registering a deposited material with channel plate channels, and switch produced using same |
US6816641B2 (en) | 2003-04-14 | 2004-11-09 | Agilent Technologies, Inc. | Method and structure for a solid slug caterpillar piezoelectric optical relay |
US6818844B2 (en) | 2003-04-14 | 2004-11-16 | Agilent Technologies, Inc. | Method and structure for a slug assisted pusher-mode piezoelectrically actuated liquid metal optical switch |
US6825429B2 (en) | 2003-03-31 | 2004-11-30 | Agilent Technologies, Inc. | Hermetic seal and controlled impedance RF connections for a liquid metal micro switch |
US6831532B2 (en) | 2003-04-14 | 2004-12-14 | Agilent Technologies, Inc. | Push-mode latching relay |
US6833520B1 (en) | 2003-06-16 | 2004-12-21 | Agilent Technologies, Inc. | Suspended thin-film resistor |
US6838959B2 (en) | 2003-04-14 | 2005-01-04 | Agilent Technologies, Inc. | Longitudinal electromagnetic latching relay |
US6841746B2 (en) | 2003-04-14 | 2005-01-11 | Agilent Technologies, Inc. | Bent switching fluid cavity |
US6849144B2 (en) | 2002-12-12 | 2005-02-01 | Agilent Technologies, Inc. | Method for making switch with ultrasonically milled channel plate |
US6870111B2 (en) | 2003-04-14 | 2005-03-22 | Agilent Technologies, Inc. | Bending mode liquid metal switch |
US6872904B2 (en) | 2003-04-14 | 2005-03-29 | Agilent Technologies, Inc. | Fluid-based switch |
US6876133B2 (en) | 2003-04-14 | 2005-04-05 | Agilent Technologies, Inc. | Latching relay with switch bar |
US6876131B2 (en) | 2003-04-14 | 2005-04-05 | Agilent Technologies, Inc. | High-frequency, liquid metal, latching relay with face contact |
US6876132B2 (en) | 2003-04-14 | 2005-04-05 | Agilent Technologies, Inc. | Method and structure for a solid slug caterpillar piezoelectric relay |
US6876130B2 (en) | 2003-04-14 | 2005-04-05 | Agilent Technologies, Inc. | Damped longitudinal mode latching relay |
US6879088B2 (en) | 2003-04-14 | 2005-04-12 | Agilent Technologies, Inc. | Insertion-type liquid metal latching relay array |
US6877878B2 (en) | 2003-04-14 | 2005-04-12 | Eric J. Raskas | Flashlight and video recorder device |
US6879089B2 (en) | 2003-04-14 | 2005-04-12 | Agilent Technologies, Inc. | Damped longitudinal mode optical latching relay |
US6882088B2 (en) | 2003-04-14 | 2005-04-19 | Agilent Technologies, Inc. | Bending-mode latching relay |
US6885133B2 (en) | 2003-04-14 | 2005-04-26 | Agilent Technologies, Inc. | High frequency bending-mode latching relay |
US6888977B2 (en) | 2003-04-14 | 2005-05-03 | Agilent Technologies, Inc. | Polymeric liquid metal optical switch |
US6891116B2 (en) | 2003-04-14 | 2005-05-10 | Agilent Technologies, Inc. | Substrate with liquid electrode |
US6894424B2 (en) | 2003-04-14 | 2005-05-17 | Agilent Technologies, Inc. | High frequency push-mode latching relay |
US6894237B2 (en) | 2003-04-14 | 2005-05-17 | Agilent Technologies, Inc. | Formation of signal paths to increase maximum signal-carrying frequency of a fluid-based switch |
US6897387B2 (en) | 2003-01-13 | 2005-05-24 | Agilent Technologies, Inc. | Photoimaged channel plate for a switch |
US6903490B2 (en) | 2003-04-14 | 2005-06-07 | Agilent Technologies, Inc. | Longitudinal mode optical latching relay |
US6903493B2 (en) | 2003-04-14 | 2005-06-07 | Agilent Technologies, Inc. | Inserting-finger liquid metal relay |
