JPH08125264A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH08125264A
JPH08125264A JP26381294A JP26381294A JPH08125264A JP H08125264 A JPH08125264 A JP H08125264A JP 26381294 A JP26381294 A JP 26381294A JP 26381294 A JP26381294 A JP 26381294A JP H08125264 A JPH08125264 A JP H08125264A
Authority
JP
Japan
Prior art keywords
diffraction grating
wavelengths
semiconductor laser
period
phase shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26381294A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Hidaka
建彦 日高
Takaaki Hirata
隆昭 平田
Yoshihiko Tachikawa
義彦 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Yokogawa Electric Corp
Original Assignee
Agency of Industrial Science and Technology
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Yokogawa Electric Corp filed Critical Agency of Industrial Science and Technology
Priority to JP26381294A priority Critical patent/JPH08125264A/en
Publication of JPH08125264A publication Critical patent/JPH08125264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE: To simultaneously oscillate a semiconductor laser in a prescribed plurality of wavelengths, to miniaturize the laser and to lower the production cost of the laser by a method wherein a periodical phase shift is provided in the diffraction grating of the semiconductor laser and a plurality of reflection peaks are provided in the reflection spectrum of the diffraction grating. CONSTITUTION: A diffraction grating 9 is held formed on the upper surface of an n-type InP clad layer 2 by an electron beam exposure method and etching, for example, prior to a crystal growth of an n-type InGaAsP guide layer 3 and a period A corresponding to the primary diffraction grating is about 240nm. When a periodical phase shift is provided in the diffraction grating, the threshold gain of a semiconductor laser, which is oscillated in a plurality of wavelengths in every period M, is reduced and it becomes possible to produce simultaneously a laser beam of a plurality of wavelengths. Moreover, as this period M is decided by the period of the phase shift, a plurality of wavelengths, which are simultaneously oscillated, can be selected by selecting properly the period of the diffraction grating and the period of the phase shift. Accordingly, a multitude of the gain peak wavelengths of an active layer in correspondence with the wavelengths of the laser, whose threshold gain is reduced, are reduced and the number of wavelengths, which can be simultaneously oscillated, is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、波長多重光通信や周波
数多重光通信などの光源として利用される半導体レーザ
に関し、特に所定の複数の波長で同時に発振する半導体
レーザに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser used as a light source for wavelength-multiplexed optical communication or frequency-multiplexed optical communication, and more particularly to a semiconductor laser which oscillates at a plurality of predetermined wavelengths simultaneously.

【0002】[0002]

【従来の技術】波長(または周波数)多重光通信では、
波長の異なった複数の光源が要求され、しかもその各光
源は所定の波長で安定に発振する必要がある。発振波長
が安定な半導体レーザとしては、従来より分布帰還型半
導体レーザまたは分布反射型半導体レーザが知られてい
る。
2. Description of the Related Art In wavelength (or frequency) multiplex optical communication,
A plurality of light sources having different wavelengths are required, and each light source needs to stably oscillate at a predetermined wavelength. As a semiconductor laser having a stable oscillation wavelength, a distributed feedback semiconductor laser or a distributed reflection semiconductor laser has been conventionally known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
これらの半導体レーザでは次のような問題があった。こ
れらの半導体レーザは回折格子のピッチで発振波長が決
まり、その発振は単一モード発振である。そのため、回
折格子のピッチを変えた複数個の半導体レーザを用いて
波長多重光通信用光源を作っているのが現状である。し
たがって当然ながら多重化する波長の数だけの半導体レ
ーザおよび電気回路などが必要となり、小型化、低価格
化も望めないという問題があった。
However, these conventional semiconductor lasers have the following problems. The oscillation wavelength of these semiconductor lasers is determined by the pitch of the diffraction grating, and the oscillation is single mode oscillation. Therefore, at present, a light source for wavelength division multiplexing optical communication is made by using a plurality of semiconductor lasers having different diffraction grating pitches. Therefore, as a matter of course, semiconductor lasers and electric circuits corresponding to the number of wavelengths to be multiplexed are required, and there is a problem that miniaturization and cost reduction cannot be expected.