US6903492B2 (en) | 2003-04-14 | 2005-06-07 | Agilent Technologies, Inc. | Wetting finger latching piezoelectric relay |
US6920259B2 (en) | 2003-04-14 | 2005-07-19 | Agilent Technologies, Inc. | Longitudinal electromagnetic latching optical relay |
US6924443B2 (en) | 2003-04-14 | 2005-08-02 | Agilent Technologies, Inc. | Reducing oxides on a switching fluid in a fluid-based switch |
US6925223B2 (en) | 2003-04-14 | 2005-08-02 | Agilent Technologies, Inc. | Pressure actuated optical latching relay |
US6927529B2 (en) | 2002-05-02 | 2005-08-09 | Agilent Technologies, Inc. | Solid slug longitudinal piezoelectric latching relay |
US6946775B2 (en) | 2003-04-14 | 2005-09-20 | Agilent Technologies, Inc. | Method and structure for a slug assisted longitudinal piezoelectrically actuated liquid metal optical switch |
US6946776B2 (en) | 2003-04-14 | 2005-09-20 | Agilent Technologies, Inc. | Method and apparatus for maintaining a liquid metal switch in a ready-to-switch condition |
US6956990B2 (en) | 2003-04-14 | 2005-10-18 | Agilent Technologies, Inc. | Reflecting wedge optical wavelength multiplexer/demultiplexer |
US6961487B2 (en) | 2003-04-14 | 2005-11-01 | Agilent Technologies, Inc. | Method and structure for a pusher-mode piezoelectrically actuated liquid metal optical switch |
US7012354B2 (en) | 2003-04-14 | 2006-03-14 | Agilent Technologies, Inc. | Method and structure for a pusher-mode piezoelectrically actuated liquid metal switch |
US7048519B2 (en) | 2003-04-14 | 2006-05-23 | Agilent Technologies, Inc. | Closed-loop piezoelectric pump |
US7070908B2 (en) | 2003-04-14 | 2006-07-04 | Agilent Technologies, Inc. | Feature formation in thick-film inks |
US7071432B2 (en) | 2003-04-14 | 2006-07-04 | Agilent Technologies, Inc. | Reduction of oxides in a fluid-based switch |
US7078849B2 (en) | 2001-10-31 | 2006-07-18 | Agilent Technologies, Inc. | Longitudinal piezoelectric optical latching relay |
US7089432B2 (en) | 2002-12-27 | 2006-08-08 | Matsushita Electric Industrial Co., Ltd. | Method for operating a processor at first and second rates depending upon whether the processor is executing code to control predetermined hard drive operations |
-
1994
- 1994-06-21 JP JP16287094A patent/JPH08125487A/en active Pending
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6512322B1 (en) * | 2001-10-31 | 2003-01-28 | Agilent Technologies, Inc. | Longitudinal piezoelectric latching relay |
US7078849B2 (en) | 2001-10-31 | 2006-07-18 | Agilent Technologies, Inc. | Longitudinal piezoelectric optical latching relay |
US6741767B2 (en) | 2002-03-28 | 2004-05-25 | Agilent Technologies, Inc. | Piezoelectric optical relay |
US6750594B2 (en) | 2002-05-02 | 2004-06-15 | Agilent Technologies, Inc. | Piezoelectrically actuated liquid metal switch |
US6927529B2 (en) | 2002-05-02 | 2005-08-09 | Agilent Technologies, Inc. | Solid slug longitudinal piezoelectric latching relay |
US6756551B2 (en) | 2002-05-09 | 2004-06-29 | Agilent Technologies, Inc. | Piezoelectrically actuated liquid metal switch |
US7022926B2 (en) | 2002-12-12 | 2006-04-04 | Agilent Technologies, Inc. | Ultrasonically milled channel plate for a switch |
US6743990B1 (en) | 2002-12-12 | 2004-06-01 | Agilent Technologies, Inc. | Volume adjustment apparatus and method for use |
US6909059B2 (en) | 2002-12-12 | 2005-06-21 | Agilent Technologies, Inc. | Liquid switch production and assembly |
US6774324B2 (en) | 2002-12-12 | 2004-08-10 | Agilent Technologies, Inc. | Switch and production thereof |
US6849144B2 (en) | 2002-12-12 | 2005-02-01 | Agilent Technologies, Inc. | Method for making switch with ultrasonically milled channel plate |
US7089432B2 (en) | 2002-12-27 | 2006-08-08 | Matsushita Electric Industrial Co., Ltd. | Method for operating a processor at first and second rates depending upon whether the processor is executing code to control predetermined hard drive operations |
US7019235B2 (en) | 2003-01-13 | 2006-03-28 | Agilent Technologies, Inc. | Photoimaged channel plate for a switch |
US6897387B2 (en) | 2003-01-13 | 2005-05-24 | Agilent Technologies, Inc. | Photoimaged channel plate for a switch |
US7098413B2 (en) | 2003-01-13 | 2006-08-29 | Agilent Technologies, Inc. | Photoimaged channel plate for a switch, and method for making a switch using same |
US6809277B2 (en) | 2003-01-22 | 2004-10-26 | Agilent Technologies, Inc. | Method for registering a deposited material with channel plate channels, and switch produced using same |
US6911611B2 (en) | 2003-01-22 | 2005-06-28 | Agilent Technologies, Inc. | Method for registering a deposited material with channel plate channels |
US6825429B2 (en) | 2003-03-31 | 2004-11-30 | Agilent Technologies, Inc. | Hermetic seal and controlled impedance RF connections for a liquid metal micro switch |
US6876132B2 (en) | 2003-04-14 | 2005-04-05 | Agilent Technologies, Inc. | Method and structure for a solid slug caterpillar piezoelectric relay |
US6894424B2 (en) | 2003-04-14 | 2005-05-17 | Agilent Technologies, Inc. | High frequency push-mode latching relay |
US6803842B1 (en) | 2003-04-14 | 2004-10-12 | Agilent Technologies, Inc. | Longitudinal mode solid slug optical latching relay |
US6794591B1 (en) | 2003-04-14 | 2004-09-21 | Agilent Technologies, Inc. | Fluid-based switches |
US6816641B2 (en) | 2003-04-14 | 2004-11-09 | Agilent Technologies, Inc. | Method and structure for a solid slug caterpillar piezoelectric optical relay |
US6818844B2 (en) | 2003-04-14 | 2004-11-16 | Agilent Technologies, Inc. | Method and structure for a slug assisted pusher-mode piezoelectrically actuated liquid metal optical switch |
US6730866B1 (en) | 2003-04-14 | 2004-05-04 | Agilent Technologies, Inc. | High-frequency, liquid metal, latching relay array |
US6831532B2 (en) | 2003-04-14 | 2004-12-14 | Agilent Technologies, Inc. | Push-mode latching relay |
US6740829B1 (en) | 2003-04-14 | 2004-05-25 | Agilent Technologies, Inc. | Insertion-type liquid metal latching relay |
US6838959B2 (en) | 2003-04-14 | 2005-01-04 | Agilent Technologies, Inc. | Longitudinal electromagnetic latching relay |
US6841746B2 (en) | 2003-04-14 | 2005-01-11 | Agilent Technologies, Inc. | Bent switching fluid cavity |
US7071432B2 (en) | 2003-04-14 | 2006-07-04 | Agilent Technologies, Inc. | Reduction of oxides in a fluid-based switch |
US6870111B2 (en) | 2003-04-14 | 2005-03-22 | Agilent Technologies, Inc. | Bending mode liquid metal switch |
US6872904B2 (en) | 2003-04-14 | 2005-03-29 | Agilent Technologies, Inc. | Fluid-based switch |