【0004】本発明の目的は、このような点に鑑みてな
されたもので、所定の複数の波長で同時に発振すると共
に小型低価格化を図った半導体レーザを提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor laser which has been made in view of the above points and which oscillates at a plurality of predetermined wavelengths at the same time and is small in size and low in cost.

【0005】[0005]

【課題を解決するための手段】このような目的を達成す
るために本発明では、回折格子を用いた光共振器を持つ
半導体レーザであって、前記回折格子の反射スペクトル
に複数の反射ピークが生ずるように構成したことを特徴
とする。
In order to achieve such an object, the present invention provides a semiconductor laser having an optical resonator using a diffraction grating, wherein the reflection spectrum of the diffraction grating has a plurality of reflection peaks. It is characterized in that it is configured to occur.

【0006】[0006]

【作用】半導体レーザの回折格子に周期的な位相シフト
を設けて回折格子の反射スペクトルに複数の反射ピーク
を設ける。このような構造により、複数の波長での同時
発振が可能となる。
Function: The diffraction grating of the semiconductor laser is provided with a periodic phase shift to provide a plurality of reflection peaks in the reflection spectrum of the diffraction grating. With such a structure, simultaneous oscillation at a plurality of wavelengths is possible.

【0007】[0007]

【実施例】以下図面を用いて本発明を詳しく説明する。
なお、本実施例では回折格子を用いたInP系分布帰還
型半導体レーザを例に説明する。図1は本発明に係る半
導体レーザの一実施例を示す構造断面図である。図にお
いて、1はn+ 型InP基板、2はn型InPクラッド
層、3はn型InGaAsPガイド層、4はアンドープ
InGaAsP活性層、5はp型InPクラッド層、6
はp+ 型InGaAsPコンタクト層、7はn型電極、
8はp型電極、9は回折格子である。
The present invention will be described in detail below with reference to the drawings.
In this embodiment, an InP-based distributed feedback semiconductor laser using a diffraction grating will be described as an example. FIG. 1 is a structural sectional view showing an embodiment of a semiconductor laser according to the present invention. In the figure, 1 is an n + type InP substrate, 2 is an n type InP cladding layer, 3 is an n type InGaAsP guide layer, 4 is an undoped InGaAsP active layer, 5 is a p type InP cladding layer, 6
Is a p + type InGaAsP contact layer, 7 is an n type electrode,
Reference numeral 8 is a p-type electrode, and 9 is a diffraction grating.

【0008】n+ 型InP基板1の上面に、n型InP
クラッド層2、n型InGaAsPガイド層3、アンド
ープInGaAsP活性層4、p型InPクラッド層
5、p+ 型InGaAsPコンタクト層6が順次積層さ
れ、n+ 型InP基板1の下面にはn型電極7が、他方
+ 型InGaAsPコンタクト層6の上面にはp型電
極8がそれぞれ取り付けられている。回折格子9は、n
型InPクラッド層2の上面において共振器方向(Z方
向)に凹凸を付けて形成されている。
On the upper surface of the n + type InP substrate 1, n type InP is formed.
The clad layer 2, the n-type InGaAsP guide layer 3, the undoped InGaAsP active layer 4, the p-type InP clad layer 5, and the p + -type InGaAsP contact layer 6 are sequentially stacked, and the n-type electrode 7 is formed on the lower surface of the n + -type InP substrate 1. On the other hand, on the upper surface of the p + type InGaAsP contact layer 6, p type electrodes 8 are attached, respectively. The diffraction grating 9 is n
It is formed on the upper surface of the type InP clad layer 2 by making unevenness in the cavity direction (Z direction).