US6876133B2 (en) | 2003-04-14 | 2005-04-05 | Agilent Technologies, Inc. | Latching relay with switch bar |
US6876131B2 (en) | 2003-04-14 | 2005-04-05 | Agilent Technologies, Inc. | High-frequency, liquid metal, latching relay with face contact |
US7070908B2 (en) | 2003-04-14 | 2006-07-04 | Agilent Technologies, Inc. | Feature formation in thick-film inks |
US6876130B2 (en) | 2003-04-14 | 2005-04-05 | Agilent Technologies, Inc. | Damped longitudinal mode latching relay |
US6879088B2 (en) | 2003-04-14 | 2005-04-12 | Agilent Technologies, Inc. | Insertion-type liquid metal latching relay array |
US6877878B2 (en) | 2003-04-14 | 2005-04-12 | Eric J. Raskas | Flashlight and video recorder device |
US6879089B2 (en) | 2003-04-14 | 2005-04-12 | Agilent Technologies, Inc. | Damped longitudinal mode optical latching relay |
US6882088B2 (en) | 2003-04-14 | 2005-04-19 | Agilent Technologies, Inc. | Bending-mode latching relay |
US6885133B2 (en) | 2003-04-14 | 2005-04-26 | Agilent Technologies, Inc. | High frequency bending-mode latching relay |
US6888977B2 (en) | 2003-04-14 | 2005-05-03 | Agilent Technologies, Inc. | Polymeric liquid metal optical switch |
US6891116B2 (en) | 2003-04-14 | 2005-05-10 | Agilent Technologies, Inc. | Substrate with liquid electrode |
US6798937B1 (en) | 2003-04-14 | 2004-09-28 | Agilent Technologies, Inc. | Pressure actuated solid slug optical latching relay |
US6894237B2 (en) | 2003-04-14 | 2005-05-17 | Agilent Technologies, Inc. | Formation of signal paths to increase maximum signal-carrying frequency of a fluid-based switch |
US6774325B1 (en) | 2003-04-14 | 2004-08-10 | Agilent Technologies, Inc. | Reducing oxides on a switching fluid in a fluid-based switch |
US6903490B2 (en) | 2003-04-14 | 2005-06-07 | Agilent Technologies, Inc. | Longitudinal mode optical latching relay |
US6903493B2 (en) | 2003-04-14 | 2005-06-07 | Agilent Technologies, Inc. | Inserting-finger liquid metal relay |
US6903492B2 (en) | 2003-04-14 | 2005-06-07 | Agilent Technologies, Inc. | Wetting finger latching piezoelectric relay |
US6906271B2 (en) | 2003-04-14 | 2005-06-14 | Agilent Technologies, Inc. | Fluid-based switch |
US6770827B1 (en) | 2003-04-14 | 2004-08-03 | Agilent Technologies, Inc. | Electrical isolation of fluid-based switches |
US6768068B1 (en) | 2003-04-14 | 2004-07-27 | Agilent Technologies, Inc. | Method and structure for a slug pusher-mode piezoelectrically actuated liquid metal switch |
US6920259B2 (en) | 2003-04-14 | 2005-07-19 | Agilent Technologies, Inc. | Longitudinal electromagnetic latching optical relay |
US6924443B2 (en) | 2003-04-14 | 2005-08-02 | Agilent Technologies, Inc. | Reducing oxides on a switching fluid in a fluid-based switch |
US6925223B2 (en) | 2003-04-14 | 2005-08-02 | Agilent Technologies, Inc. | Pressure actuated optical latching relay |
US6765161B1 (en) | 2003-04-14 | 2004-07-20 | Agilent Technologies, Inc. | Method and structure for a slug caterpillar piezoelectric latching reflective optical relay |
US6946775B2 (en) | 2003-04-14 | 2005-09-20 | Agilent Technologies, Inc. | Method and structure for a slug assisted longitudinal piezoelectrically actuated liquid metal optical switch |
US6946776B2 (en) | 2003-04-14 | 2005-09-20 | Agilent Technologies, Inc. | Method and apparatus for maintaining a liquid metal switch in a ready-to-switch condition |