【0009】このような構成の半導体レーザとしての基
本的な動作原理は従来と同じであるが、本実施例では回
折格子9のみが従来の分布帰還型半導体レーザと異な
る。以下回折格子9について詳述する。
Although the basic operation principle of the semiconductor laser having such a structure is the same as that of the conventional one, only the diffraction grating 9 in this embodiment is different from the conventional distributed feedback semiconductor laser. The diffraction grating 9 will be described in detail below.

【0010】回折格子9は、n型InGaAsPガイド
層3の結晶成長に先立ってn型InPクラッド層2の上
面に例えば電子ビーム露光法とエッチングにより形成さ
れており、一次の回折格子に該当する周期Λは約240
nmである。
The diffraction grating 9 is formed on the upper surface of the n-type InP cladding layer 2 by, for example, an electron beam exposure method and etching prior to the crystal growth of the n-type InGaAsP guide layer 3, and has a period corresponding to a first-order diffraction grating. Λ is about 240
nm.

【0011】図2は回折格子の位相を説明するための図
である。図2の(a)は比較のために示す図で、位相シ
フトが全くない回折格子の場合である。図2の(b)は
中央に180度の位相シフト11が設けられた回折格子
の場合である。図2の(c)は本発明の回折格子の場合
である。図2の(b)に示す回折格子は分布帰還型半導
体レーザの単一モード性を向上させるために従来より用
いられている構造であり、1/4波長(λ/4)シフト
回折格子またはλ/4シフト分布帰還型半導体レーザと
呼ばれている。
FIG. 2 is a diagram for explaining the phase of the diffraction grating. FIG. 2A is a diagram shown for comparison, and shows the case of a diffraction grating having no phase shift. FIG. 2B shows the case of a diffraction grating provided with a phase shift 11 of 180 degrees in the center. FIG. 2C shows the case of the diffraction grating of the present invention. The diffraction grating shown in FIG. 2B is a structure that has been conventionally used to improve the single mode property of a distributed feedback semiconductor laser, and is a quarter wavelength (λ / 4) shift diffraction grating or λ. It is called a / 4 shift distributed feedback semiconductor laser.

【0012】図2の(c)に示す本発明の回折格子で
は、図2の(b)に示す中央の位相シフト11に加え、
180度の位相シフト12を周期Lで複数設けている。
なお、中央の位相シフト11は本質的なものではなく、
その位相シフトは180度以外でもよく、また存在しな
くてもよい。また、複数の位相シフト12の位相シフト
量は180度が望ましいが、必ずしも180度である必
要はない。
In the diffraction grating of the present invention shown in FIG. 2C, in addition to the central phase shift 11 shown in FIG.
A plurality of 180 degree phase shifts 12 are provided with a cycle L.
The central phase shift 11 is not essential,
The phase shift may be other than 180 degrees and may not be present. Further, the phase shift amount of the plurality of phase shifts 12 is preferably 180 degrees, but it does not necessarily have to be 180 degrees.

【0013】このような構成の半導体レーザの動作を、
図3に示す波長に対する発振閾値利得の模式図を参照し
て、次に説明する。図3における実線は図2(c)に示
す本発明の回折格子9を用いた分布帰還型半導体レーザ
の発振閾値利得であり、図3中の点線は図2の(b)に
示す回折格子を用いたλ/4シフト分布帰還型半導体レ
ーザの発振閾値利得である。
The operation of the semiconductor laser having such a structure is
Next, description will be made with reference to the schematic diagram of the oscillation threshold gain with respect to the wavelength shown in FIG. The solid line in FIG. 3 represents the oscillation threshold gain of the distributed feedback semiconductor laser using the diffraction grating 9 of the present invention shown in FIG. 2C, and the dotted line in FIG. 3 represents the diffraction grating shown in FIG. This is the oscillation threshold gain of the used λ / 4 shift distributed feedback semiconductor laser.