US6956990B2 (en) | 2003-04-14 | 2005-10-18 | Agilent Technologies, Inc. | Reflecting wedge optical wavelength multiplexer/demultiplexer |
US6961487B2 (en) | 2003-04-14 | 2005-11-01 | Agilent Technologies, Inc. | Method and structure for a pusher-mode piezoelectrically actuated liquid metal optical switch |
US7012354B2 (en) | 2003-04-14 | 2006-03-14 | Agilent Technologies, Inc. | Method and structure for a pusher-mode piezoelectrically actuated liquid metal switch |
US7048519B2 (en) | 2003-04-14 | 2006-05-23 | Agilent Technologies, Inc. | Closed-loop piezoelectric pump |
US6750413B1 (en) | 2003-04-25 | 2004-06-15 | Agilent Technologies, Inc. | Liquid metal micro switches using patterned thick film dielectric as channels and a thin ceramic or glass cover plate |
US6777630B1 (en) | 2003-04-30 | 2004-08-17 | Agilent Technologies, Inc. | Liquid metal micro switches using as channels and heater cavities matching patterned thick film dielectric layers on opposing thin ceramic plates |
US6759610B1 (en) | 2003-06-05 | 2004-07-06 | Agilent Technologies, Inc. | Multi-layer assembly of stacked LIMMS devices with liquid metal vias |
US6759611B1 (en) | 2003-06-16 | 2004-07-06 | Agilent Technologies, Inc. | Fluid-based switches and methods for producing the same |
US6833520B1 (en) | 2003-06-16 | 2004-12-21 | Agilent Technologies, Inc. | Suspended thin-film resistor |
US6781074B1 (en) | 2003-07-30 | 2004-08-24 | Agilent Technologies, Inc. | Preventing corrosion degradation in a fluid-based switch |
US6787720B1 (en) | 2003-07-31 | 2004-09-07 | Agilent Technologies, Inc. | Gettering agent and method to prevent corrosion in a fluid switch |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08125487A (en) | Piezoelectric vibrator | |
JP3113904B2 (en) | Sulfuric acid concentration sensor for lead-acid batteries | |
US7148611B1 (en) | Multiple function bulk acoustic wave liquid property sensor | |
US7360424B2 (en) | Capacitance-type liquid sensor | |
US4357576A (en) | Conductivity cell | |
CN111272331A (en) | Optical fiber air pressure sensor and system based on surface plasmon resonance | |
JPS6117949A (en) | Solid ph sensor | |
US20230079598A1 (en) | Shear-type vibration-ultrasonic composite sensor and measuring device | |
JP2003057093A (en) | Electrode for liquid level detector | |
JP3634479B2 (en) | Crystal sensor | |
FR2444270A1 (en) | APPARATUS FOR POROSITY MEASUREMENTS | |
JPS5935122A (en) | Pressure sensor for gas | |
JPH06194346A (en) | Elastic surface-wave unit for measuring properties of liquid | |
US9140671B2 (en) | Quantitative sensor and manufacturing method thereof | |
JPH04110618A (en) | Liquid level sensor | |
JPS6282313A (en) | Inclination measuring instrument | |
US3717565A (en) | Ion-responsive electrode construction | |
JPS59131154A (en) | Dielectric constant measuring sensor | |
SU879484A1 (en) | Device for measuring current | |
SU658442A1 (en) | Method of measuring the function of surface tension of solid electrode versus potential | |
Weininger et al. | State‐of‐Charge Indicator for Lead‐Acid Batteries | |
Cernosek et al. | Quartz resonator state-of-charge monitor for lead-acid batteries | |
JPH0432604Y2 (en) | ||
JPS6032601Y2 (en) | Portable residual chlorine meter | |
JPS60170741A (en) | Viscosity sensor |