【0014】従来のλ/4シフト分布帰還型半導体レー
ザでは図3中の点線のように1つの波長で発振閾値利得
が減少し、この波長で単一モード発振する。これに対
し、回折格子に周期的な位相シフトを設けると、図3中
の実線のように周期Mごとに複数の波長で発振閾値利得
が減少し、複数の波長で同時に発振させることができる
ようになる。更にこの周期Mは、位相シフト12の周期
Lにより決まるため、回折格子9の周期Λと位相シフト
12の周期Lを適当に選ぶことにより同時発振する複数
の波長を選択することができる。
In the conventional λ / 4 shift distributed feedback semiconductor laser, the oscillation threshold gain decreases at one wavelength as shown by the dotted line in FIG. 3, and single mode oscillation occurs at this wavelength. On the other hand, when the diffraction grating is provided with a periodic phase shift, the oscillation threshold gain is reduced at a plurality of wavelengths for each period M as indicated by the solid line in FIG. 3, and it is possible to simultaneously oscillate at a plurality of wavelengths. become. Furthermore, since the period M is determined by the period L of the phase shift 12, it is possible to select a plurality of wavelengths that oscillate simultaneously by appropriately selecting the period Λ of the diffraction grating 9 and the period L of the phase shift 12.

【0015】なお、本発明は上記実施例に限定されるも
のではなく、適宜の変形が可能である。例えば、図1の
活性層4を、図4に示すようにInGaAsP量子井戸
層41a,41b,41cをInGaAsP障壁層42
a,42b,42c,42dで挟んだ多重量子井戸とし
てもよい。なお、図4では説明を簡単にするために量子
井戸数を3つにしているが、量子井戸数に何ら制限はな
い。
The present invention is not limited to the above embodiment, but can be modified appropriately. For example, as shown in FIG. 4, the active layer 4 of FIG. 1 is replaced by the InGaAsP quantum well layers 41a, 41b, 41c and the InGaAsP barrier layer 42.
A multiple quantum well sandwiched between a, 42b, 42c and 42d may be used. Although the number of quantum wells is three in FIG. 4 for simplification of description, the number of quantum wells is not limited at all.

【0016】このような構成の量子井戸の利得ピーク波
長は量子井戸の井戸幅と混晶比に依存するため、これら
を変えることにより量子井戸の利得ピーク波長を変える
ことができる。図4に示す多重量子井戸の利得特性を図
5に示す。各量子井戸層の井戸幅W1 ,W2 ,W3 をW
1 >W2 >W3 とすることにより、図3中の実線で示す
閾値利得が低減した波長に対応して活性層の利得ピーク
波長を複数決めることができ、同時発振可能な波長数を
増やすことができる。
Since the gain peak wavelength of the quantum well having such a structure depends on the well width and the mixed crystal ratio of the quantum well, the gain peak wavelength of the quantum well can be changed by changing them. The gain characteristic of the multiple quantum well shown in FIG. 4 is shown in FIG. The well width W 1 , W 2 , W 3 of each quantum well layer is set to W
By setting 1 > W 2 > W 3 , it is possible to determine a plurality of gain peak wavelengths of the active layer corresponding to the wavelengths with reduced threshold gains shown by the solid line in FIG. 3, and increase the number of wavelengths that can be simultaneously oscillated. be able to.

【0017】更に図6に示すように各量子井戸層41
a,41b,41cをp型InGaAsPの障壁層42
e,42fとn型InGaAsPの障壁層42g,42
hでそれぞれ挟み、各障壁層にp型電極43a,43b
とn型電極44a,44bを形成し、各電極に流す電流
を変化させ各量子井戸の利得を独立に制御するようにし
てもよい。
Further, as shown in FIG. 6, each quantum well layer 41
a, 41b and 41c are p-type InGaAsP barrier layers 42
e, 42f and n-type InGaAsP barrier layers 42g, 42
and p-type electrodes 43a and 43b on each barrier layer.
Alternatively, the n-type electrodes 44a and 44b may be formed, and the current flowing through each electrode may be changed to independently control the gain of each quantum well.

【0018】また、実施例では分布帰還型半導体レーザ
を例にとって説明したが、本発明は分布反射型半導体レ
ーザにも適用でき、同様の効果を得ることができる。
Although the distributed feedback type semiconductor laser has been described as an example in the embodiment, the present invention can be applied to the distributed Bragg reflector semiconductor laser and the same effect can be obtained.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、所
定の複数の波長で同時に発振する半導体レーザが実現で
き、波長多重光通信用光源で必要となる半導体レーザお
よび電気回路などの個数を低減し得ると共に構造が簡略
化でき、波長多重光通信用光源の低価格化と小型化を実
現することができる。
As described above, according to the present invention, a semiconductor laser that simultaneously oscillates at a plurality of predetermined wavelengths can be realized, and the number of semiconductor lasers and electric circuits required for a wavelength division multiplexing optical communication light source can be reduced. It can be reduced and the structure can be simplified, and the cost and size of the light source for wavelength division multiplexing optical communication can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体レーザの一実施例を示す構
造断面図である。
FIG. 1 is a structural sectional view showing an embodiment of a semiconductor laser according to the present invention.

【図2】回折格子の位相を説明するための図である。FIG. 2 is a diagram for explaining a phase of a diffraction grating.

【図3】波長に対する発振閾値利得の模式図である。FIG. 3 is a schematic diagram of oscillation threshold gain with respect to wavelength.

【図4】本発明における活性層の一実施例を示す構造断
面図である。
FIG. 4 is a structural cross-sectional view showing an embodiment of an active layer in the present invention.

【図5】多重量子井戸の利得特性を示す図である。FIG. 5 is a diagram showing a gain characteristic of a multiple quantum well.

【図6】本発明における活性層の他の実施例を示す構造
断面図である。
FIG. 6 is a structural cross-sectional view showing another embodiment of the active layer in the present invention.

【符号の説明】[Explanation of symbols]

1 n+ 型InP基板 2 n型InPクラッド層 3 n型InGaAsPガイド層 4 アンドープInGaAsP活性層 5 p型InPクラッド層 6 p+ 型InGaAsPコンタクト層 7,44a,44b n型電極 8,43a,43b p型電極 9 回折格子 11,12 位相シフト 41a,41b,41c InGaAsP量子井戸層 42a,42b,42c,42d InGaAsP障壁
1 n + type InP substrate 2 n type InP clad layer 3 n type InGaAsP guide layer 4 undoped InGaAsP active layer 5 p type InP clad layer 6 p + type InGaAsP contact layer 7, 44a, 44b n type electrode 8, 43a, 43b p Type electrode 9 Diffraction grating 11,12 Phase shift 41a, 41b, 41c InGaAsP quantum well layer 42a, 42b, 42c, 42d InGaAsP barrier layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平田 隆昭 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 (72)発明者 立川 義彦 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Takaaki Hirata 2-932 Nakamachi, Musashino City, Tokyo Yokogawa Electric Co., Ltd. (72) Yoshihiko Tachikawa 2-932 Nakamachi, Musashino City, Tokyo Within Kawa Denki Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】回折格子を用いた光共振器を持つ半導体レ
ーザであって、 前記回折格子の反射スペクトルに複数の反射ピークが生
ずるように構成することにより、複数の波長で同時に発
振するようにしたことを特徴とする半導体レーザ。
1. A semiconductor laser having an optical resonator using a diffraction grating, wherein a plurality of reflection peaks are generated in a reflection spectrum of the diffraction grating so as to simultaneously oscillate at a plurality of wavelengths. A semiconductor laser characterized in that
【請求項2】前記回折格子に周期的な位相シフトを設け
て回折格子の反射スペクトルに複数の反射ピークが生ず
るように構成することにより、複数の波長で同時に発振
できるようにしたことを特徴とする請求項1記載の半導
体レーザ。
2. The diffraction grating is provided with a periodic phase shift so that a plurality of reflection peaks are generated in a reflection spectrum of the diffraction grating, so that the diffraction grating can simultaneously oscillate at a plurality of wavelengths. The semiconductor laser according to claim 1.
【請求項3】活性層が多重量子井戸構造からなり、この
多重量子井戸の井戸幅または混晶比またはその両方を変
化させて前記活性層の利得特性を制御するようにしたこ
とを特徴とする請求項1記載の半導体レーザ。
3. The active layer has a multiple quantum well structure, and the gain characteristics of the active layer are controlled by changing the well width and / or the mixed crystal ratio of the multiple quantum well. The semiconductor laser according to claim 1.
【請求項4】活性層が多重量子井戸構造からなり、その
多重量子井戸に複数個の電極を設け、各電極に流す電流
を変化させて前記活性層の利得特性を制御するようにし
たことを特徴とする請求項3記載の半導体レーザ。
4. The active layer has a multi-quantum well structure, a plurality of electrodes are provided in the multi-quantum well, and a current flowing through each electrode is changed to control a gain characteristic of the active layer. The semiconductor laser according to claim 3, which is characterized in that.
JP26381294A 1994-10-27 1994-10-27 Semiconductor laser Pending JPH08125264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26381294A JPH08125264A (en) 1994-10-27 1994-10-27 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26381294A JPH08125264A (en) 1994-10-27 1994-10-27 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH08125264A true JPH08125264A (en) 1996-05-17

Family

ID=17394589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26381294A Pending JPH08125264A (en) 1994-10-27 1994-10-27 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH08125264A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075211A (en) * 1996-06-24 1998-03-17 Tera Tec:Kk Very high-speed light mixer system
JP2014007435A (en) * 2013-10-18 2014-01-16 Sumitomo Electric Ind Ltd Wavelength variable laser, wavelength variable laser device, and wavelength variable laser control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075211A (en) * 1996-06-24 1998-03-17 Tera Tec:Kk Very high-speed light mixer system
JP2014007435A (en) * 2013-10-18 2014-01-16 Sumitomo Electric Ind Ltd Wavelength variable laser, wavelength variable laser device, and wavelength variable laser control method

Similar Documents

Publication Publication Date Title
US5325392A (en) Distributed reflector and wavelength-tunable semiconductor laser
US20050053112A1 (en) Surface emitting dfb laser structures for broadband communication systems and array of same
US6590924B2 (en) Mirror and cavity designs for sampled grating distributed bragg reflector lasers
US7242699B2 (en) Wavelength tunable semiconductor laser apparatus
JPH11251691A (en) Series coupled dfb laser
WO2005124951A1 (en) Dfb laser with lateral bragg gratings and facet bragg reflectors etches in one step
EP0480697B1 (en) Tunable semiconductor laser
JP3237733B2 (en) Semiconductor laser
EP0533485B1 (en) Semiconductor device and method of making it
US7083995B2 (en) Optical semiconductor device and process for producing the same
JP2005513803A (en) Phase shift surface emitting DFB laser structure with gain grating or absorption grating
JP4904874B2 (en) Tunable laser
JP2003289169A (en) Semiconductor laser
JPH08125264A (en) Semiconductor laser
Ward et al. Realization of phase grating comb reflectors and their application to widely tunable DBR lasers
JP2624310B2 (en) Multi-wavelength semiconductor laser device
JP2690840B2 (en) Distributed light reflector and wavelength tunable semiconductor laser using the same
JP2770900B2 (en) Distributed reflector and tunable semiconductor laser using the same
JPH10112567A (en) Semiconductor laser and its manufacture
US7088748B2 (en) Tunable laser
JPH0653591A (en) Element for converting optical frequency
JPH06283802A (en) Semiconductor laser device and fabrication thereof
JPH08125265A (en) Semiconductor laser
JPH0770781B2 (en) Semiconductor laser array
JPH06175169A (en) Light frequency converter element

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020603